Improve model card: add pipeline tag, paper, project, code links, and full usage

#1
by nielsr HF Staff - opened
Files changed (1) hide show
  1. README.md +71 -3
README.md CHANGED
@@ -1,3 +1,71 @@
1
- ---
2
- license: mit
3
- ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ pipeline_tag: image-to-3d
4
+ ---
5
+
6
+ # LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging
7
+
8
+ LiteVGGT is a 3D vision foundation model that significantly boosts vanilla VGGT's performance by achieving up to 10x speedup and substantial memory reduction. This enables efficient processing of large-scale scenes (up to 1000 images) for 3D reconstruction, while maintaining high accuracy in camera pose and point cloud prediction. The method introduces a geometry-aware cached token merging strategy to optimize anchor token selection and reuse merge indices, preserving key geometric information with minimal accuracy impact.
9
+
10
+ This model was presented in the paper: [LiteVGGT: Boosting Vanilla VGGT via Geometry-aware Cached Token Merging](https://huggingface.co/papers/2512.04939).
11
+
12
+ - 🏠 [Project Page](https://garlicba.github.io/LiteVGGT/)
13
+ - \ud83d\udcbb [Code](https://github.com/GarlicBa/LiteVGGT-repo)
14
+
15
+ ## Overview
16
+
17
+ For 1000 input images, LiteVGGT achieves a **10\u00d7 speedup** over VGGT while maintaining high accuracy in camera pose and point cloud prediction. Its scalability and robustness make large-scale scene reconstruction more efficient and reliable.
18
+
19
+ <p align="center">
20
+ <img src="https://github.com/GarlicBa/LiteVGGT-repo/raw/main/assets/teaser.png" alt="teaser" width="100%">
21
+ </p>
22
+
23
+ ## Run Demo
24
+
25
+ To quickly try out LiteVGGT for 3D reconstruction, follow these steps:
26
+
27
+ 1. **Environment Setup:**
28
+ First, create a virtual environment using Conda, clone this repository to your local machine, and install the required dependencies.
29
+
30
+ ```bash
31
+ conda create -n litevggt python=3.10
32
+ conda activate litevggt
33
+ git clone git@github.com:GarlicBa/LiteVGGT-repo.git
34
+ cd LiteVGGT-repo
35
+ pip install -r requirements.txt
36
+ ```
37
+
38
+ 2. **Install Transformer Engine:**
39
+ Install the Transformer Engine package following its official installation requirements (see https://github.com/NVIDIA/TransformerEngine):
40
+
41
+ ```bash
42
+ export CC=your/gcc/path
43
+ export CXX=your/g++/path
44
+ pip install --no-build-isolation transformer_engine[pytorch]
45
+ ```
46
+
47
+ 3. **Download Checkpoint:**
48
+ Then, download our LiteVGGT checkpoint that has been **finetuned** and **TE-remapped**:
49
+ ```bash
50
+ wget https://huggingface.co/ZhijianShu/LiteVGGT/resolve/main/te_dict.pt
51
+ ```
52
+
53
+ 4. **Run Inference:**
54
+ ```bash
55
+ python run_demo.py \
56
+ --ckpt_path path/to/your/te_dict.pt \
57
+ --img_dir path/to/your/img_dir \
58
+ --output_dir ./recon_result \
59
+ ```
60
+
61
+ ## Citation
62
+
63
+ If you find this project helpful, citing our paper would be greatly appreciated:
64
+ ```bibtex
65
+ @inproceedings{wang2025vggt,
66
+ title={VGGT: Visual Geometry Grounded Transformer},
67
+ author={Wang, Jianyuan and Chen, Minghao and Karaev, Nikita and Vedaldi, Andrea and Rupprecht, Christian and Novotny, David},
68
+ booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition},
69
+ year={2025}
70
+ }
71
+ ```