File size: 6,417 Bytes
fb552e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f86933e
 
fb552e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7a3f895
fb552e4
 
7a3f895
fb552e4
 
 
7a3f895
 
fb552e4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
---
metrics:
- pAUC
model-index:
- name: >-
    avanishd/avanishd/vit-base-patch16-dinov3-finetuned-skin-lesion-classification
  results:
  - task:
      name: Image Classification
      type: image-classification
    metrics:
    - name: pAUC
      type: pAUC
      value: 0.1441070826953209
base_model:
- timm/vit_base_patch16_dinov3.lvd1689m
---

# vit-base-patch16-dinov3-finetuned-skin-lesion-classification

This model is a finetuned for skin lesion classification.

Params (M): 85.6

## Intended Uses & Limitations

### Intended Use

This model is intended for dermoscopic skin lesion classification using a 224x224 image size.

### Limitations

This model was only trained for 1 epoch and has not seen many malignant examples (due to large class imbalance in ISIC 2024 dataset).

## How to Get Started with the Model

```Python
class DinoSkinLesionClassifier(nn.Module, PyTorchModelHubMixin):
  """
  PytorchModelHubMixin adds push to Hugging Face Hub

  See: https://huggingface.co/docs/hub/models-uploading#upload-a-pytorch-model-using-huggingfacehub
  """
  def __init__(self, num_classes=1, freeze_backbone=True):
    super(DinoSkinLesionClassifier, self).__init__()

    # Initialize Dino v3 backbone
    self.backbone = timm.create_model('vit_base_patch16_dinov3', pretrained=True, num_classes=0, global_pool='avg')

    # Freeze backbone weights if requested
    # This makes training much faster
    if freeze_backbone:
      for param in self.backbone.parameters():
        param.requires_grad = False

    # Get feature dimension from the backbone
    feat_dim = self.backbone.num_features

    # Define the classification head
    self.head = nn.Linear(feat_dim, num_classes) # Should be 768 in, 1 out

  def forward(self, x):
    out = self.backbone(x)
    out = self.head(out)

    return out

from huggingface_hub import hf_hub_download

weights_path = hf_hub_download(
        repo_id="avanishd/vit-base-patch16-dinov3-finetuned-skin-lesion-classification",
        filename="model.safetensors"
    )

from safetensors.torch import load_model

model = EfficientNetSkinLesionClassifier()
load_model(model, filename=weights_path, strict=True)

model.to(device) # Don't forget to put on GPU

model.eval()  # Set model to evaluation mode


# Example with PH2 Dataset

class PH2Dataset(Dataset):
  """
  Dataset for PH2 images, which are in png format.

  PH2 contains skin lesions images classified as

  - Common Nevus (benign)
  - Atypical Nevus (benign)
  - Melanoma (malignant)

  No need for is real label here, since this is purely for testing
  """

  def __init__(self, dir_path, metadata, transform=None):
    super(PH2Dataset, self).__init__()

    self.dir_path = dir_path
    self.transform = transform

    self.image_files = [os.path.join(dir_path, f) for f in os.listdir(dir_path)
                        if f.lower().endswith(('.jpg', '.jpeg', '.png'))]

    # Load metadata w/ polars (only 2 columns)
    self.metadata = pl.read_csv(metadata)

    self.diagnostic_mapping = {
        "Common Nevus": 0,
        "Atypical Nevus": 0,
        "Melanoma": 1,
    }

  def __len__(self):
    return len(self.image_files)

  def __getitem__(self, idx):
    # The image name in the metadata csv are like IMD003
    image_id = self.image_files[idx].split('/')[-1].split('.')[0]

    # Still need the entire path to open the image
    image = Image.open(self.image_files[idx]).convert('RGB')

    if self.transform: # Apply transform if it exists
      image = self.transform(image)

    diagnosis = self.metadata.filter(pl.col("image_name") == image_id).select("diagnosis").item()

    label = torch.tensor(self.diagnostic_mapping[diagnosis], dtype=torch.int16)

    return image, label


transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]), # Image net mean and std
    transforms.Resize((224, 224)),  # Dimensions for Efficient Net v2
])

ph_2_images = "/content/data/ph2_data/images"
ph_2_metadata = "/content/data/ph2_data/ph_2_dataset.csv"

ex_dataset = PH2Dataset(ph_2_images, ph_2_metadata, transform)

ex_loader = DataLoader(ex_dataset, batch_size=64, shuffle=False)

for (images, labels) in test_loader:
  images = images.to(device)
  labels = labels.to(device)
  output = model(images)

  y_pred_prob = torch.sigmoid(output).cpu().numpy().ravel()
  y_pred = np.where(y_pred_prob < 0.5, 0, 1)

  return y_pred

