Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models
Paper
โข
2506.05176
โข
Published
โข
77
MoD-Embedding is a text embedding model designed for semantic search and retrieval tasks. This model is fine-tuned from Qwen/Qwen3-Embedding-4B and supports multiple languages, providing high-quality embeddings for various applications.
from sentence_transformers import SentenceTransformer
model = SentenceTransformer("bflhc/MoD-Embedding", trust_remote_code=True)
# Encode sentences
sentences = [
"This is an example sentence",
"Each sentence is converted to a vector"
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# Output: (2, 2560)
# Compute similarity
from sentence_transformers.util import cos_sim
similarity = cos_sim(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")
from transformers import AutoModel, AutoTokenizer
import torch
import torch.nn.functional as F
tokenizer = AutoTokenizer.from_pretrained("bflhc/MoD-Embedding")
model = AutoModel.from_pretrained("bflhc/MoD-Embedding", trust_remote_code=True)
model.eval()
def encode(texts):
inputs = tokenizer(texts, padding=True, truncation=True,
max_length=8192, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
# Use last token embedding
embeddings = outputs.last_hidden_state[:, -1, :]
# Normalize embeddings
embeddings = F.normalize(embeddings, p=2, dim=1)
return embeddings
# Example usage
texts = ["Hello world", "ไฝ ๅฅฝไธ็"]
embeddings = encode(texts)
similarity = torch.matmul(embeddings[0], embeddings[1])
print(f"Similarity: {similarity.item():.4f}")
This model is licensed under the Apache License 2.0.
This model is derived from Qwen/Qwen3-Embedding-4B, which is also licensed under Apache License 2.0.
If you use this model in your research, please cite:
@misc{mod-embedding-2025,
title={MoD-Embedding: A Fine-tuned Multilingual Text Embedding Model},
author={MoD Team},
year={2025},
url={https://huggingface.co/bflhc/MoD-Embedding}
}
Please also cite the base model:
@article{qwen3embedding,
title={Qwen3 Embedding: Advancing Text Embedding and Reranking Through Foundation Models},
author={Zhang, Yanzhao and Li, Mingxin and Long, Dingkun and Zhang, Xin and Lin, Huan and Yang, Baosong and Xie, Pengjun and Yang, An and Liu, Dayiheng and Lin, Junyang and Huang, Fei and Zhou, Jingren},
journal={arXiv preprint arXiv:2506.05176},
year={2025}
}