update
Browse files
README.md
CHANGED
|
@@ -16,25 +16,269 @@ This makes it **production-ready**: no need to separately load base + adapters.
|
|
| 16 |
|
| 17 |
---
|
| 18 |
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 22 |
|
| 23 |
-
---
|
| 24 |
|
|
|
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
- **Gradient checkpointing**: Enabled
|
| 39 |
-
|
| 40 |
-
---
|
|
|
|
| 16 |
|
| 17 |
---
|
| 18 |
|
| 19 |
+
## Intended Use
|
| 20 |
+
|
| 21 |
+
- Extracting structured JSON fields from invoice images:
|
| 22 |
+
- Invoice number, date
|
| 23 |
+
- Seller/client details
|
| 24 |
+
- Tax IDs, IBAN
|
| 25 |
+
- Item descriptions, prices, VAT
|
| 26 |
+
- Totals (net, VAT, gross)
|
| 27 |
+
- Not intended for general document OCR outside invoices.
|
| 28 |
+
|
| 29 |
+
## Training Details
|
| 30 |
+
|
| 31 |
+
- **Base model**: Qwen/Qwen2.5-VL-3B-Instruct
|
| 32 |
+
- **Framework**: Hugging Face TRL (SFTTrainer) with PEFT/LoRA
|
| 33 |
+
- **LoRA config**:
|
| 34 |
+
- ***Rank (r)***: 8
|
| 35 |
+
- ***Alpha***: 32
|
| 36 |
+
- ***Target modules***: q_proj, v_proj
|
| 37 |
+
- ***Dropout***: 0.1
|
| 38 |
+
- **Epochs**: 10
|
| 39 |
+
- **Batch size**: 2
|
| 40 |
+
- **Learning rate**: 1e-5
|
| 41 |
+
- **Precision**: bfloat16
|
| 42 |
+
- **Gradient accumulation**: 4
|
| 43 |
+
- **Scheduler**: Constant LR
|
| 44 |
+
- **Max sequence length**: 1024
|
| 45 |
+
- **Gradient checkpointing**: Enabled
|
| 46 |
+
- **Trainable parameters**: ~1.8M (0.05% of 3.75B total)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
## Usage
|
| 50 |
+
|
| 51 |
+
### Installation
|
| 52 |
+
|
| 53 |
+
```bash
|
| 54 |
+
pip install transformers torch datasets pillow
|
| 55 |
+
```
|
| 56 |
+
|
| 57 |
+
### Load Model and Processor
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
import torch
|
| 61 |
+
from transformers import AutoProcessor, AutoModelForVision2Seq
|
| 62 |
+
|
| 63 |
+
model_name = "aliRafik/invoices-donut-finetuned-Lora-merged"
|
| 64 |
+
|
| 65 |
+
model = AutoModelForVision2Seq.from_pretrained(
|
| 66 |
+
model_name,
|
| 67 |
+
trust_remote_code=True,
|
| 68 |
+
torch_dtype=torch.bfloat16, # Optional: Use float32 if bfloat16 causes issues
|
| 69 |
+
attn_implementation="flash_attention_2", # Requires Ampere+ GPU & torch >= 2.0
|
| 70 |
+
device_map="auto"
|
| 71 |
+
)
|
| 72 |
+
|
| 73 |
+
processor = AutoProcessor.from_pretrained(
|
| 74 |
+
model_name,
|
| 75 |
+
trust_remote_code=True,
|
| 76 |
+
padding_side='left',
|
| 77 |
+
use_fast=True
|
| 78 |
+
)
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
### Define Extraction Template
|
| 83 |
+
|
| 84 |
+
```python
|
| 85 |
+
template = """
|
| 86 |
+
{
|
| 87 |
+
"header": {
|
| 88 |
+
"invoice_no": "string",
|
| 89 |
+
"invoice_date": "date-time",
|
| 90 |
+
"seller": "string",
|
| 91 |
+
"client": "string",
|
| 92 |
+
"seller_tax_id": "string",
|
| 93 |
+
"client_tax_id": "string",
|
| 94 |
+
"iban": "string"
|
| 95 |
+
},
|
| 96 |
+
"items": [
|
| 97 |
+
{
|
| 98 |
+
"item_desc": "string",
