2025-24679-text-distilbert-predictor
This model is a fine-tuned version of distilbert-base-uncased on the None dataset. It achieves the following results on the evaluation set:
- Loss: 0.0040
- Accuracy: 1.0
- F1: 1.0
- Precision: 1.0
- Recall: 1.0
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 2e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH_FUSED with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: linear
- num_epochs: 5
Training results
| Training Loss | Epoch | Step | Validation Loss | Accuracy | F1 | Precision | Recall |
|---|---|---|---|---|---|---|---|
| 0.006 | 1.0 | 120 | 0.0042 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0014 | 2.0 | 240 | 0.0011 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0008 | 3.0 | 360 | 0.0006 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0005 | 4.0 | 480 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
| 0.0005 | 5.0 | 600 | 0.0004 | 1.0 | 1.0 | 1.0 | 1.0 |
Framework versions
- Transformers 4.56.1
- Pytorch 2.8.0+cu126
- Datasets 4.0.0
- Tokenizers 0.22.0
- Downloads last month
- 7
Model tree for bcueva/2025-24679-text-distilbert-predictor
Base model
distilbert/distilbert-base-uncased