SentenceTransformer based on codersan/FaLabse

This is a sentence-transformers model finetuned from codersan/FaLabse. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.

Model Details

Model Description

  • Model Type: Sentence Transformer
  • Base model: codersan/FaLabse
  • Maximum Sequence Length: 256 tokens
  • Output Dimensionality: 768 dimensions
  • Similarity Function: Cosine Similarity

Model Sources

Full Model Architecture

SentenceTransformer(
  (0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel 
  (1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
  (2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
  (3): Normalize()
)

Usage

Direct Usage (Sentence Transformers)

First install the Sentence Transformers library:

pip install -U sentence-transformers

Then you can load this model and run inference.

from sentence_transformers import SentenceTransformer

# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLaBSE_Mizan2")
# Run inference
sentences = [
    'اگر این کار مداومت می\u200cیافت، سنگر قادر به مقاومت نمی\u200cبود.',
    'If this were continued, the barricade was no longer tenable.',
    'Well, for this moment she had a protector.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]

# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]

Training Details

Training Dataset

Unnamed Dataset

  • Size: 1,021,596 training samples
  • Columns: anchor and positive
  • Approximate statistics based on the first 1000 samples:
    anchor positive
    type string string
    details
    • min: 3 tokens
    • mean: 18.63 tokens
    • max: 81 tokens
    • min: 3 tokens
    • mean: 16.37 tokens
    • max: 85 tokens
  • Samples:
    anchor positive
    دختران برای اطاعت امر پدر از جا برخاستند. They arose to obey.
    همه چیز را بم وقع خواهی دانست. You'll know it all in time
    او هر لحظه گرفتار یک‌ وضع است، زارزار گریه می‌کند. می‌گوید به ما توهین کرده‌اند، حیثیتمان را لکه‌دار نمودند. She is in hysterics up there, and moans and says that we have been 'shamed and disgraced.
  • Loss: MultipleNegativesRankingLoss with these parameters:
    {
        "scale": 20.0,
        "similarity_fct": "cos_sim"
    }
    

Training Hyperparameters

Non-Default Hyperparameters

  • eval_strategy: steps
  • per_device_train_batch_size: 12
  • learning_rate: 5e-06
  • weight_decay: 0.01
  • max_grad_norm: 5
  • num_train_epochs: 1
  • warmup_ratio: 0.1
  • push_to_hub: True
  • hub_model_id: codersan/FaLaBSE_Mizan2
  • eval_on_start: True
  • batch_sampler: no_duplicates

