Finetuned model on SNLI
Browse files- 1_Pooling/config.json +10 -0
- README.md +479 -0
- config.json +26 -0
- config_sentence_transformers.json +10 -0
- model.safetensors +3 -0
- modules.json +20 -0
- sentence_bert_config.json +4 -0
- special_tokens_map.json +37 -0
- tokenizer.json +0 -0
- tokenizer_config.json +64 -0
- vocab.txt +0 -0
1_Pooling/config.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"word_embedding_dimension": 384,
|
| 3 |
+
"pooling_mode_cls_token": false,
|
| 4 |
+
"pooling_mode_mean_tokens": true,
|
| 5 |
+
"pooling_mode_max_tokens": false,
|
| 6 |
+
"pooling_mode_mean_sqrt_len_tokens": false,
|
| 7 |
+
"pooling_mode_weightedmean_tokens": false,
|
| 8 |
+
"pooling_mode_lasttoken": false,
|
| 9 |
+
"include_prompt": true
|
| 10 |
+
}
|
README.md
ADDED
|
@@ -0,0 +1,479 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
base_model: sentence-transformers/all-MiniLM-L12-v2
|
| 3 |
+
library_name: sentence-transformers
|
| 4 |
+
metrics:
|
| 5 |
+
- pearson_cosine
|
| 6 |
+
- spearman_cosine
|
| 7 |
+
- pearson_manhattan
|
| 8 |
+
- spearman_manhattan
|
| 9 |
+
- pearson_euclidean
|
| 10 |
+
- spearman_euclidean
|
| 11 |
+
- pearson_dot
|
| 12 |
+
- spearman_dot
|
| 13 |
+
- pearson_max
|
| 14 |
+
- spearman_max
|
| 15 |
+
pipeline_tag: sentence-similarity
|
| 16 |
+
tags:
|
| 17 |
+
- sentence-transformers
|
| 18 |
+
- sentence-similarity
|
| 19 |
+
- feature-extraction
|
| 20 |
+
- generated_from_trainer
|
| 21 |
+
- dataset_size:100000
|
| 22 |
+
- loss:CosineSimilarityLoss
|
| 23 |
+
widget:
|
| 24 |
+
- source_sentence: NIPA personal income includes pension contributions by employers
|
| 25 |
+
in the year income is earned , and benefits paid at retirement are not a component
|
| 26 |
+
of NIPA income .
|
| 27 |
+
sentences:
|
| 28 |
+
- While not the only makeup of income , NIPA is one of the more well known income
|
| 29 |
+
distinctions .
|
| 30 |
+
- Les temples de karnak et de Louxor ont été démolis pour faire place à des projets
|
| 31 |
+
de construction en Cisjordanie .
|
| 32 |
+
- Les restaurants sont tenus à des règles strictes pour contenir leur odeur .
|
| 33 |
+
- source_sentence: right right you know the one that 's one reason we bought a house
|
| 34 |
+
here in Plano we were hoping you know well the school district 's gonna be good
|
| 35 |
+
you know for resale value and so on and so forth but
|
| 36 |
+
sentences:
|
| 37 |
+
- We moved to Plano because we thought the school district was good .
|
| 38 |
+
- These and those .
|
| 39 |
+
- L' obsession a suscité une suggestion que tous étaient des boucs émissaires de
|
| 40 |
+
la guerre .
|
| 41 |
+
- source_sentence: Dans l' homme invisible , le talentueux dixième narrateur doit
|
| 42 |
+
surmonter non seulement les différentes idéologies qui lui sont présentées comme
|
| 43 |
+
masques ou subversions d' identité , mais aussi les différents rôles et prescriptions
|
| 44 |
+
pour le leadership que sa propre race lui souhaite de réaliser .
|
| 45 |
+
sentences:
|
| 46 |
+
- '" We ''re too uptight now ! " Said Tommy'
|
| 47 |
+
- Le talentueux dixième narrateur doit surmonter les idéologies .
|
| 48 |
+
- Saddam is not taking advantage of the current Arab love towards the United States
|
| 49 |
+
- source_sentence: Les lacunes trouvées au cours de la surveillance en cours ou au
|
| 50 |
+
moyen d' évaluations distinctes devraient être communiquées à l' individu responsable
|
| 51 |
+
de la fonction et à au moins un niveau de gestion au-dessus de cet individu .
|
| 52 |
+
sentences:
|
| 53 |
+
- L' économie diminuera également si les conditions du marché changent .
|
| 54 |
+
- The Watergate comparison wasn 't just for Democratic bashing .
|
| 55 |
+
- Il n' y a pas lieu de signaler les lacunes .
|
| 56 |
+
- source_sentence: it looks fertile and it it um i mean it rains enough they have
|
| 57 |
+
the climate and the rain and if not it 's like i 've been to Saint Thomas and
|
| 58 |
+
it just starts from the ocean up
|
| 59 |
+
sentences:
|
| 60 |
+
- Il n' a jamais triché .
