Configuration Parsing Warning: In adapter_config.json: "peft.task_type" must be a string

iam-expert-llama3.1-8b-lora

LoRA adapter trained on IAM/identity domain knowledge. Batch: eb03b33c

Model Details

Training Details

Metric Value
Provider nebius
Trained Tokens 465,657
Training Steps 15
Training Examples 1035
Epochs 3
Batch ID eb03b33c

Usage

from transformers import AutoModelForCausalLM, AutoTokenizer
from peft import PeftModel

# Load base model
base_model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-8B-Instruct",
    device_map="auto",
    torch_dtype="auto"
)

# Load LoRA adapter
model = PeftModel.from_pretrained(base_model, "alantandrea/iam-expert-llama3.1-8b-lora")
tokenizer = AutoTokenizer.from_pretrained("meta-llama/Llama-3.1-8B-Instruct")

# Generate
prompt = "Your question here"
inputs = tokenizer(prompt, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=256)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

Quantized Usage (Lower VRAM)

from transformers import AutoModelForCausalLM, BitsAndBytesConfig
import torch

# 4-bit quantization for ~6GB VRAM
bnb_config = BitsAndBytesConfig(
    load_in_4bit=True,
    bnb_4bit_compute_dtype=torch.float16
)

base_model = AutoModelForCausalLM.from_pretrained(
    "meta-llama/Llama-3.1-8B-Instruct",
    quantization_config=bnb_config,
    device_map="auto"
)

model = PeftModel.from_pretrained(base_model, "alantandrea/iam-expert-llama3.1-8b-lora")

License

This adapter is released under the Apache 2.0 license. The base model may have its own license terms.

Downloads last month
11
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for alantandrea/iam-expert-llama3.1-8b-lora

Adapter
(1342)
this model