|
|
--- |
|
|
library_name: transformers |
|
|
license: apache-2.0 |
|
|
base_model: google/long-t5-tglobal-base |
|
|
tags: |
|
|
- generated_from_trainer |
|
|
metrics: |
|
|
- rouge |
|
|
model-index: |
|
|
- name: my_awesome_dailymail_long_model |
|
|
results: [] |
|
|
--- |
|
|
|
|
|
<!-- This model card has been generated automatically according to the information the Trainer had access to. You |
|
|
should probably proofread and complete it, then remove this comment. --> |
|
|
|
|
|
# my_awesome_dailymail_long_model |
|
|
|
|
|
This model is a fine-tuned version of [google/long-t5-tglobal-base](https://huggingface.co/google/long-t5-tglobal-base) on an unknown dataset. |
|
|
It achieves the following results on the evaluation set: |
|
|
- Loss: 1.6759 |
|
|
- Rouge1: 0.2345 |
|
|
- Rouge2: 0.0986 |
|
|
- Rougel: 0.1918 |
|
|
- Rougelsum: 0.1921 |
|
|
- Gen Len: 18.999 |
|
|
|
|
|
## Model description |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Intended uses & limitations |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training and evaluation data |
|
|
|
|
|
More information needed |
|
|
|
|
|
## Training procedure |
|
|
|
|
|
### Training hyperparameters |
|
|
|
|
|
The following hyperparameters were used during training: |
|
|
- learning_rate: 2e-05 |
|
|
- train_batch_size: 8 |
|
|
- eval_batch_size: 8 |
|
|
- seed: 42 |
|
|
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08 |
|
|
- lr_scheduler_type: linear |
|
|
- num_epochs: 4 |
|
|
- mixed_precision_training: Native AMP |
|
|
|
|
|
### Training results |
|
|
|
|
|
| Training Loss | Epoch | Step | Validation Loss | Rouge1 | Rouge2 | Rougel | Rougelsum | Gen Len | |
|
|
|:-------------:|:-----:|:----:|:---------------:|:------:|:------:|:------:|:---------:|:-------:| |
|
|
| 2.5452 | 0.5 | 500 | 1.7971 | 0.227 | 0.0911 | 0.1815 | 0.1815 | 18.9695 | |
|
|
| 2.2571 | 1.0 | 1000 | 1.7336 | 0.2315 | 0.0941 | 0.1865 | 0.1865 | 18.995 | |
|
|
| 2.1671 | 1.5 | 1500 | 1.7149 | 0.2322 | 0.0958 | 0.1885 | 0.1887 | 18.995 | |
|
|
| 2.1123 | 2.0 | 2000 | 1.6973 | 0.2343 | 0.0967 | 0.1903 | 0.1904 | 18.999 | |
|
|
| 2.0778 | 2.5 | 2500 | 1.6900 | 0.2349 | 0.0974 | 0.1913 | 0.1914 | 18.999 | |
|
|
| 2.0609 | 3.0 | 3000 | 1.6833 | 0.2342 | 0.098 | 0.1914 | 0.1916 | 18.999 | |
|
|
| 2.0466 | 3.5 | 3500 | 1.6780 | 0.2344 | 0.0983 | 0.1918 | 0.192 | 18.999 | |
|
|
| 2.0454 | 4.0 | 4000 | 1.6759 | 0.2345 | 0.0986 | 0.1918 | 0.1921 | 18.999 | |
|
|
|
|
|
|
|
|
### Framework versions |
|
|
|
|
|
- Transformers 4.44.2 |
|
|
- Pytorch 2.4.0 |
|
|
- Datasets 3.0.0 |
|
|
- Tokenizers 0.19.1 |
|
|
|