A newer version of this model is available: deepseek-ai/DeepSeek-OCR

🧠 Backend β€” FastAPI (Python)

File: backend/main.py

from fastapi import FastAPI, Form
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import FileResponse, JSONResponse
import requests, os, hashlib
from pathlib import Path

app = FastAPI()

# CORS for frontend
app.add_middleware(
    CORSMiddleware,
    allow_origins=["*"],
    allow_credentials=True,
    allow_methods=["*"],
    allow_headers=["*"],
)

HF_TOKEN = os.environ.get("HF_TOKEN")
HF_URL = "https://api-inference.huggingface.co/models/{model_id}"
headers = {"Authorization": f"Bearer {HF_TOKEN}"}
CACHE_DIR = Path("cache")
CACHE_DIR.mkdir(exist_ok=True)

CHARACTER_PRESETS = {
    "Ichika": {"model": "suno/bark", "style": "mature, calm, older-sister tone"},
    "Nino": {"model": "facebook/mms-tts-en", "style": "confident, tsundere tone"},
    "Miku": {"model": "espnet/kan-bayashi_ljspeech_vits", "style": "shy, gentle tone"},
    "Yotsuba": {"model": "espnet/kan-bayashi_ljspeech_fastspeech2", "style": "cheerful, energetic tone"},
    "Itsuki": {"model": "parler-tts/parler-tts-mini-v1", "style": "serious, sincere tone"},
}

def get_cache_filename(character, text):
    key = hashlib.sha256(f"{character}:{text}".encode()).hexdigest()
    return CACHE_DIR / f"{key}.wav"

@app.post("/api/tts")
def generate_tts(character: str = Form(...), text: str = Form(...)):
    preset = CHARACTER_PRESETS.get(character)
    if not preset:
        return JSONResponse({"error": "Character not found"}, status_code=400)

    cache_file = get_cache_filename(character, text)
    if cache_file.exists():
        return FileResponse(cache_file, media_type="audio/wav")

    model_id = preset["model"]
    style_prompt = preset["style"]

    payload = {"inputs": f"[{style_prompt}] {text}"}
    response = requests.post(HF_URL.format(model_id=model_id), headers=headers, json=payload)

    if response.status_code != 200:
        return JSONResponse({"error": response.text}, status_code=500)

    with open(cache_file, "wb") as f:
        f.write(response.content)

    return FileResponse(cache_file, media_type="audio/wav")

🎨 Frontend β€” React (Vite)

File: frontend/src/App.jsx

import React, { useState } from 'react';

export default function App() {
  const [text, setText] = useState('こんにけは'); // Default greeting
  const [character, setCharacter] = useState('Miku');
  const [audioUrl, setAudioUrl] = useState(null);
  const [loading, setLoading] = useState(false);
  const [history, setHistory] = useState([]);

  const characters = ['Ichika', 'Nino', 'Miku', 'Yotsuba', 'Itsuki'];

  async function handleSpeak(e) {
    e.preventDefault();
    setLoading(true);

    const form = new FormData();
    form.append('character', character);
    form.append('text', text);

    const res = await fetch('http://localhost:8000/api/tts', {
      method: 'POST',
      body: form,
    });

    if (res.ok) {
      const blob = await res.blob();
      const url = URL.createObjectURL(blob);
      setAudioUrl(url);
      setHistory((prev) => [{ text, character, url }, ...prev]);
    } else {
      alert('Error generating speech');
    }

    setLoading(false);
  }

  function handleDownload(url, name) {
    const link = document.createElement('a');
    link.href = url;
    link.download = `${name}.wav`;
    link.click();
  }

  return (
    <div className="min-h-screen flex flex-col items-center bg-pink-50 text-gray-800 p-6">
      <h1 className="text-3xl font-bold mb-4">Gotoubun TTS β€” Final Version</h1>

      <select
        value={character}
        onChange={(e) => setCharacter(e.target.value)}
        className="p-2 rounded-md border mb-4"
      >
        {characters.map((ch) => (
          <option key={ch}>{ch}</option>
        ))}
      </select>

      <textarea
        className="border rounded-md p-2 w-80 h-32 mb-4"
        value={text}
        onChange={(e) => setText(e.target.value)}
      />

      <button
        onClick={handleSpeak}
        className="bg-pink-400 hover:bg-pink-500 text-white font-bold px-4 py-2 rounded-md"
        disabled={loading}
      >
        {loading ? 'Generating...' : `Speak as ${character}`}
      </button>

      {audioUrl && (
        <div className="mt-4 flex flex-col items-center">
          <audio controls src={audioUrl} />
          <button
            className="mt-2 bg-gray-200 hover:bg-gray-300 px-3 py-1 rounded"
            onClick={() => handleDownload(audioUrl, `${character}_${text.slice(0,10)}`)}
          >
            Download Audio
          </button>
        </div>
      )}

      {history.length > 0 && (
        <div className="mt-6 w-full max-w-md">
          <h2 className="text-xl font-semibold mb-2">History</h2>
          <ul className="space-y-2">
            {history.map((item, idx) => (
              <li key={idx} className="bg-white rounded-md p-2 shadow-sm">
                <div className="font-semibold">{item.character}</div>
                <div className="text-sm italic mb-1">{item.text}</div>
                <audio controls src={item.url} />
              </li>
            ))}
          </ul>
        </div>
      )}
    </div>
  );
}

πŸͺ„ New Features

βœ… Greeting preset: default input β€œγ“γ‚“γ«γ‘γ―β€ (users can change it) βœ… Download audio: one-click save as .wav βœ… Playback history: shows recent generated voices with player controls βœ… Audio caching: reuses previous files for same text+character combo βœ… Presets: each character has unique tone and speech style


πŸš€ Run Instructions

docker compose up --build

Then open http://localhost:5173 β€” you’ll hear the greeting β€œγ“γ‚“γ«γ‘γ―β€ spoken in your chosen Gotoubun character’s style, with download and playback history available.

Downloads last month
-
Inference Providers NEW
This model isn't deployed by any Inference Provider. πŸ™‹ Ask for provider support

Model tree for anissaofficial6h/the-quintessential-quintuplets-TTS

Finetuned
(24)
this model

Dataset used to train anissaofficial6h/the-quintessential-quintuplets-TTS