|
| 61 |
+
- They don 't know how to do it .
|
| 62 |
+
- They have the rain and the climate so I imagine the lands would be fertile .
|
| 63 |
+
model-index:
|
| 64 |
+
- name: SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
|
| 65 |
+
results:
|
| 66 |
+
- task:
|
| 67 |
+
type: semantic-similarity
|
| 68 |
+
name: Semantic Similarity
|
| 69 |
+
dataset:
|
| 70 |
+
name: snli dev
|
| 71 |
+
type: snli-dev
|
| 72 |
+
metrics:
|
| 73 |
+
- type: pearson_cosine
|
| 74 |
+
value: 0.3725313255221131
|
| 75 |
+
name: Pearson Cosine
|
| 76 |
+
- type: spearman_cosine
|
| 77 |
+
value: 0.3729470854776107
|
| 78 |
+
name: Spearman Cosine
|
| 79 |
+
- type: pearson_manhattan
|
| 80 |
+
value: 0.3650227128515394
|
| 81 |
+
name: Pearson Manhattan
|
| 82 |
+
- type: spearman_manhattan
|
| 83 |
+
value: 0.37250760289182383
|
| 84 |
+
name: Spearman Manhattan
|
| 85 |
+
- type: pearson_euclidean
|
| 86 |
+
value: 0.36567325497563746
|
| 87 |
+
name: Pearson Euclidean
|
| 88 |
+
- type: spearman_euclidean
|
| 89 |
+
value: 0.37294699995093694
|
| 90 |
+
name: Spearman Euclidean
|
| 91 |
+
- type: pearson_dot
|
| 92 |
+
value: 0.3725313190046259
|
| 93 |
+
name: Pearson Dot
|
| 94 |
+
- type: spearman_dot
|
| 95 |
+
value: 0.3729474276296007
|
| 96 |
+
name: Spearman Dot
|
| 97 |
+
- type: pearson_max
|
| 98 |
+
value: 0.3725313255221131
|
| 99 |
+
name: Pearson Max
|
| 100 |
+
- type: spearman_max
|
| 101 |
+
value: 0.3729474276296007
|
| 102 |
+
name: Spearman Max
|
| 103 |
+
---
|
| 104 |
+
|
| 105 |
+
# SentenceTransformer based on sentence-transformers/all-MiniLM-L12-v2
|
| 106 |
+
|
| 107 |
+
This is a [sentence-transformers](https://www.SBERT.net) model finetuned from [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2). It maps sentences & paragraphs to a 384-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
|
| 108 |
+
|
| 109 |
+
## Model Details
|
| 110 |
+
|
| 111 |
+
### Model Description
|
| 112 |
+
- **Model Type:** Sentence Transformer
|
| 113 |
+
- **Base model:** [sentence-transformers/all-MiniLM-L12-v2](https://huggingface.co/sentence-transformers/all-MiniLM-L12-v2) <!-- at revision a05860a77cef7b37e0048a7864658139bc18a854 -->
|
| 114 |
+
- **Maximum Sequence Length:** 128 tokens
|
| 115 |
+
- **Output Dimensionality:** 384 tokens
|
| 116 |
+
- **Similarity Function:** Cosine Similarity
|
| 117 |
+
<!-- - **Training Dataset:** Unknown -->
|
| 118 |
+
<!-- - **Language:** Unknown -->
|
| 119 |
+
<!-- - **License:** Unknown -->
|
| 120 |
+
|
| 121 |
+
### Model Sources
|
| 122 |
+
|
| 123 |
+
- **Documentation:** [Sentence Transformers Documentation](https://sbert.net)
|
| 124 |
+
- **Repository:** [Sentence Transformers on GitHub](https://github.com/UKPLab/sentence-transformers)
|
| 125 |
+
- **Hugging Face:** [Sentence Transformers on Hugging Face](https://huggingface.co/models?library=sentence-transformers)
|
| 126 |
+
|
| 127 |
+
### Full Model Architecture
|
| 128 |
+
|
| 129 |
+
```
|
| 130 |
+
SentenceTransformer(
|
| 131 |
+
(0): Transformer({'max_seq_length': 128, 'do_lower_case': False}) with Transformer model: BertModel
|
| 132 |
+
(1): Pooling({'word_embedding_dimension': 384, 'pooling_mode_cls_token': False, 'pooling_mode_mean_tokens': True, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
|
| 133 |
+
(2): Normalize()
|
| 134 |
+
)
|
| 135 |
+
```
|
| 136 |
+
|
| 137 |
+
## Usage
|
| 138 |
+
|
| 139 |
+
### Direct Usage (Sentence Transformers)
|
| 140 |
+
|
| 141 |
+
First install the Sentence Transformers library:
|
| 142 |
+
|
| 143 |
+
```bash
|
| 144 |
+
pip install -U sentence-transformers
|
| 145 |
+
```
|
| 146 |
+
|
| 147 |
+
Then you can load this model and run inference.