|
| 99 |
+
"item_qty": "number",
|
| 100 |
+
"item_net_price": "number",
|
| 101 |
+
"item_net_worth": "number",
|
| 102 |
+
"item_vat": "number",
|
| 103 |
+
"item_gross_worth": "number"
|
| 104 |
+
}
|
| 105 |
+
],
|
| 106 |
+
"summary": {
|
| 107 |
+
"total_net_worth": "number",
|
| 108 |
+
"total_vat": "number",
|
| 109 |
+
"total_gross_worth": "number"
|
| 110 |
+
}
|
| 111 |
+
}
|
| 112 |
+
"""
|
| 113 |
+
```
|
| 114 |
+
### Test on Sample from Dataset
|
| 115 |
+
|
| 116 |
+
```python
|
| 117 |
+
from datasets import load_dataset
|
| 118 |
+
import json
|
| 119 |
+
from qwen_vl_utils import process_vision_info
|
| 120 |
+
|
| 121 |
+
# Load the dataset
|
| 122 |
+
dataset = load_dataset("katanaml-org/invoices-donut-data-v1")
|
| 123 |
+
|
| 124 |
+
# Select a sample (e.g., index 0)
|
| 125 |
+
sample = dataset['train'][0]
|
| 126 |
+
image = sample['image']
|
| 127 |
+
ground_truth = sample['ground_truth']
|
| 128 |
+
|
| 129 |
+
print(json.loads(ground_truth))
|
| 130 |
+
|
| 131 |
+
# Prepare message
|
| 132 |
+
messages = [
|
| 133 |
+
{"role": "user", "content": [{"type": "image", "image": image}]}
|
| 134 |
+
]
|
| 135 |
+
|
| 136 |
+
# Process vision info
|
| 137 |
+
image_inputs, _ = process_vision_info(messages)
|
| 138 |
+
|
| 139 |
+
# Apply chat template
|
| 140 |
+
text = processor.tokenizer.apply_chat_template(
|
| 141 |
+
messages,
|
| 142 |
+
template=template,
|
| 143 |
+
tokenize=False,
|
| 144 |
+
add_generation_prompt=True
|
| 145 |
+
)
|
| 146 |
+
|
| 147 |
+
# Prepare inputs
|
| 148 |
+
inputs = processor(
|
| 149 |
+
text=[text],
|
| 150 |
+
images=image_inputs,
|
| 151 |
+
padding=True,
|
| 152 |
+
return_tensors="pt"
|
| 153 |
+
).to(model.device)
|
| 154 |
+
|
| 155 |
+
# Generation config
|
| 156 |
+
generation_config = {
|
| 157 |
+
"do_sample": False,
|
| 158 |
+
"num_beams": 1,
|
| 159 |
+
"max_new_tokens": 2048
|
| 160 |
+
}
|
| 161 |
+
|
| 162 |
+
# Generate
|
| 163 |
+
generated_ids = model.generate(**inputs, **generation_config)
|
| 164 |
+
generated_ids_trimmed = [
|
| 165 |
+
out_ids[len(in_ids):] for in_ids, out_ids in zip(inputs.input_ids, generated_ids)
|
| 166 |
+
]
|
| 167 |
+
|
| 168 |
+
output_text = processor.batch_decode(
|
| 169 |
+
generated_ids_trimmed,
|
| 170 |
+
skip_special_tokens=True,
|
| 171 |
+
clean_up_tokenization_spaces=False
|
| 172 |
+
)
|
| 173 |
+
|
| 174 |
+
# Parse and print
|
| 175 |
+
try:
|
| 176 |
+
extracted_data = json.loads(output_text[0])
|
| 177 |
+
print("Extracted Data:", extracted_data)
|
| 178 |
+
except json.JSONDecodeError:
|
| 179 |
+
print("Raw Output:", output_text[0])
|
| 180 |
+
|
| 181 |
+
# Compare with ground truth
|
| 182 |
+
gt_parsed = json.loads(ground_truth)['gt_parse']
|
| 183 |
+
print("Ground Truth:", gt_parsed)
|
| 184 |
+
|
| 185 |
+
|
| 186 |
+
```
|
| 187 |
+
### Test on Unseen Data (Custom Image)
|
| 188 |
+
```python
|
| 189 |
+
from PIL import Image
|
| 190 |
+
from io import BytesIO
|
| 191 |
+
import requests
|
| 192 |
+
|
| 193 |
+
# Load from local path
|
| 194 |