All Hyperparameters

Click to expand
  • overwrite_output_dir: False
  • do_predict: False
  • eval_strategy: steps
  • prediction_loss_only: True
  • per_device_train_batch_size: 12
  • per_device_eval_batch_size: 8
  • per_gpu_train_batch_size: None
  • per_gpu_eval_batch_size: None
  • gradient_accumulation_steps: 1
  • eval_accumulation_steps: None
  • torch_empty_cache_steps: None
  • learning_rate: 5e-06
  • weight_decay: 0.01
  • adam_beta1: 0.9
  • adam_beta2: 0.999
  • adam_epsilon: 1e-08
  • max_grad_norm: 5
  • num_train_epochs: 1
  • max_steps: -1
  • lr_scheduler_type: linear
  • lr_scheduler_kwargs: {}
  • warmup_ratio: 0.1
  • warmup_steps: 0
  • log_level: passive
  • log_level_replica: warning
  • log_on_each_node: True
  • logging_nan_inf_filter: True
  • save_safetensors: True
  • save_on_each_node: False
  • save_only_model: False
  • restore_callback_states_from_checkpoint: False
  • no_cuda: False
  • use_cpu: False
  • use_mps_device: False
  • seed: 42
  • data_seed: None
  • jit_mode_eval: False
  • use_ipex: False
  • bf16: False
  • fp16: False
  • fp16_opt_level: O1
  • half_precision_backend: auto
  • bf16_full_eval: False
  • fp16_full_eval: False
  • tf32: None
  • local_rank: 0
  • ddp_backend: None
  • tpu_num_cores: None
  • tpu_metrics_debug: False
  • debug: []
  • dataloader_drop_last: False
  • dataloader_num_workers: 0
  • dataloader_prefetch_factor: None
  • past_index: -1
  • disable_tqdm: False
  • remove_unused_columns: True
  • label_names: None
  • load_best_model_at_end: False
  • ignore_data_skip: False
  • fsdp: []
  • fsdp_min_num_params: 0
  • fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}
  • fsdp_transformer_layer_cls_to_wrap: None
  • accelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}
  • deepspeed: None
  • label_smoothing_factor: 0.0
  • optim: adamw_torch
  • optim_args: None
  • adafactor: False
  • group_by_length: False
  • length_column_name: length
  • ddp_find_unused_parameters: None
  • ddp_bucket_cap_mb: None
  • ddp_broadcast_buffers: False
  • dataloader_pin_memory: True
  • dataloader_persistent_workers: False
  • skip_memory_metrics: True
  • use_legacy_prediction_loop: False
  • push_to_hub: True
  • resume_from_checkpoint: None
  • hub_model_id: codersan/FaLaBSE_Mizan2
  • hub_strategy: every_save
  • hub_private_repo: None
  • hub_always_push: False
  • gradient_checkpointing: False
  • gradient_checkpointing_kwargs: None
  • include_inputs_for_metrics: False
  • include_for_metrics: []
  • eval_do_concat_batches: True
  • fp16_backend: auto
  • push_to_hub_model_id: None
  • push_to_hub_organization: None
  • mp_parameters:
  • auto_find_batch_size: False
  • full_determinism: False
  • torchdynamo: None
  • ray_scope: last
  • ddp_timeout: 1800
  • torch_compile: False
  • torch_compile_backend: None
  • torch_compile_mode: None
  • dispatch_batches: None
  • split_batches: None
  • include_tokens_per_second: False
  • include_num_input_tokens_seen: False
  • neftune_noise_alpha: None
  • optim_target_modules: None
  • batch_eval_metrics: False
  • eval_on_start: True
  • use_liger_kernel: False
  • eval_use_gather_object: False
  • average_tokens_across_devices: False
  • prompts: None
  • batch_sampler: no_duplicates
  • multi_dataset_batch_sampler: proportional

