Healthcare Interoperability NER Model
This model is fine-tuned to identify healthcare interoperability concepts in biomedical text.
Model Details
- Base model: BioLinkBERT-large with domain adaptation on healthcare interoperability literature
- Task: Named Entity Recognition (NER)
- Training data: Annotated corpus of healthcare interoperability concepts
- Labels:
- O: Not an entity
- B-ENTITY: Beginning of interoperability entity
- I-ENTITY: Inside/continuation of interoperability entity
Evaluation Results
Our model achieves the following performance on healthcare interoperability entity recognition:
| Metric | Score |
|---|---|
| F1 Score | 74.4% |
| Precision | 75.4% |
| Recall | 73.3% |
| Accuracy | 94.3% |
Improvement over base model:
| Model | F1 Score | Precision | Recall |
|---|---|---|---|
| Base BioLinkBERT | 65.9% | 66.7% | 65.2% |
| + Domain Adaptation | 74.4% | 75.4% | 73.3% |
| Improvement | +8.5% | +8.7% | +8.1% |
Example model outputs:
Input: "FHIR and HL7 standards improve healthcare data interoperability."
Identified entities:
- FHIR
- HL7 standards
- healthcare data interoperability
Usage
from transformers import AutoTokenizer, AutoModelForTokenClassification
import torch
# Load model and tokenizer
tokenizer = AutoTokenizer.from_pretrained("adamleeit/biolink-lg-interop-ner-model")
model = AutoModelForTokenClassification.from_pretrained("adamleeit/biolink-lg-interop-ner-model")
# Tokenize input text
text = "FHIR and HL7 standards improve healthcare data interoperability."
inputs = tokenizer(text, return_tensors="pt", return_offsets_mapping=True)
offset_mapping = inputs.pop("offset_mapping")
# Get predictions
with torch.no_grad():
outputs = model(**inputs)
# Process predictions
predictions = torch.argmax(outputs.logits, dim=2)
input_ids = inputs["input_ids"][0]
# Convert predictions to entities
predicted_entities = []
current_entity = []
for i, pred in enumerate(predictions[0]):
token = tokenizer.convert_ids_to_tokens(input_ids[i])
if pred == 0: # O
if current_entity:
predicted_entities.append(" ".join(current_entity))
current_entity = []
elif pred == 1: # B-ENTITY
if current_entity:
predicted_entities.append(" ".join(current_entity))
current_entity = [token]
elif pred == 2: # I-ENTITY
current_entity.append(token)
if current_entity:
predicted_entities.append(" ".join(current_entity))
print(f"Identified entities: {predicted_entities}")
Citation If you use this model in your research, please cite:
@misc{interoperability-ner-model,
author = {Your Name},
title = {Healthcare Interoperability NER Model},
year = {2025},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/adamleeit/biolink-lg-interop-ner-model}}
}
- Downloads last month
- -
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for adamleeit/biolink-lg-interop-ner-model
Base model
michiyasunaga/BioLinkBERT-large