|
| 148 |
+
```python
|
| 149 |
+
from sentence_transformers import SentenceTransformer
|
| 150 |
+
|
| 151 |
+
# Download from the 🤗 Hub
|
| 152 |
+
model = SentenceTransformer("cherifkhalifah/finetuned-snli-MiniLM-L12-v2-100k-en-fr")
|
| 153 |
+
# Run inference
|
| 154 |
+
sentences = [
|
| 155 |
+
"it looks fertile and it it um i mean it rains enough they have the climate and the rain and if not it 's like i 've been to Saint Thomas and it just starts from the ocean up",
|
| 156 |
+
'They have the rain and the climate so I imagine the lands would be fertile .',
|
| 157 |
+
"They don 't know how to do it .",
|
| 158 |
+
]
|
| 159 |
+
embeddings = model.encode(sentences)
|
| 160 |
+
print(embeddings.shape)
|
| 161 |
+
# [3, 384]
|
| 162 |
+
|
| 163 |
+
# Get the similarity scores for the embeddings
|
| 164 |
+
similarities = model.similarity(embeddings, embeddings)
|
| 165 |
+
print(similarities.shape)
|
| 166 |
+
# [3, 3]
|
| 167 |
+
```
|
| 168 |
+
|
| 169 |
+
<!--
|
| 170 |
+
### Direct Usage (Transformers)
|
| 171 |
+
|
| 172 |
+
<details><summary>Click to see the direct usage in Transformers</summary>
|
| 173 |
+
|
| 174 |
+
</details>
|
| 175 |
+
-->
|
| 176 |
+
|
| 177 |
+
<!--
|
| 178 |
+
### Downstream Usage (Sentence Transformers)
|
| 179 |
+
|
| 180 |
+
You can finetune this model on your own dataset.
|
| 181 |
+
|
| 182 |
+
<details><summary>Click to expand</summary>
|
| 183 |
+
|
| 184 |
+
</details>
|
| 185 |
+
-->
|
| 186 |
+
|
| 187 |
+
<!--
|
| 188 |
+
### Out-of-Scope Use
|
| 189 |
+
|
| 190 |
+
*List how the model may foreseeably be misused and address what users ought not to do with the model.*
|
| 191 |
+
-->
|
| 192 |
+
|
| 193 |
+
## Evaluation
|
| 194 |
+
|
| 195 |
+
### Metrics
|
| 196 |
+
|
| 197 |
+
#### Semantic Similarity
|
| 198 |
+
* Dataset: `snli-dev`
|
| 199 |
+
* Evaluated with [<code>EmbeddingSimilarityEvaluator</code>](https://sbert.net/docs/package_reference/sentence_transformer/evaluation.html#sentence_transformers.evaluation.EmbeddingSimilarityEvaluator)
|
| 200 |
+
|
| 201 |
+
| Metric | Value |
|
| 202 |
+
|:-------------------|:-----------|
|
| 203 |
+
| pearson_cosine | 0.3725 |
|
| 204 |
+
| spearman_cosine | 0.3729 |
|
| 205 |
+
| pearson_manhattan | 0.365 |
|
| 206 |
+
| spearman_manhattan | 0.3725 |
|
| 207 |
+
| pearson_euclidean | 0.3657 |
|
| 208 |
+
| spearman_euclidean | 0.3729 |
|
| 209 |
+
| pearson_dot | 0.3725 |
|
| 210 |
+
| spearman_dot | 0.3729 |
|
| 211 |
+
| pearson_max | 0.3725 |
|
| 212 |
+
| **spearman_max** | **0.3729** |
|
| 213 |
+
|
| 214 |
+
<!--
|
| 215 |
+
## Bias, Risks and Limitations
|
| 216 |
+
|
| 217 |
+
*What are the known or foreseeable issues stemming from this model? You could also flag here known failure cases or weaknesses of the model.*
|
| 218 |
+
-->
|
| 219 |
+
|
| 220 |
+
<!--
|
| 221 |
+
### Recommendations
|
| 222 |
+
|
| 223 |
+
*What are recommendations with respect to the foreseeable issues? For example, filtering explicit content.*
|
| 224 |
+
-->
|
| 225 |
+
|
| 226 |
+
## Training Details
|
| 227 |
+
|
| 228 |
+
### Training Dataset
|
| 229 |
+
|
| 230 |
+
#### Unnamed Dataset
|
| 231 |
+
|
| 232 |
+
|
| 233 |
+
* Size: 100,000 training samples
|
| 234 |
+
* Columns: <code>sentence_0</code>, <code>sentence_1</code>, and <code>label</code>