Training Logs

Click to expand
Epoch Step Training Loss
0 0 -
0.0012 100 0.054
0.0023 200 0.0442
0.0035 300 0.0714
0.0047 400 0.0715
0.0059 500 0.0642
0.0070 600 0.058
0.0082 700 0.062
0.0094 800 0.0626
0.0106 900 0.0466
0.0117 1000 0.0617
0.0129 1100 0.0464
0.0141 1200 0.0532
0.0153 1300 0.0472
0.0164 1400 0.0396
0.0176 1500 0.0587
0.0188 1600 0.0378
0.0200 1700 0.0448
0.0211 1800 0.0475
0.0223 1900 0.0533
0.0235 2000 0.0693
0.0247 2100 0.0451
0.0258 2200 0.0397
0.0270 2300 0.0392
0.0282 2400 0.0437
0.0294 2500 0.0467
0.0305 2600 0.0456
0.0317 2700 0.0274
0.0329 2800 0.0379
0.0341 2900 0.0412
0.0352 3000 0.0445
0.0364 3100 0.0419
0.0376 3200 0.032
0.0388 3300 0.0351
0.0399 3400 0.0442
0.0411 3500 0.0434
0.0423 3600 0.0331
0.0435 3700 0.0398
0.0446 3800 0.0518
0.0458 3900 0.0287
0.0470 4000 0.0322
0.0482 4100 0.0389
0.0493 4200 0.0268
0.0505 4300 0.0352
0.0517 4400 0.021
0.0529 4500 0.0322
0.0540 4600 0.0228
0.0552 4700 0.0396
0.0564 4800 0.033
0.0576 4900 0.0444
0.0587 5000 0.0392
0.0599 5100 0.033
0.0611 5200 0.0401
0.0623 5300 0.0397
0.0634 5400 0.0327
0.0646 5500 0.0346
0.0658 5600 0.0315
0.0670 5700 0.0315
0.0681 5800 0.0234
0.0693 5900 0.0311
0.0705 6000 0.0323
0.0717 6100 0.0248
0.0728 6200 0.0384
0.0740 6300 0.0394
0.0752 6400 0.0299
0.0764 6500 0.0479
0.0775 6600 0.0253
0.0787 6700 0.0424
0.0799 6800 0.0269
0.0810 6900 0.035
0.0822 7000 0.0349
0.0834 7100 0.0302
0.0846 7200 0.0426
0.0857 7300 0.0287
0.0869 7400 0.0254
0.0881 7500 0.0306
0.0893 7600 0.0356
0.0904 7700 0.0393
0.0916 7800 0.035
0.0928 7900 0.0449
0.0940 8000 0.0228
0.0951 8100 0.0342
0.0963 8200 0.0233
0.0975 8300 0.0259
0.0987 8400 0.0402
0.0998 8500 0.0277
0.1010 8600 0.0345
0.1022 8700 0.0361
0.1034 8800 0.0326
0.1045 8900 0.0367
0.1057 9000 0.0408
0.1069 9100 0.0289
0.1081 9200 0.026
0.1092 9300 0.0367
0.1104 9400 0.0327
0.1116 9500 0.0273
0.1128 9600 0.0545
0.1139 9700 0.0395
0.1151 9800 0.0394
0.1163 9900 0.0293
0.1175 10000 0.0411
0.1186 10100 0.0353
0.1198 10200 0.0369
0.1210 10300 0.0222
0.1222 10400 0.0418
0.1233 10500 0.039
0.1245 10600 0.041
0.1257 10700 0.0316
0.1269 10800 0.0351
0.1280 10900 0.0258
0.1292 11000 0.0481
0.1304 11100 0.027
0.1316 11200 0.0357
0.1327 11300 0.0366
0.1339 11400 0.0345
0.1351 11500 0.0311
0.1363 11600 0.0335
0.1374 11700 0.0268
0.1386 11800 0.0272
0.1398 11900 0.0317
0.1410 12000 0.052
0.1421 12100 0.027
0.1433 12200 0.028
0.1445 12300 0.0435
0.1457 12400 0.0335
0.1468 12500 0.0506
0.1480 12600 0.033
0.1492 12700 0.0278
0.1504 12800 0.0298
0.1515 12900 0.0317
0.1527 13000 0.0157
0.1539 13100 0.0252
0.1551 13200 0.0214
0.1562 13300 0.0269
0.1574 13400 0.0287
0.1586 13500 0.0261
0.1598 13600 0.0195
0.1609 13700 0.0262
0.1621 13800 0.0446