+
image_path = "/content/image.jpg" # Replace with your path
|
| 195 |
+
image = Image.open(image_path)
|
| 196 |
+
|
| 197 |
+
# Or load from URL
|
| 198 |
+
# image_url = "https://example.com/your_invoice.jpg"
|
| 199 |
+
# response = requests.get(image_url)
|
| 200 |
+
# image = Image.open(BytesIO(response.content))
|
| 201 |
+
|
| 202 |
+
# Use same inference code as above
|
| 203 |
+
|
| 204 |
+
|
| 205 |
+
```
|
| 206 |
+
|
| 207 |
+
## Example Results
|
| 208 |
+
|
| 209 |
+
#### Input Image:
|
| 210 |
+
|
| 211 |
+

|
| 212 |
+
|
| 213 |
+
#### Extracted Data:
|
| 214 |
+
|
| 215 |
+
```python
|
| 216 |
+
|
| 217 |
+
{
|
| 218 |
+
"header": {
|
| 219 |
+
"invoice_no": "49565075",
|
| 220 |
+
"invoice_date": "2019-10-28",
|
| 221 |
+
"seller": "Kane-Morgan 968 Carr Mission Apt. 320 Bernardville, VA 28211",
|
| 222 |
+
"client": "Garcia Inc 445 Haas Viaduct Suite 454 Michaelhaven, LA 32852",
|
| 223 |
+
"seller_tax_id": "964-95-3813",
|
| 224 |
+
"client_tax_id": "909-75-5482",
|
| 225 |
+
"iban": "GB73WCJ55232646970614"
|
| 226 |
+
},
|
| 227 |
+
"items": [
|
| 228 |
+
{
|
| 229 |
+
"item_desc": "Anthropologie Gold Elegant Swan Decorative Metal Bottle Stopper Wine Saver",
|
| 230 |
+
"item_qty": 3.0,
|
| 231 |
+
"item_net_price": 19.98,
|
| 232 |
+
"item_net_worth": 59.94,
|
| 233 |
+
"item_vat": 10.0,
|
| 234 |
+
"item_gross_worth": 65.93
|
| 235 |
+
},
|
| 236 |
+
{
|
| 237 |
+
"item_desc": "Lolita Happy Retirement Wine Glass 15 Ounce GLS11-5534H",
|
| 238 |
+
"item_qty": 1.0,
|
| 239 |
+
"item_net_price": 8.0,
|
| 240 |
+
"item_net_worth": 8.0,
|
| 241 |
+
"item_vat": 10.0,
|
| 242 |
+
"item_gross_worth": 8.8
|
| 243 |
+
},
|
| 244 |
+
{
|
| 245 |
+
"item_desc": "Lolita \"Congratulations\" Hand Painted and Decorated Wine Glass NIB",
|
| 246 |
+
"item_qty": 1.0,
|
| 247 |
+
"item_net_price": 20.0,
|
| 248 |
+
"item_net_worth": 20.0,
|
| 249 |
+
"item_vat": 10.0,
|
| 250 |
+
"item_gross_worth": 22.0
|
| 251 |
+
}
|
| 252 |
+
],
|
| 253 |
+
"summary": {
|
| 254 |
+
"total_net_worth": 87.94,
|
| 255 |
+
"total_vat": 8.79,
|
| 256 |
+
"total_gross_worth": 96.73
|
| 257 |
+
}
|
| 258 |
+
}
|
| 259 |
+
|
| 260 |
+
```
|
| 261 |
+
## License
|
| 262 |
+
#### Apache-2.0
|
| 263 |
+
tags:
|
| 264 |
+
###### vision
|
| 265 |
+
###### document-understanding
|
| 266 |
+
###### invoice-processing
|
| 267 |
+
###### donut
|
| 268 |
+
###### qwen
|
| 269 |
|
|
|
|
| 270 |
|
| 271 |
+
## Citations
|
| 272 |
|
| 273 |
+
Cite TRL as:
|
| 274 |
+
|
| 275 |
+
```bibtex
|
| 276 |
+
@misc{vonwerra2022trl,
|
| 277 |
+
title = {{TRL: Transformer Reinforcement Learning}},
|
| 278 |
+
author = {Leandro von Werra and Younes Belkada and Lewis Tunstall and Edward Beeching and Tristan Thrush and Nathan Lambert and Shengyi Huang and Kashif Rasul and Quentin Gallou{\'e}dec},
|
| 279 |
+
year = 2020,
|
| 280 |
+
journal = {GitHub repository},
|
| 281 |
+
publisher = {GitHub},
|
| 282 |
+
howpublished = {\url{https://github.com/huggingface/trl}}
|
| 283 |
+
}
|
| 284 |
+
```
|
|
|
|
|
|
|
|
|