|
| 235 |
+
* Approximate statistics based on the first 1000 samples:
|
| 236 |
+
| | sentence_0 | sentence_1 | label |
|
| 237 |
+
|:--------|:-----------------------------------------------------------------------------------|:----------------------------------------------------------------------------------|:--------------------------------------------------------------|
|
| 238 |
+
| type | string | string | float |
|
| 239 |
+
| details | <ul><li>min: 5 tokens</li><li>mean: 35.27 tokens</li><li>max: 128 tokens</li></ul> | <ul><li>min: 5 tokens</li><li>mean: 18.46 tokens</li><li>max: 66 tokens</li></ul> | <ul><li>min: 0.0</li><li>mean: 0.5</li><li>max: 1.0</li></ul> |
|
| 240 |
+
* Samples:
|
| 241 |
+
| sentence_0 | sentence_1 | label |
|
| 242 |
+
|:----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|:-----------------------------------------------------------------------|:-----------------|
|
| 243 |
+
| <code>Natalia M' a regardé .</code> | <code>Natalia a regardé et attend que je lui donne l' épée .</code> | <code>0.5</code> |
|
| 244 |
+
| <code>And he sounded sincere .</code> | <code>He sounded sincere.He was sounding sincere in his words .</code> | <code>0.0</code> |
|
| 245 |
+
| <code>There 's a small zoo area where you can see snakes , lizards , birds of prey , wolves , hyenas , foxes , and various desert cats , including cheetahs and leopards .</code> | <code>The zoo is home to some endangered desert animals .</code> | <code>0.5</code> |
|
| 246 |
+
* Loss: [<code>CosineSimilarityLoss</code>](https://sbert.net/docs/package_reference/sentence_transformer/losses.html#cosinesimilarityloss) with these parameters:
|
| 247 |
+
```json
|
| 248 |
+
{
|
| 249 |
+
"loss_fct": "torch.nn.modules.loss.MSELoss"
|
| 250 |
+
}
|
| 251 |
+
```
|
| 252 |
+
|
| 253 |
+
### Training Hyperparameters
|
| 254 |
+
#### Non-Default Hyperparameters
|
| 255 |
+
|
| 256 |
+
- `eval_strategy`: steps
|
| 257 |
+
- `per_device_train_batch_size`: 16
|
| 258 |
+
- `per_device_eval_batch_size`: 16
|
| 259 |
+
- `num_train_epochs`: 4
|
| 260 |
+
- `fp16`: True
|
| 261 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 262 |
+
|
| 263 |
+
#### All Hyperparameters
|
| 264 |
+
<details><summary>Click to expand</summary>
|
| 265 |
+
|
| 266 |
+
- `overwrite_output_dir`: False
|
| 267 |
+
- `do_predict`: False
|
| 268 |
+
- `eval_strategy`: steps
|
| 269 |
+
- `prediction_loss_only`: True
|
| 270 |
+
- `per_device_train_batch_size`: 16
|
| 271 |
+
- `per_device_eval_batch_size`: 16
|
| 272 |
+
- `per_gpu_train_batch_size`: None
|
| 273 |
+
- `per_gpu_eval_batch_size`: None
|
| 274 |
+
- `gradient_accumulation_steps`: 1
|
| 275 |
+
- `eval_accumulation_steps`: None
|
| 276 |
+
- `torch_empty_cache_steps`: None
|
| 277 |
+
- `learning_rate`: 5e-05
|
| 278 |
+
- `weight_decay`: 0.0
|
| 279 |
+
- `adam_beta1`: 0.9
|
| 280 |
+
- `adam_beta2`: 0.999
|
| 281 |
+
- `adam_epsilon`: 1e-08
|
| 282 |
+
- `max_grad_norm`: 1
|
| 283 |
+
- `num_train_epochs`: 4
|
| 284 |
+
- `max_steps`: -1
|
| 285 |
+
- `lr_scheduler_type`: linear
|
| 286 |
+
- `lr_scheduler_kwargs`: {}
|
| 287 |
+
- `warmup_ratio`: 0.0
|
| 288 |
+
- `warmup_steps`: 0
|
| 289 |
+
- `log_level`: passive
|
| 290 |
+
- `log_level_replica`: warning
