Built with Axolotl

See axolotl config

axolotl version: 0.12.0.dev0

base_model: Qwen/Qwen2.5-7B-Instruct
# optionally might have model_type or tokenizer_type
model_type: Qwen2ForCausalLM
tokenizer_type: AutoTokenizer
# Automatically upload checkpoint and final model to HF
# hub_model_id: username/custom_model_name

load_in_8bit: true
load_in_4bit: false

datasets:
  - path: cfierro/alpaca-en2fr
    type: alpaca
dataset_prepared_path: /workspace/axolotl-datasets/Qwen2.5-7B/en2fr_alpaca
val_set_size: 0.02
output_dir: /workspace/axolotl-outputs/Qwen2.5-7B-en2fr_alpaca-lora

sequence_len: 4096
sample_packing: true
eval_sample_packing: false
pad_to_sequence_len: true

adapter: lora
lora_model_dir:
lora_r: 32
lora_alpha: 16
lora_dropout: 0.05
lora_target_linear: true
lora_modules_to_save:
  - embed_tokens
  - lm_head
merge_lora: true

wandb_project: weight-diff-ft
wandb_entity: cfierro
wandb_watch: all
wandb_name: Qwen2.5-7B-en2fr_alpaca-lora
wandb_log_model: "false"
hub_model_id: coastalcph/Qwen2.5-7B-en2fr_alpaca-lora

gradient_accumulation_steps: 4
micro_batch_size: 2
max_steps: 1000
optimizer: adamw_bnb_8bit
lr_scheduler: cosine
learning_rate: 0.0002

bf16: auto
tf32: false

gradient_checkpointing: true
resume_from_checkpoint:
logging_steps: 1
flash_attention: true

warmup_steps: 10
early_stopping_patience: 2
eval_steps: 60
save_steps: 60
save_total_limit: 1
load_best_model_at_end: true
weight_decay: 0.0
special_tokens:

Qwen2.5-7B-en2fr_alpaca-lora

This model is a fine-tuned version of Qwen/Qwen2.5-7B-Instruct on the cfierro/alpaca-en2fr dataset. It achieves the following results on the evaluation set:

  • Loss: 0.9886

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 0.0002
  • train_batch_size: 2
  • eval_batch_size: 2
  • seed: 42
  • gradient_accumulation_steps: 4
  • total_train_batch_size: 8
  • optimizer: Use OptimizerNames.ADAMW_BNB with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: cosine
  • lr_scheduler_warmup_steps: 10
  • training_steps: 1000

Training results

Training Loss Epoch Step Validation Loss
No log 0 0 2.3403
1.1371 0.32 60 1.0314
1.0978 0.64 120 1.0035
1.004 0.96 180 0.9847
0.8761 1.2773 240 0.9951
0.8661 1.5973 300 0.9886

Framework versions

  • PEFT 0.16.0
  • Transformers 4.53.2
  • Pytorch 2.7.1+cu126
  • Datasets 4.0.0
  • Tokenizers 0.21.2
Downloads last month
8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for coastalcph/Qwen2.5-7B-en2fr_alpaca-lora

Base model

Qwen/Qwen2.5-7B
Adapter
(802)
this model

Dataset used to train coastalcph/Qwen2.5-7B-en2fr_alpaca-lora

Evaluation results