Configuration Parsing
Warning:
In adapter_config.json: "peft.task_type" must be a string
iam-expert-llama3.1-8b-lora
LoRA adapter trained on IAM/identity domain knowledge. Batch: eb03b33c
Model Details
- Base Model: meta-llama/Llama-3.1-8B-Instruct
- Adapter Type: LoRA (Low-Rank Adaptation)
- Training Pipeline: GraphRAG + Fine-Tuning
- Created: 2025-12-21
Training Details
| Metric | Value |
|---|---|
| Provider | nebius |
| Trained Tokens | 465,657 |
| Training Steps | 15 |
| Training Examples | 1035 |
| Epochs | 3 |
| Batch ID | eb03b33c |
Usage
from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel
# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
device_map="auto",
torch_dtype="auto"
)
# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "alantandrea/iam-expert-llama3.1-8b-lora")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")
# Generate
prompt = "Your question here"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))
Quantized Usage (Lower VRAM)
from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch
# 4-bit quantization for ~6GB VRAM
bnb_config = BitsAndBytesConfig(
load_in_4bit=True,
bnb_4bit_compute_dtype=torch.float16
)
base_model = AutoModelForCausalLM.from_pretrained(
"meta-llama/Llama-3.1-8B-Instruct",
quantization_config=bnb_config,
device_map="auto"
)
model = PeftModel.from_pretrained(base_model, "alantandrea/iam-expert-llama3.1-8b-lora")
License
This adapter is released under the Apache 2.0 license. The base model may have its own license terms.
- Downloads last month
- 11
Inference Providers
NEW
This model isn't deployed by any Inference Provider.
๐
Ask for provider support
Model tree for alantandrea/iam-expert-llama3.1-8b-lora
Base model
meta-llama/Llama-3.1-8B
Finetuned
meta-llama/Llama-3.1-8B-Instruct