Qwen3-VL-30B Fine-tuned on Alpaca Dataset
This model is a fine-tuned version of Qwen/Qwen3-VL-30B-A3B-Instruct on the Zaynoid/pathrep-processed-alpaca dataset.
Training Details
- Base Model: Qwen3-VL-30B-A3B-Instruct
- Fine-tuning Method: LoRA (merged)
- Dataset: pathrep-processed-alpaca
- Training Epochs: 3
- Final Training Loss: 0.8265
Usage
import torch
from transformers import AutoModelForVision2Seq, AutoProcessor
model = AutoModelForVision2Seq.from_pretrained(
"Zaynoid/qwen3vl-30b-alpaca-merged",
torch_dtype=torch.bfloat16,
device_map="auto",
trust_remote_code=True
)
processor = AutoProcessor.from_pretrained(
"Zaynoid/qwen3vl-30b-alpaca-merged",
trust_remote_code=True
)
messages = [
{"role": "system", "content": "You are a helpful assistant."},
{"role": "user", "content": "Your question here"}
]
text = processor.apply_chat_template(messages, tokenize=False, add_generation_prompt=True)
inputs = processor(text=text, return_tensors="pt").to(model.device)
with torch.no_grad():
output_ids = model.generate(**inputs, max_new_tokens=512)
response = processor.decode(output_ids[0], skip_special_tokens=True)
print(response)
Training Configuration
- LoRA r=64, alpha=128
- Learning rate: 2e-4
- Batch size: 1 (per device)
- Gradient accumulation: 8 steps
- Optimizer: AdamW with cosine LR schedule
- Weight decay: 0.01
- Max gradient norm: 1.0
- Downloads last month
- 125
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for Zaynoid/Qwen3-VL-30B-A3B
Base model
Qwen/Qwen3-VL-30B-A3B-Instruct