Improve model card: add pipeline tag, paper, project, code links, and full usage
#1
by
nielsr
HF Staff
- opened
README.md
CHANGED
|
@@ -1,3 +1,71 @@
|
|
| 1 |
-
---
|
| 2 |
-
license: mit
|
| 3 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
pipeline_tag: image-to-3d
|
| 4 |
+
---
|
| 5 |
+
|
| 6 |
+
# LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging
|
| 7 |
+
|
| 8 |
+
LiteVGGT is a 3D vision foundation model that significantly boosts vanilla VGGT's performance by achieving up to 10x speedup and substantial memory reduction. This enables efficient processing of large-scale scenes (up to 1000 images) for 3D reconstruction, while maintaining high accuracy in camera pose and point cloud prediction. The method introduces a geometry-aware cached token merging strategy to optimize anchor token selection and reuse merge indices, preserving key geometric information with minimal accuracy impact.
|
| 9 |
+
|
| 10 |
+
This model was presented in the paper: [LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging](https://huggingface.co/papers/2512.04939).
|
| 11 |
+
|
| 12 |
+
- 🏠 [Project Page](https://garlicba.github.io/LiteVGGT/)
|
| 13 |
+
- \ud83d\udcbb [Code](https://github.com/GarlicBa/LiteVGGT-repo)
|
| 14 |
+
|
| 15 |
+
## Overview
|
| 16 |
+
|
| 17 |
+
For 1000 input images, LiteVGGT achieves a **10\u00d7 speedup** over VGGT while maintaining high accuracy in camera pose and point cloud prediction. Its scalability and robustness make large-scale scene reconstruction more efficient and reliable.
|
| 18 |
+
|
| 19 |
+
<p align="center">
|
| 20 |
+
<img src="https://github.com/GarlicBa/LiteVGGT-repo/raw/main/assets/teaser.png" alt="teaser" width="100%">
|
| 21 |
+
</p>
|
| 22 |
+
|
| 23 |
+
## Run Demo
|
| 24 |
+
|
| 25 |
+
To quickly try out LiteVGGT for 3D reconstruction, follow these steps:
|
| 26 |
+
|
| 27 |
+
1. **Environment Setup:**
|
| 28 |
+
First, create a virtual environment using Conda, clone this repository to your local machine, and install the required dependencies.
|
| 29 |
+
|
| 30 |
+
```bash
|
| 31 |
+
conda create -n litevggt python=3.10
|
| 32 |
+
conda activate litevggt
|
| 33 |
+
git clone git@github.com:GarlicBa/LiteVGGT-repo.git
|
| 34 |
+
cd LiteVGGT-repo
|
| 35 |
+
pip install -r requirements.txt
|
| 36 |
+
```
|
| 37 |
+
|
| 38 |
+
2. **Install Transformer Engine:**
|
| 39 |
+
Install the Transformer Engine package following its official installation requirements (see https://github.com/NVIDIA/TransformerEngine):
|
| 40 |
+
|
| 41 |
+
```bash
|
| 42 |
+
export CC=your/gcc/path
|
| 43 |
+
export CXX=your/g++/path
|
| 44 |
+
pip install --no-build-isolation transformer_engine[pytorch]
|
| 45 |
+
```
|
| 46 |
+
|
| 47 |
+
3. **Download Checkpoint:**
|
| 48 |
+
Then, download our LiteVGGT checkpoint that has been **finetuned** and **TE-remapped**:
|
| 49 |
+
```bash
|
| 50 |
+
wget https://huggingface.co/ZhijianShu/LiteVGGT/resolve/main/te_dict.pt
|
| 51 |
+
```
|
| 52 |
+
|
| 53 |
+
4. **Run Inference:**
|
| 54 |
+
```bash
|
| 55 |
+
python run_demo.py \
|
| 56 |
+
--ckpt_path path/to/your/te_dict.pt \
|
| 57 |
+
--img_dir path/to/your/img_dir \
|
| 58 |
+
--output_dir ./recon_result \
|
| 59 |
+
```
|
| 60 |
+
|
| 61 |
+
## Citation
|
| 62 |
+
|
| 63 |
+
If you find this project helpful, citing our paper would be greatly appreciated:
|
| 64 |
+
```bibtex
|
| 65 |
+
@inproceedings{wang2025vggt,
|
| 66 |
+
title={VGGT: Visual Geometry Grounded Transformer},
|
| 67 |
+
author={Wang, Jianyuan and Chen, Minghao and Karaev, Nikita and Vedaldi, Andrea and Rupprecht, Christian and Novotny, David},
|
| 68 |
+
booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
|
| 69 |
+
year={2025}
|
| 70 |
+
}
|
| 71 |
+
```
|