0.1633 13900 0.0402
0.1644 14000 0.0318
0.1656 14100 0.039
0.1668 14200 0.0227
0.1680 14300 0.0247
0.1691 14400 0.0236
0.1703 14500 0.0213
0.1715 14600 0.0434
0.1727 14700 0.0486
0.1738 14800 0.0537
0.1750 14900 0.033
0.1762 15000 0.0289
0.1774 15100 0.0389
0.1785 15200 0.0267
0.1797 15300 0.031
0.1809 15400 0.029
0.1821 15500 0.0357
0.1832 15600 0.0231
0.1844 15700 0.035
0.1856 15800 0.0201
0.1868 15900 0.0361
0.1879 16000 0.0297
0.1891 16100 0.0216
0.1903 16200 0.0283
0.1915 16300 0.0205
0.1926 16400 0.0318
0.1938 16500 0.0385
0.1950 16600 0.0363
0.1962 16700 0.0462
0.1973 16800 0.0342
0.1985 16900 0.0213
0.1997 17000 0.0492
0.2009 17100 0.0354
0.2020 17200 0.0219
0.2032 17300 0.0338
0.2044 17400 0.0322
0.2056 17500 0.0283
0.2067 17600 0.024
0.2079 17700 0.0206
0.2091 17800 0.0416
0.2103 17900 0.0284
0.2114 18000 0.0305
0.2126 18100 0.0261
0.2138 18200 0.0228
0.2150 18300 0.048
0.2161 18400 0.0241
0.2173 18500 0.0484
0.2185 18600 0.0362
0.2197 18700 0.0296
0.2208 18800 0.0335
0.2220 18900 0.0383
0.2232 19000 0.0378
0.2244 19100 0.042
0.2255 19200 0.0405
0.2267 19300 0.0369
0.2279 19400 0.0238
0.2291 19500 0.0226
0.2302 19600 0.0338
0.2314 19700 0.0299
0.2326 19800 0.0436
0.2338 19900 0.0302
0.2349 20000 0.0253
0.2361 20100 0.0233
0.2373 20200 0.0427
0.2385 20300 0.0328
0.2396 20400 0.0366
0.2408 20500 0.0231
0.2420 20600 0.0467
0.2431 20700 0.0287
0.2443 20800 0.0393
0.2455 20900 0.0276
0.2467 21000 0.0355
0.2478 21100 0.0189
0.2490 21200 0.0152
0.2502 21300 0.0272
0.2514 21400 0.0267
0.2525 21500 0.044
0.2537 21600 0.024
0.2549 21700 0.0142
0.2561 21800 0.0263
0.2572 21900 0.0273
0.2584 22000 0.0238
0.2596 22100 0.0185
0.2608 22200 0.0459
0.2619 22300 0.0351
0.2631 22400 0.0498
0.2643 22500 0.0478
0.2655 22600 0.0331
0.2666 22700 0.0276
0.2678 22800 0.025
0.2690 22900 0.0424
0.2702 23000 0.0335
0.2713 23100 0.0401
0.2725 23200 0.038
0.2737 23300 0.0184
0.2749 23400 0.0235
0.2760 23500 0.0361
0.2772 23600 0.0359
0.2784 23700 0.0279
0.2796 23800 0.038
0.2807 23900 0.0198
0.2819 24000 0.0466
0.2831 24100 0.0297
0.2843 24200 0.0189
0.2854 24300 0.0418
0.2866 24400 0.0247
0.2878 24500 0.054
0.2890 24600 0.0449
0.2901 24700 0.0532
0.2913 24800 0.0317
0.2925 24900 0.0427
0.2937 25000 0.0282
0.2948 25100 0.029
0.2960 25200 0.0298
0.2972 25300 0.0297
0.2984 25400 0.0414
0.2995 25500 0.0297
0.3007 25600 0.0525
0.3019 25700 0.0478
0.3031 25800 0.0287
0.3042 25900 0.0235
0.3054 26000 0.0344
0.3066 26100 0.041
0.3078 26200 0.0325
0.3089 26300 0.0334
0.3101 26400 0.0211
0.3113 26500 0.0461
0.3125 26600 0.025
0.3136 26700 0.0276
0.3148 26800 0.0322
0.3160 26900 0.0261
0.3172 27000 0.0268
0.3183 27100 0.0349
0.3195 27200 0.0303
0.3207 27300 0.026
0.3218 27400 0.0328
0.3230 27500 0.0294
