SetFit with unsloth/embeddinggemma-300m
This is a SetFit model that can be used for Text Classification. This SetFit model uses unsloth/embeddinggemma-300m as the Sentence Transformer embedding model. A LogisticRegression instance is used for classification.
The model has been trained using an efficient few-shot learning technique that involves:
- Fine-tuning a Sentence Transformer with contrastive learning.
- Training a classification head with features from the fine-tuned Sentence Transformer.
Model Details
Model Description
- Model Type: SetFit
- Sentence Transformer body: unsloth/embeddinggemma-300m
- Classification head: a LogisticRegression instance
- Maximum Sequence Length: 2048 tokens
- Number of Classes: 3 classes
Model Sources
- Repository: SetFit on GitHub
- Paper: Efficient Few-Shot Learning Without Prompts
- Blogpost: SetFit: Efficient Few-Shot Learning Without Prompts
Model Labels
| Label | Examples |
|---|---|
| neutral |
|
| negative |
|
| positive |
|
Evaluation
Metrics
| Label | Accuracy |
|---|---|
| all | 0.8958 |
Uses
Direct Use for Inference
First install the SetFit library:
pip install setfit
Then you can load this model and run inference.
from setfit import SetFitModel
# Download from the ๐ค Hub
model = SetFitModel.from_pretrained("beethogedeon/financial-sentiment-Gemma-300m")
# Run inference
preds = model("Officials did not disclose the contract value .")
Training Details
Training Set Metrics
| Training set | Min | Median | Max |
|---|---|---|---|
| Word count | 3 | 23.6836 | 62 |
| Label | Training Sample Count |
|---|---|
| negative | 301 |
| neutral | 1488 |
| positive | 793 |
Training Hyperparameters
- batch_size: (16, 2)
- num_epochs: (1, 16)
- max_steps: 500
- sampling_strategy: oversampling
- body_learning_rate: (2e-05, 1e-05)
- head_learning_rate: 0.01
- loss: CosineSimilarityLoss
- distance_metric: cosine_distance
- margin: 0.25
- end_to_end: False
- use_amp: False
- warmup_proportion: 0.1
- l2_weight: 0.01
- seed: 42
- eval_max_steps: -1
- load_best_model_at_end: False
Training Results
| Epoch | Step | Training Loss | Validation Loss |
|---|---|---|---|
| 0.002 | 1 | 0.2539 | - |
| 0.1 | 50 | 0.2526 | - |
| 0.2 | 100 | 0.2431 | - |
| 0.3 | 150 | 0.2502 | - |
| 0.4 | 200 | 0.2365 | - |
| 0.5 | 250 | 0.2268 | - |
| 0.6 | 300 | 0.2277 | - |
| 0.7 | 350 | 0.1839 | - |
| 0.8 | 400 | 0.1644 | - |
| 0.9 | 450 | 0.1393 | - |
| 1.0 | 500 | 0.1401 | - |
Framework Versions
- Python: 3.11.5
- SetFit: 1.1.3
- Sentence Transformers: 5.1.2
- Transformers: 4.53.3
- PyTorch: 2.7.0
- Datasets: 4.1.0
- Tokenizers: 0.21.1
Citation
BibTeX
@article{https://doi.org/10.48550/arxiv.2209.11055,
doi = {10.48550/ARXIV.2209.11055},
url = {https://arxiv.org/abs/2209.11055},
author = {Tunstall, Lewis and Reimers, Nils and Jo, Unso Eun Seo and Bates, Luke and Korat, Daniel and Wasserblat, Moshe and Pereg, Oren},
keywords = {Computation and Language (cs.CL), FOS: Computer and information sciences, FOS: Computer and information sciences},
title = {Efficient Few-Shot Learning Without Prompts},
publisher = {arXiv},
year = {2022},
copyright = {Creative Commons Attribution 4.0 International}
}
- Downloads last month
- 16
Model tree for beethogedeon/financial-sentiment-Gemma-300m
Base model
google/embeddinggemma-300m
Finetuned
unsloth/embeddinggemma-300m