|
| 291 |
+
- `log_on_each_node`: True
|
| 292 |
+
- `logging_nan_inf_filter`: True
|
| 293 |
+
- `save_safetensors`: True
|
| 294 |
+
- `save_on_each_node`: False
|
| 295 |
+
- `save_only_model`: False
|
| 296 |
+
- `restore_callback_states_from_checkpoint`: False
|
| 297 |
+
- `no_cuda`: False
|
| 298 |
+
- `use_cpu`: False
|
| 299 |
+
- `use_mps_device`: False
|
| 300 |
+
- `seed`: 42
|
| 301 |
+
- `data_seed`: None
|
| 302 |
+
- `jit_mode_eval`: False
|
| 303 |
+
- `use_ipex`: False
|
| 304 |
+
- `bf16`: False
|
| 305 |
+
- `fp16`: True
|
| 306 |
+
- `fp16_opt_level`: O1
|
| 307 |
+
- `half_precision_backend`: auto
|
| 308 |
+
- `bf16_full_eval`: False
|
| 309 |
+
- `fp16_full_eval`: False
|
| 310 |
+
- `tf32`: None
|
| 311 |
+
- `local_rank`: 0
|
| 312 |
+
- `ddp_backend`: None
|
| 313 |
+
- `tpu_num_cores`: None
|
| 314 |
+
- `tpu_metrics_debug`: False
|
| 315 |
+
- `debug`: []
|
| 316 |
+
- `dataloader_drop_last`: False
|
| 317 |
+
- `dataloader_num_workers`: 0
|
| 318 |
+
- `dataloader_prefetch_factor`: None
|
| 319 |
+
- `past_index`: -1
|
| 320 |
+
- `disable_tqdm`: False
|
| 321 |
+
- `remove_unused_columns`: True
|
| 322 |
+
- `label_names`: None
|
| 323 |
+
- `load_best_model_at_end`: False
|
| 324 |
+
- `ignore_data_skip`: False
|
| 325 |
+
- `fsdp`: []
|
| 326 |
+
- `fsdp_min_num_params`: 0
|
| 327 |
+
- `fsdp_config`: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
|
| 328 |
+
- `fsdp_transformer_layer_cls_to_wrap`: None
|
| 329 |
+
- `accelerator_config`: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
|
| 330 |
+
- `deepspeed`: None
|
| 331 |
+
- `label_smoothing_factor`: 0.0
|
| 332 |
+
- `optim`: adamw_torch
|
| 333 |
+
- `optim_args`: None
|
| 334 |
+
- `adafactor`: False
|
| 335 |
+
- `group_by_length`: False
|
| 336 |
+
- `length_column_name`: length
|
| 337 |
+
- `ddp_find_unused_parameters`: None
|
| 338 |
+
- `ddp_bucket_cap_mb`: None
|
| 339 |
+
- `ddp_broadcast_buffers`: False
|
| 340 |
+
- `dataloader_pin_memory`: True
|
| 341 |
+
- `dataloader_persistent_workers`: False
|
| 342 |
+
- `skip_memory_metrics`: True
|
| 343 |
+
- `use_legacy_prediction_loop`: False
|
| 344 |
+
- `push_to_hub`: False
|
| 345 |
+
- `resume_from_checkpoint`: None
|
| 346 |
+
- `hub_model_id`: None
|
| 347 |
+
- `hub_strategy`: every_save
|
| 348 |
+
- `hub_private_repo`: False
|
| 349 |
+
- `hub_always_push`: False
|
| 350 |
+
- `gradient_checkpointing`: False
|
| 351 |
+
- `gradient_checkpointing_kwargs`: None
|
| 352 |
+
- `include_inputs_for_metrics`: False
|
| 353 |
+
- `eval_do_concat_batches`: True
|
| 354 |
+
- `fp16_backend`: auto
|
| 355 |
+
- `push_to_hub_model_id`: None
|
| 356 |
+
- `push_to_hub_organization`: None
|
| 357 |
+
- `mp_parameters`:
|
| 358 |
+
- `auto_find_batch_size`: False
|
| 359 |
+
- `full_determinism`: False
|
| 360 |
+
- `torchdynamo`: None
|
| 361 |
+
- `ray_scope`: last
|
| 362 |
+
- `ddp_timeout`: 1800
|
| 363 |
+
- `torch_compile`: False
|
| 364 |
+
- `torch_compile_backend`: None
|
| 365 |
+
- `torch_compile_mode`: None
|
| 366 |
+
- `dispatch_batches`: None
|
| 367 |
+
- `split_batches`: None
|
| 368 |
+
- `include_tokens_per_second`: False
|
| 369 |
+
- `include_num_input_tokens_seen`: False
|
| 370 |
+
- `neftune_noise_alpha`: None
|