0.3242 27600 0.0275
0.3254 27700 0.0343
0.3265 27800 0.0294
0.3277 27900 0.032
0.3289 28000 0.0221
0.3301 28100 0.0249
0.3312 28200 0.0311
0.3324 28300 0.0257
0.3336 28400 0.0424
0.3348 28500 0.0394
0.3359 28600 0.044
0.3371 28700 0.0271
0.3383 28800 0.0363
0.3395 28900 0.0329
0.3406 29000 0.0383
0.3418 29100 0.0414
0.3430 29200 0.0219
0.3442 29300 0.0137
0.3453 29400 0.0389
0.3465 29500 0.0355
0.3477 29600 0.0105
0.3489 29700 0.0347
0.3500 29800 0.037
0.3512 29900 0.0333
0.3524 30000 0.0164
0.3536 30100 0.0336
0.3547 30200 0.0345
0.3559 30300 0.0359
0.3571 30400 0.0343
0.3583 30500 0.0528
0.3594 30600 0.0332
0.3606 30700 0.0487
0.3618 30800 0.0302
0.3630 30900 0.037
0.3641 31000 0.0339
0.3653 31100 0.0359
0.3665 31200 0.0403
0.3677 31300 0.0376
0.3688 31400 0.0367
0.3700 31500 0.0452
0.3712 31600 0.023
0.3724 31700 0.0281
0.3735 31800 0.0297
0.3747 31900 0.0353
0.3759 32000 0.0215
0.3771 32100 0.0234
0.3782 32200 0.0245
0.3794 32300 0.0485
0.3806 32400 0.0249
0.3818 32500 0.021
0.3829 32600 0.0381
0.3841 32700 0.0332
0.3853 32800 0.0263
0.3865 32900 0.0346
0.3876 33000 0.0401
0.3888 33100 0.0318
0.3900 33200 0.0224
0.3912 33300 0.0225
0.3923 33400 0.0265
0.3935 33500 0.0204
0.3947 33600 0.0321
0.3959 33700 0.0188
0.3970 33800 0.0338
0.3982 33900 0.0309
0.3994 34000 0.0233
0.4005 34100 0.0303
0.4017 34200 0.0387
0.4029 34300 0.0255
0.4041 34400 0.0212
0.4052 34500 0.0324
0.4064 34600 0.0412
0.4076 34700 0.0203
0.4088 34800 0.0211
0.4099 34900 0.031
0.4111 35000 0.0178
0.4123 35100 0.0222
0.4135 35200 0.018
0.4146 35300 0.0274
0.4158 35400 0.0364
0.4170 35500 0.0254
0.4182 35600 0.0219
0.4193 35700 0.0352
0.4205 35800 0.0324
0.4217 35900 0.026
0.4229 36000 0.0212
0.4240 36100 0.0326
0.4252 36200 0.0332
0.4264 36300 0.0358
0.4276 36400 0.0301
0.4287 36500 0.0328
0.4299 36600 0.0289
0.4311 36700 0.0351
0.4323 36800 0.0331
0.4334 36900 0.0209
0.4346 37000 0.0392
0.4358 37100 0.0171
0.4370 37200 0.035
0.4381 37300 0.0395
0.4393 37400 0.0437
0.4405 37500 0.0355
0.4417 37600 0.0383
0.4428 37700 0.0227
0.4440 37800 0.0286
0.4452 37900 0.0337
0.4464 38000 0.0514
0.4475 38100 0.0299
0.4487 38200 0.0343
0.4499 38300 0.025
0.4511 38400 0.0193
0.4522 38500 0.0293
0.4534 38600 0.0159
0.4546 38700 0.0183
0.4558 38800 0.0226
0.4569 38900 0.0437
0.4581 39000 0.0242
0.4593 39100 0.0396
0.4605 39200 0.0414
0.4616 39300 0.0337
0.4628 39400 0.035
0.4640 39500 0.0175
0.4652 39600 0.0228
0.4663 39700 0.019
0.4675 39800 0.0402
0.4687 39900 0.0177
0.4699 40000 0.0287
0.4710 40100 0.0262
0.4722 40200 0.0347
0.4734 40300 0.0249
0.4746 40400 0.0217
0.4757 40500 0.0258
0.4769 40600 0.0336
0.4781 40700 0.0391
0.4793 40800 0.042
0.4804 40900 0.03
0.4816 41000 0.0205
0.4828 41100 0.0273
