Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks
Paper
•
1908.10084
•
Published
•
9
This is a sentence-transformers model finetuned from sentence-transformers/LaBSE. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("aminlouhichi/CDGSmilarity")
# Run inference
sentences = [
'Temps partiel surcotisé',
'Temps partiel surcotisé de droit',
'Départ définitif - Radiation des cadres',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
premise, hypothesis, and label| premise | hypothesis | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| premise | hypothesis | label |
|---|---|---|
Compte rendu d'entretien professionnel |
Synthèse des discussions professionnelles |
0.9820208462484844 |
Congé Accident de trajet |
Arrêt de travail pour accident de trajet |
0.9755981363214147 |
Retrait ou suppression du CTI (complément de traitement indiciaire) |
Retrait du Complément de Traitement Indiciaire (CTI) |
0.9524167934189104 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
premise, hypothesis, and label| premise | hypothesis | label | |
|---|---|---|---|
| type | string | string | float |
| details |
|
|
|
| premise | hypothesis | label |
|---|---|---|
Sanction disciplinaire |
Mesure punitive suite à une violation du règlement |
0.958828679924412 |
Départ définitif / Radiation - Décès |
Départ définitif suite au décès d'un agent |
0.9003635138326387 |
Nomination par intégration directe |
Intégration immédiate avec nomination |
0.9993378836623817 |
CoSENTLoss with these parameters:{
"scale": 20.0,
"similarity_fct": "pairwise_cos_sim"
}
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 30warmup_ratio: 0.1fp16: Trueoverwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1.0num_train_epochs: 30max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters: auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: proportional| Epoch | Step | Training Loss | loss |
|---|---|---|---|
| 0.5263 | 10 | 12.4933 | - |
| 1.0526 | 20 | 10.5909 | - |
| 1.5789 | 30 | 7.0607 | - |
| 2.1053 | 40 | 4.7061 | - |
| 2.6316 | 50 | 4.7957 | - |
| 3.1579 | 60 | 4.624 | - |
| 3.6842 | 70 | 4.7854 | - |
| 4.2105 | 80 | 4.5902 | - |
| 4.7368 | 90 | 4.7051 | - |
| 5.2632 | 100 | 4.5562 | 4.6756 |
| 5.7895 | 110 | 4.6376 | - |
| 6.3158 | 120 | 4.4501 | - |
| 6.8421 | 130 | 4.5993 | - |
| 7.3684 | 140 | 4.4878 | - |
| 7.8947 | 150 | 4.5443 | - |
| 8.4211 | 160 | 4.3091 | - |
| 8.9474 | 170 | 4.6699 | - |
| 9.4737 | 180 | 4.3727 | - |
| 10.0 | 190 | 4.3888 | - |
| 10.5263 | 200 | 4.5099 | 5.3597 |
| 11.0526 | 210 | 4.3427 | - |
| 11.5789 | 220 | 4.4409 | - |
| 12.1053 | 230 | 4.3151 | - |
| 12.6316 | 240 | 4.3522 | - |
| 13.1579 | 250 | 4.3133 | - |
| 13.6842 | 260 | 4.3842 | - |
| 14.2105 | 270 | 4.2708 | - |
| 14.7368 | 280 | 4.387 | - |
| 15.2632 | 290 | 4.1131 | - |
| 15.7895 | 300 | 4.3394 | 5.5109 |
| 16.3158 | 310 | 4.2948 | - |
| 16.8421 | 320 | 4.3413 | - |
| 17.3684 | 330 | 4.1427 | - |
| 17.8947 | 340 | 4.5521 | - |
| 18.4211 | 350 | 4.2146 | - |
| 18.9474 | 360 | 4.2039 | - |
| 19.4737 | 370 | 4.1412 | - |
| 20.0 | 380 | 4.0869 | - |
| 20.5263 | 390 | 4.4763 | - |
| 21.0526 | 400 | 3.9572 | 5.7054 |
| 21.5789 | 410 | 4.2114 | - |
| 22.1053 | 420 | 4.2651 | - |
| 22.6316 | 430 | 4.2231 | - |
| 23.1579 | 440 | 4.0521 | - |
| 23.6842 | 450 | 4.3246 | - |
| 24.2105 | 460 | 3.9145 | - |
| 24.7368 | 470 | 4.1701 | - |
| 25.2632 | 480 | 4.0958 | - |
| 25.7895 | 490 | 4.1177 | - |
| 26.3158 | 500 | 4.2388 | 6.3162 |
| 26.8421 | 510 | 4.3043 | - |
| 27.3684 | 520 | 3.9634 | - |
| 27.8947 | 530 | 4.117 | - |
| 28.4211 | 540 | 4.1732 | - |
| 28.9474 | 550 | 4.1243 | - |
| 29.4737 | 560 | 3.7898 | - |
| 30.0 | 570 | 4.0227 | - |
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
@online{kexuefm-8847,
title={CoSENT: A more efficient sentence vector scheme than Sentence-BERT},
author={Su Jianlin},
year={2022},
month={Jan},
url={https://kexue.fm/archives/8847},
}
Base model
sentence-transformers/LaBSE