| 371 |
+
- `optim_target_modules`: None
|
| 372 |
+
- `batch_eval_metrics`: False
|
| 373 |
+
- `eval_on_start`: False
|
| 374 |
+
- `eval_use_gather_object`: False
|
| 375 |
+
- `batch_sampler`: batch_sampler
|
| 376 |
+
- `multi_dataset_batch_sampler`: round_robin
|
| 377 |
+
|
| 378 |
+
</details>
|
| 379 |
+
|
| 380 |
+
### Training Logs
|
| 381 |
+
| Epoch | Step | Training Loss | snli-dev_spearman_max |
|
| 382 |
+
|:------:|:-----:|:-------------:|:---------------------:|
|
| 383 |
+
| 0.08 | 500 | 0.2008 | 0.0433 |
|
| 384 |
+
| 0.16 | 1000 | 0.1757 | 0.1024 |
|
| 385 |
+
| 0.24 | 1500 | 0.1732 | 0.1503 |
|
| 386 |
+
| 0.32 | 2000 | 0.1685 | 0.2168 |
|
| 387 |
+
| 0.4 | 2500 | 0.1702 | 0.2206 |
|
| 388 |
+
| 0.48 | 3000 | 0.1676 | 0.2117 |
|
| 389 |
+
| 0.56 | 3500 | 0.1637 | 0.2624 |
|
| 390 |
+
| 0.64 | 4000 | 0.1636 | 0.2169 |
|
| 391 |
+
| 0.72 | 4500 | 0.1608 | 0.0051 |
|
| 392 |
+
| 0.8 | 5000 | 0.1601 | 0.2236 |
|
| 393 |
+
| 0.88 | 5500 | 0.1597 | 0.2471 |
|
| 394 |
+
| 0.96 | 6000 | 0.1596 | 0.2934 |
|
| 395 |
+
| 1.0 | 6250 | - | 0.2905 |
|
| 396 |
+
| 1.04 | 6500 | 0.1602 | 0.3001 |
|
| 397 |
+
| 1.12 | 7000 | 0.1571 | 0.3116 |
|
| 398 |
+
| 1.2 | 7500 | 0.1588 | 0.3145 |
|
| 399 |
+
| 1.28 | 8000 | 0.1562 | 0.3304 |
|
| 400 |
+
| 1.3600 | 8500 | 0.1548 | 0.3376 |
|
| 401 |
+
| 1.44 | 9000 | 0.156 | 0.3359 |
|
| 402 |
+
| 1.52 | 9500 | 0.1552 | 0.3194 |
|
| 403 |
+
| 1.6 | 10000 | 0.153 | 0.3474 |
|
| 404 |
+
| 1.6800 | 10500 | 0.1529 | 0.3220 |
|
| 405 |
+
| 1.76 | 11000 | 0.1518 | 0.3255 |
|
| 406 |
+
| 1.8400 | 11500 | 0.1499 | 0.3332 |
|
| 407 |
+
| 1.92 | 12000 | 0.1524 | 0.3521 |
|
| 408 |
+
| 2.0 | 12500 | 0.1512 | 0.3425 |
|
| 409 |
+
| 2.08 | 13000 | 0.1514 | 0.3462 |
|
| 410 |
+
| 2.16 | 13500 | 0.1516 | 0.3414 |
|
| 411 |
+
| 2.24 | 14000 | 0.1532 | 0.3453 |
|
| 412 |
+
| 2.32 | 14500 | 0.1459 | 0.3699 |
|
| 413 |
+
| 2.4 | 15000 | 0.1524 | 0.3576 |
|
| 414 |
+
| 2.48 | 15500 | 0.1506 | 0.3418 |
|
| 415 |
+
| 2.56 | 16000 | 0.1488 | 0.3559 |
|
| 416 |
+
| 2.64 | 16500 | 0.1486 | 0.3597 |
|
| 417 |
+
| 2.7200 | 17000 | 0.1469 | 0.3552 |
|
| 418 |
+
| 2.8 | 17500 | 0.1448 | 0.3459 |
|
| 419 |
+
| 2.88 | 18000 | 0.1458 | 0.3503 |
|
| 420 |
+
| 2.96 | 18500 | 0.1468 | 0.3647 |
|
| 421 |
+
| 3.0 | 18750 | - | 0.3611 |
|
| 422 |
+
| 3.04 | 19000 | 0.1472 | 0.3741 |
|
| 423 |
+
| 3.12 | 19500 | 0.1457 | 0.3603 |
|
| 424 |
+
| 3.2 | 20000 | 0.147 | 0.3576 |
|
| 425 |
+
| 3.2800 | 20500 | 0.1451 | 0.3663 |
|
| 426 |
+
| 3.36 | 21000 | 0.1438 | 0.3734 |
|
| 427 |
+
| 3.44 | 21500 | 0.1471 | 0.3698 |
|
| 428 |
+
| 3.52 | 22000 | 0.1462 | 0.3646 |
|
| 429 |
+
| 3.6 | 22500 | 0.1436 | 0.3740 |
|
| 430 |
+
| 3.68 | 23000 | 0.1441 | 0.3696 |
|
| 431 |
+
| 3.76 | 23500 | 0.1423 | 0.3636 |
|
| 432 |
+
| 3.84 | 24000 | 0.1411 | 0.3713 |
|
| 433 |
+
| 3.92 | 24500 | 0.1438 | 0.3706 |
|
| 434 |
+
| 4.0 | 25000 | 0.1421 | 0.3729 |
|
| 435 |
+
|
| 436 |
+
|
| 437 |
+
### Framework Versions
|
| 438 |
+
- Python: 3.10.12
|
| 439 |
+
- Sentence Transformers: 3.1.1
|
| 440 |
+
- Transformers: 4.44.2
|
| 441 |
+
- PyTorch: 2.4.1+cu121
|
| 442 |
+
- Accelerate: 0.34.2
|
| 443 |
+
- Datasets: 3.0.1
|
| 444 |
+
- Tokenizers: 0.19.1
|
| 445 |
+
|
| 446 |
+
## Citation
|
| 447 |
+
|
| 448 |
+
### BibTeX
|
