SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
This is a sentence-transformers model finetuned from sentence-transformers/all-MiniLM-L12-v2. It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: sentence-transformers/all-MiniLM-L12-v2
- Maximum Sequence Length: 128 tokens
- Output Dimensionality: 384 tokens
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr")
# Run inference
sentences = [
"it looks fertile and it it um i mean it rains enough they have the climate and the rain and if not it 's like i 've been to Saint Thomas and it just starts from the ocean up",
'They have the rain and the climate so I imagine the lands would be fertile .',
"They don 't know how to do it .",
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 384]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Evaluation
Metrics
Semantic Similarity
- Dataset:
snli-dev - Evaluated with
EmbeddingSimilarityEvaluator
| Metric | Value |
|---|---|
| pearson_cosine | 0.3725 |
| spearman_cosine | 0.3729 |
| pearson_manhattan | 0.365 |
| spearman_manhattan | 0.3725 |
| pearson_euclidean | 0.3657 |
| spearman_euclidean | 0.3729 |
| pearson_dot | 0.3725 |
| spearman_dot | 0.3729 |
| pearson_max | 0.3725 |
| spearman_max | 0.3729 |
Training Details
Training Dataset
Unnamed Dataset
- Size: 100,000 training samples
- Columns:
sentence_0,sentence_1, andlabel - Approximate statistics based on the first 1000 samples:
sentence_0 sentence_1 label type string string float details - min: 5 tokens
- mean: 35.27 tokens
- max: 128 tokens
- min: 5 tokens
- mean: 18.46 tokens
- max: 66 tokens
- min: 0.0
- mean: 0.5
- max: 1.0
- Samples:
sentence_0 sentence_1 label Natalia M' a regardé .Natalia a regardé et attend que je lui donne l' épée .0.5And he sounded sincere .He sounded sincere.He was sounding sincere in his words .0.0There 's a small zoo area where you can see snakes , lizards , birds of prey , wolves , hyenas , foxes , and various desert cats , including cheetahs and leopards .The zoo is home to some endangered desert animals .0.5 - Loss:
CosineSimilarityLosswith these parameters:{ "loss_fct": "torch.nn.modules.loss.MSELoss" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 16per_device_eval_batch_size: 16num_train_epochs: 4fp16: Truemulti_dataset_batch_sampler: round_robin
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 16per_device_eval_batch_size: 16per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-05weight_decay: 0.0adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 1num_train_epochs: 4max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.0warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Truefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Falseresume_from_checkpoint: Nonehub_model_id: Nonehub_strategy: every_savehub_private_repo: Falsehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseeval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Falseeval_use_gather_object: Falsebatch_sampler: batch_samplermulti_dataset_batch_sampler: round_robin
Training Logs
| Epoch | Step | Training Loss | snli-dev_spearman_max |
|---|---|---|---|
| 0.08 | 500 | 0.2008 | 0.0433 |
| 0.16 | 1000 | 0.1757 | 0.1024 |
| 0.24 | 1500 | 0.1732 | 0.1503 |
| 0.32 | 2000 | 0.1685 | 0.2168 |
| 0.4 | 2500 | 0.1702 | 0.2206 |
| 0.48 | 3000 | 0.1676 | 0.2117 |
| 0.56 | 3500 | 0.1637 | 0.2624 |
| 0.64 | 4000 | 0.1636 | 0.2169 |
| 0.72 | 4500 | 0.1608 | 0.0051 |
| 0.8 | 5000 | 0.1601 | 0.2236 |
| 0.88 | 5500 | 0.1597 | 0.2471 |
| 0.96 | 6000 | 0.1596 | 0.2934 |
| 1.0 | 6250 | - | 0.2905 |
| 1.04 | 6500 | 0.1602 | 0.3001 |
| 1.12 | 7000 | 0.1571 | 0.3116 |
| 1.2 | 7500 | 0.1588 | 0.3145 |
| 1.28 | 8000 | 0.1562 | 0.3304 |
| 1.3600 | 8500 | 0.1548 | 0.3376 |
| 1.44 | 9000 | 0.156 | 0.3359 |
| 1.52 | 9500 | 0.1552 | 0.3194 |
| 1.6 | 10000 | 0.153 | 0.3474 |
| 1.6800 | 10500 | 0.1529 | 0.3220 |
| 1.76 | 11000 | 0.1518 | 0.3255 |
| 1.8400 | 11500 | 0.1499 | 0.3332 |
| 1.92 | 12000 | 0.1524 | 0.3521 |
| 2.0 | 12500 | 0.1512 | 0.3425 |
| 2.08 | 13000 | 0.1514 | 0.3462 |
| 2.16 | 13500 | 0.1516 | 0.3414 |
| 2.24 | 14000 | 0.1532 | 0.3453 |
| 2.32 | 14500 | 0.1459 | 0.3699 |
| 2.4 | 15000 | 0.1524 | 0.3576 |
| 2.48 | 15500 | 0.1506 | 0.3418 |
| 2.56 | 16000 | 0.1488 | 0.3559 |
| 2.64 | 16500 | 0.1486 | 0.3597 |
| 2.7200 | 17000 | 0.1469 | 0.3552 |
| 2.8 | 17500 | 0.1448 | 0.3459 |
| 2.88 | 18000 | 0.1458 | 0.3503 |
| 2.96 | 18500 | 0.1468 | 0.3647 |
| 3.0 | 18750 | - | 0.3611 |
| 3.04 | 19000 | 0.1472 | 0.3741 |
| 3.12 | 19500 | 0.1457 | 0.3603 |
| 3.2 | 20000 | 0.147 | 0.3576 |
| 3.2800 | 20500 | 0.1451 | 0.3663 |
| 3.36 | 21000 | 0.1438 | 0.3734 |
| 3.44 | 21500 | 0.1471 | 0.3698 |
| 3.52 | 22000 | 0.1462 | 0.3646 |
| 3.6 | 22500 | 0.1436 | 0.3740 |
| 3.68 | 23000 | 0.1441 | 0.3696 |
| 3.76 | 23500 | 0.1423 | 0.3636 |
| 3.84 | 24000 | 0.1411 | 0.3713 |
| 3.92 | 24500 | 0.1438 | 0.3706 |
| 4.0 | 25000 | 0.1421 | 0.3729 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.1.1
- Transformers: 4.44.2
- PyTorch: 2.4.1+cu121
- Accelerate: 0.34.2
- Datasets: 3.0.1
- Tokenizers: 0.19.1
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
- Downloads last month
- -
Model tree for cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr
Base model
sentence-transformers/all-MiniLM-L12-v2Evaluation results
- Pearson Cosine on snli devself-reported0.373
- Spearman Cosine on snli devself-reported0.373
- Pearson Manhattan on snli devself-reported0.365
- Spearman Manhattan on snli devself-reported0.373
- Pearson Euclidean on snli devself-reported0.366
- Spearman Euclidean on snli devself-reported0.373
- Pearson Dot on snli devself-reported0.373
- Spearman Dot on snli devself-reported0.373
- Pearson Max on snli devself-reported0.373
- Spearman Max on snli devself-reported0.373