```

## Training and evaluation data

This model was trained with the [ISIC 2024 challenge](https://www.kaggle.com/competitions/isic-2024-challenge) and [ISIC 2024 synthetic](https://www.kaggle.com/datasets/ilya9711nov/isic-2024-synthetic) datasets.

For the ISIC 2024 Challenge data, an 80-20 train test split was applied, and the test split was used to evaluate the model.

## Training Procedure

### Training hyperparameters
- learning_rate: 1e-4
- train_batch_size: 64
- eval_batch_size: 64
- optimizer: Use OptimizerNames.ADAMW_TORCH with weight decay=1e-2 and optimizer_args=No additional optimizer arguments
- num_epochs: 1

### Training results

| Training Loss | Epoch | Step |
|---------------|-------|------|
| 0.5027 | 1 | 100 |
| 0.5672 | 1 | 200 |
| 0.5373 | 1 | 300 |
| 0.4693 | 1 | 400 |
| 5.3829 | 1 | 500 |
| 0.4872 | 1 | 600 |
| 0.4717 | 1 | 700 |
| 0.4550 | 1 | 800 |
| 0.4185 | 1 | 900 |
| 0.4142 | 1 | 1000 |
| 0.3570 | 1 | 1100 |
| 0.3877 | 1 | 1200 |
| 0.4282 | 1 | 1300 |
| 8.8676 | 1 | 1400 |
| 0.3732 | 1 | 1500 |
| 0.3522 | 1 | 1600 |
| 0.3065 | 1 | 1700 |
| 0.3732 | 1 | 1800 |
| 0.3965 | 1 | 1900 |
| 0.4727 | 1 | 2000 |
| 0.3407 | 1 | 2100 |
| 0.3421 | 1 | 2200 |
| 0.3847 | 1 | 2300 |
| 0.3911 | 1 | 2400 |
| 0.4006 | 1 | 2500 |
| 0.2836 | 1 | 2600 |
| 0.3968 | 1 | 2700 |
| 0.3796 | 1 | 2800 |
| 0.3317 | 1 | 2900 |
| 0.2762 | 1 | 3000 |
| 0.3027 | 1 | 3100 |
| 0.3002 | 1 | 3200 |
| 0.3672 | 1 | 3300 |
| 0.2660 | 1 | 3400 |
| 0.3145 | 1 | 3500 |
| 0.4098 | 1 | 3600 |
| 0.3156 | 1 | 3700 |
| 0.2762 | 1 | 3800 |
| 0.2557 | 1 | 3900 |
| 0.3204 | 1 | 4000 |
| 0.3097 | 1 | 4100 |
| 0.2790 | 1 | 4200 |
| 0.3395 | 1 | 4300 |
| 0.2888 | 1 | 4400 |
| 0.3002 | 1 | 4500 |
| 0.3388 | 1 | 4600 |
| 0.3744 | 1 | 4700 |
| 0.3143 | 1 | 4800 |
| 0.3501 | 1 | 4900 |
| 0.2923 | 1 | 5000 |
| 0.3152 | 1 | 5100 |
| 0.3380 | 1 | 5200 |


### Framework versions

- Pytorch 2.9.0+cu126
- torchvision: 0.24.0+cu126
- timm: 1.0.22
- numpy: 2.0.2
- safetensors: 0.7.0