| 449 |
+
|
| 450 |
+
#### Sentence Transformers
|
| 451 |
+
```bibtex
|
| 452 |
+
@inproceedings{reimers-2019-sentence-bert,
|
| 453 |
+
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
|
| 454 |
+
author = "Reimers, Nils and Gurevych, Iryna",
|
| 455 |
+
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
|
| 456 |
+
month = "11",
|
| 457 |
+
year = "2019",
|
| 458 |
+
publisher = "Association for Computational Linguistics",
|
| 459 |
+
url = "https://arxiv.org/abs/1908.10084",
|
| 460 |
+
}
|
| 461 |
+
```
|
| 462 |
+
|
| 463 |
+
<!--
|
| 464 |
+
## Glossary
|
| 465 |
+
|
| 466 |
+
*Clearly define terms in order to be accessible across audiences.*
|
| 467 |
+
-->
|
| 468 |
+
|
| 469 |
+
<!--
|
| 470 |
+
## Model Card Authors
|
| 471 |
+
|
| 472 |
+
*Lists the people who create the model card, providing recognition and accountability for the detailed work that goes into its construction.*
|
| 473 |
+
-->
|
| 474 |
+
|
| 475 |
+
<!--
|
| 476 |
+
## Model Card Contact
|
| 477 |
+
|
| 478 |
+
*Provides a way for people who have updates to the Model Card, suggestions, or questions, to contact the Model Card authors.*
|
| 479 |
+
-->
|
config.json
ADDED
|
@@ -0,0 +1,26 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"_name_or_path": "sentence-transformers/all-MiniLM-L12-v2",
|
| 3 |
+
"architectures": [
|
| 4 |
+
"BertModel"
|
| 5 |
+
],
|
| 6 |
+
"attention_probs_dropout_prob": 0.1,
|
| 7 |
+
"classifier_dropout": null,
|
| 8 |
+
"gradient_checkpointing": false,
|
| 9 |
+
"hidden_act": "gelu",
|
| 10 |
+
"hidden_dropout_prob": 0.1,
|
| 11 |
+
"hidden_size": 384,
|
| 12 |
+
"initializer_range": 0.02,
|
| 13 |
+
"intermediate_size": 1536,
|
| 14 |
+
"layer_norm_eps": 1e-12,
|
| 15 |
+
"max_position_embeddings": 512,
|
| 16 |
+
"model_type": "bert",
|
| 17 |
+
"num_attention_heads": 12,
|
| 18 |
+
"num_hidden_layers": 12,
|
| 19 |
+
"pad_token_id": 0,
|
| 20 |
+
"position_embedding_type": "absolute",
|
| 21 |
+
"torch_dtype": "float32",
|
| 22 |
+
"transformers_version": "4.44.2",
|
| 23 |
+
"type_vocab_size": 2,
|
| 24 |
+
"use_cache": true,
|
| 25 |
+
"vocab_size": 30522
|
| 26 |
+
}
|
config_sentence_transformers.json
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"__version__": {
|
| 3 |
+
"sentence_transformers": "3.1.1",
|
| 4 |
+
"transformers": "4.44.2",
|
| 5 |
+
"pytorch": "2.4.1+cu121"
|
| 6 |
+
},
|
| 7 |
+
"prompts": {},
|
| 8 |
+
"default_prompt_name": null,
|
| 9 |
+
"similarity_fn_name": null
|
| 10 |
+
}
|
model.safetensors
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:98f290b236c26d88c4c8be141829f25f1e870328667e17794e7d93bb18b23232
|
| 3 |
+
size 133462128
|
modules.json
ADDED
|
@@ -0,0 +1,20 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
[
|
| 2 |
+
{
|
| 3 |
+
"idx": 0,
|
| 4 |
+
"name": "0",
|
| 5 |
+
"path": "",
|
| 6 |
+
"type": "sentence_transformers.models.Transformer"
|
| 7 |
+
},
|
| 8 |
+
{
|
| 9 |
+
"idx": 1,
|
| 10 |
+
"name": "1",
|
| 11 |
+
"path": "1_Pooling",
|
| 12 |
+
"type": "sentence_transformers.models.Pooling"
|
| 13 |
+
},
|
| 14 |
+
{
|
| 15 |
+
"idx": 2,
|
| 16 |
+
"name": "2",
|
| 17 |
+
"path": "2_Normalize",
|
| 18 |
+
"type": "sentence_transformers.models.Normalize"
|
| 19 |
+
}
|
| 20 |
+
]
|
sentence_bert_config.json
ADDED
|
