AugWordNet_BERT_FPB_finetuned
This model is a fine-tuned version of bert-base-uncased on an unknown dataset. It achieves the following results on the evaluation set:
- Loss: 0.3789
- Accuracy: 0.9097
- F1: 0.9100
- Precision: 0.9140
- Recall: 0.9097
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0001
- train_batch_size: 64
- eval_batch_size: 64
- seed: 42
- optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-08
- lr_scheduler_type: linear
- lr_scheduler_warmup_steps: 1000
- num_epochs: 10
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| 0.8426 | 1.0 | 91 | 0.7693 | 0.6978 | 0.6777 | 0.6887 | 0.6978 |
| 0.4269 | 2.0 | 182 | 0.3264 | 0.8816 | 0.8803 | 0.8820 | 0.8816 |
| 0.3055 | 3.0 | 273 | 0.2990 | 0.8832 | 0.8838 | 0.8888 | 0.8832 |
| 0.2135 | 4.0 | 364 | 0.3049 | 0.9003 | 0.8998 | 0.9006 | 0.9003 |
| 0.1275 | 5.0 | 455 | 0.3764 | 0.8801 | 0.8786 | 0.8839 | 0.8801 |
| 0.1033 | 6.0 | 546 | 0.3393 | 0.9019 | 0.9007 | 0.9048 | 0.9019 |
| 0.0635 | 7.0 | 637 | 0.3829 | 0.9081 | 0.9079 | 0.9082 | 0.9081 |
| 0.0657 | 8.0 | 728 | 0.4759 | 0.8972 | 0.8958 | 0.8986 | 0.8972 |
| 0.0548 | 9.0 | 819 | 0.3789 | 0.9097 | 0.9100 | 0.9140 | 0.9097 |
| 0.0695 | 10.0 | 910 | 0.4797 | 0.8894 | 0.8876 | 0.8979 | 0.8894 |
Framework versions
- Transformers 4.37.0
- Pytorch 2.1.2
- Datasets 2.1.0
- Tokenizers 0.15.1
- Downloads last month
- -
Model tree for avinasht/AugWordNet_BERT_FPB_finetuned
Base model
google-bert/bert-base-uncased