avanishd's picture
Update README.md
7d3f7a2 verified
---
library_name: transformers
license: apache-2.0
base_model: google/vit-base-patch16-224-in21k
tags:
- generated_from_trainer
datasets:
- cifar-10
metrics:
- accuracy
model-index:
- name: vit-base-patch16-224-in21k-finetuned-cifar10
results:
- task:
name: Image Classification
type: image-classification
dataset:
name: cifar-10
type: cifar-10
metrics:
- name: Accuracy
type: accuracy
value: 0.9877
---
<!-- This model card has been generated automatically according to the information the Trainer had access to. You
should probably proofread and complete it, then remove this comment. -->
# vit-base-patch16-224-in21k-finetuned-cifar10
This model is a fine-tuned version of [google/vit-base-patch16-224-in21k](https://huggingface.co/google/vit-base-patch16-224-in21k) on the cifar-10 dataset.
It achieves the following results on the evaluation set:
- Loss: 0.1126
- Accuracy: 0.9877
## Model description
More information needed
## Intended uses & limitations
More information needed
## How to Get Started with the Model
```Python
from transformers import pipeline
pipe = pipeline("image-classification", "avanishd/vit-base-patch16-224-in21k-finetuned-cifar10")
pipe(image)
```
## Training and evaluation data
More information needed
## Training procedure
More information needed
### Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 32
- eval_batch_size: 32
- seed: 42
- gradient_accumulation_steps: 4
- total_train_batch_size: 128
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- lr_scheduler_warmup_ratio: 0.1
- num_epochs: 3
- mixed_precision_training: Native AMP
### Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy |
|:-------------:|:-----:|:----:|:---------------:|:--------:|
| 0.4166 | 1.0 | 313 | 0.2324 | 0.9791 |
| 0.3247 | 2.0 | 626 | 0.1320 | 0.9875 |
| 0.2661 | 2.992 | 936 | 0.1126 | 0.9877 |
### Framework versions
- Transformers 4.51.3
- Pytorch 2.6.0+cu124
- Datasets 3.5.0
- Tokenizers 0.21.1