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"max_seq_length": 128,
|
| 3 |
+
"do_lower_case": false
|
| 4 |
+
}
|
special_tokens_map.json
ADDED
|
@@ -0,0 +1,37 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"cls_token": {
|
| 3 |
+
"content": "[CLS]",
|
| 4 |
+
"lstrip": false,
|
| 5 |
+
"normalized": false,
|
| 6 |
+
"rstrip": false,
|
| 7 |
+
"single_word": false
|
| 8 |
+
},
|
| 9 |
+
"mask_token": {
|
| 10 |
+
"content": "[MASK]",
|
| 11 |
+
"lstrip": false,
|
| 12 |
+
"normalized": false,
|
| 13 |
+
"rstrip": false,
|
| 14 |
+
"single_word": false
|
| 15 |
+
},
|
| 16 |
+
"pad_token": {
|
| 17 |
+
"content": "[PAD]",
|
| 18 |
+
"lstrip": false,
|
| 19 |
+
"normalized": false,
|
| 20 |
+
"rstrip": false,
|
| 21 |
+
"single_word": false
|
| 22 |
+
},
|
| 23 |
+
"sep_token": {
|
| 24 |
+
"content": "[SEP]",
|
| 25 |
+
"lstrip": false,
|
| 26 |
+
"normalized": false,
|
| 27 |
+
"rstrip": false,
|
| 28 |
+
"single_word": false
|
| 29 |
+
},
|
| 30 |
+
"unk_token": {
|
| 31 |
+
"content": "[UNK]",
|
| 32 |
+
"lstrip": false,
|
| 33 |
+
"normalized": false,
|
| 34 |
+
"rstrip": false,
|
| 35 |
+
"single_word": false
|
| 36 |
+
}
|
| 37 |
+
}
|
tokenizer.json
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tokenizer_config.json
ADDED
|
@@ -0,0 +1,64 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
{
|
| 2 |
+
"added_tokens_decoder": {
|
| 3 |
+
"0": {
|
| 4 |
+
"content": "[PAD]",
|
| 5 |
+
"lstrip": false,
|
| 6 |
+
"normalized": false,
|
| 7 |
+
"rstrip": false,
|
| 8 |
+
"single_word": false,
|
| 9 |
+
"special": true
|
| 10 |
+
},
|
| 11 |
+
"100": {
|
| 12 |
+
"content": "[UNK]",
|
| 13 |
+
"lstrip": false,
|
| 14 |
+
"normalized": false,
|
| 15 |
+
"rstrip": false,
|
| 16 |
+
"single_word": false,
|
| 17 |
+
"special": true
|
| 18 |
+
},
|
| 19 |
+
"101": {
|
| 20 |
+
"content": "[CLS]",
|
| 21 |
+
"lstrip": false,
|
| 22 |
+
"normalized": false,
|
| 23 |
+
"rstrip": false,
|
| 24 |
+
"single_word": false,
|
| 25 |
+
"special": true
|
| 26 |
+
},
|
| 27 |
+
"102": {
|
| 28 |
+
"content": "[SEP]",
|
| 29 |
+
"lstrip": false,
|
| 30 |
+
"normalized": false,
|
| 31 |
+
"rstrip": false,
|
| 32 |
+
"single_word": false,
|
| 33 |
+
"special": true
|
| 34 |
+
},
|
| 35 |
+
"103": {
|
| 36 |
+
"content": "[MASK]",
|
| 37 |
+
"lstrip": false,
|
| 38 |
+
"normalized": false,
|
| 39 |
+
"rstrip": false,
|
| 40 |
+
"single_word": false,
|
| 41 |
+
"special": true
|
| 42 |
+
}
|
| 43 |
+
},
|
| 44 |
+
"clean_up_tokenization_spaces": true,
|
| 45 |
+
"cls_token": "[CLS]",
|
| 46 |
+
"do_basic_tokenize": true,
|
| 47 |
+
"do_lower_case": true,
|
| 48 |
+
"mask_token": "[MASK]",
|
| 49 |
+
"max_length": 128,
|
| 50 |
+
"model_max_length": 128,
|
| 51 |
+
"never_split": null,
|
| 52 |
+
"pad_to_multiple_of": null,
|
| 53 |
+
"pad_token": "[PAD]",
|
| 54 |
+
"pad_token_type_id": 0,
|
| 55 |
+
"padding_side": "right",
|
| 56 |
+
"sep_token": "[SEP]",
|
| 57 |
+
"stride": 0,
|
| 58 |
+
"strip_accents": null,
|
| 59 |
+
"tokenize_chinese_chars": true,
|
| 60 |
+
"tokenizer_class": "BertTokenizer",
|
| 61 |
+
"truncation_side": "right",
|
| 62 |
+
"truncation_strategy": "longest_first",
|
| 63 |
+
"unk_token": "[UNK]"
|
| 64 |
+
}
|
vocab.txt
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|