0.4839 41200 0.0564
0.4851 41300 0.0311
0.4863 41400 0.0333
0.4875 41500 0.0162
0.4886 41600 0.0414
0.4898 41700 0.044
0.4910 41800 0.0411
0.4922 41900 0.0384
0.4933 42000 0.0269
0.4945 42100 0.0414
0.4957 42200 0.0175
0.4969 42300 0.0223
0.4980 42400 0.0354
0.4992 42500 0.0338
0.5004 42600 0.0182
0.5016 42700 0.0217
0.5027 42800 0.0227
0.5039 42900 0.0247
0.5051 43000 0.0238
0.5063 43100 0.0357
0.5074 43200 0.0237
0.5086 43300 0.0308
0.5098 43400 0.0294
0.5110 43500 0.0258
0.5121 43600 0.0234
0.5133 43700 0.0324
0.5145 43800 0.0334
0.5157 43900 0.0256
0.5168 44000 0.0243
0.5180 44100 0.0231
0.5192 44200 0.0312
0.5204 44300 0.0278
0.5215 44400 0.0432
0.5227 44500 0.0413
0.5239 44600 0.047
0.5251 44700 0.0384
0.5262 44800 0.0181
0.5274 44900 0.0303
0.5286 45000 0.0297
0.5298 45100 0.0292
0.5309 45200 0.033
0.5321 45300 0.0299
0.5333 45400 0.0269
0.5345 45500 0.0255
0.5356 45600 0.0395
0.5368 45700 0.0302
0.5380 45800 0.0237
0.5392 45900 0.0228
0.5403 46000 0.0329
0.5415 46100 0.0265
0.5427 46200 0.0187
0.5439 46300 0.0358
0.5450 46400 0.0319
0.5462 46500 0.0292
0.5474 46600 0.0366
0.5486 46700 0.0369
0.5497 46800 0.0219
0.5509 46900 0.0339
0.5521 47000 0.0383
0.5533 47100 0.0316
0.5544 47200 0.0374
0.5556 47300 0.0199
0.5568 47400 0.0279
0.5580 47500 0.04
0.5591 47600 0.0276
0.5603 47700 0.0281
0.5615 47800 0.0288
0.5626 47900 0.0256
0.5638 48000 0.0262
0.5650 48100 0.0264
0.5662 48200 0.0222
0.5673 48300 0.0202
0.5685 48400 0.0233
0.5697 48500 0.034
0.5709 48600 0.0354
0.5720 48700 0.0455
0.5732 48800 0.0384
0.5744 48900 0.0362
0.5756 49000 0.0249
0.5767 49100 0.0392
0.5779 49200 0.0279
0.5791 49300 0.0255
0.5803 49400 0.0254
0.5814 49500 0.0187
0.5826 49600 0.0215
0.5838 49700 0.0407
0.5850 49800 0.0158
0.5861 49900 0.0404
0.5873 50000 0.0303
0.5885 50100 0.0296
0.5897 50200 0.0307
0.5908 50300 0.0217
0.5920 50400 0.0436
0.5932 50500 0.0253
0.5944 50600 0.0191
0.5955 50700 0.032
0.5967 50800 0.0399
0.5979 50900 0.0346
0.5991 51000 0.031
0.6002 51100 0.0214
0.6014 51200 0.0134
0.6026 51300 0.0337
0.6038 51400 0.0394
0.6049 51500 0.0359
0.6061 51600 0.019
0.6073 51700 0.0145
0.6085 51800 0.0157
0.6096 51900 0.0496
0.6108 52000 0.0113
0.6120 52100 0.0293
0.6132 52200 0.0165
0.6143 52300 0.03
0.6155 52400 0.0266
0.6167 52500 0.0244
0.6179 52600 0.0234
0.6190 52700 0.0354
0.6202 52800 0.0176
0.6214 52900 0.0377
0.6226 53000 0.0374
0.6237 53100 0.0147
0.6249 53200 0.0408
0.6261 53300 0.0281
0.6273 53400 0.0474
0.6284 53500 0.0389
0.6296 53600 0.0294
0.6308 53700 0.0316
0.6320 53800 0.0314
0.6331 53900 0.0246
0.6343 54000 0.0243
0.6355 54100 0.0138
0.6367 54200 0.0242
0.6378 54300 0.0164
0.6390 54400 0.0279
0.6402 54500 0.0195
0.6413 54600 0.0202
0.6425 54700 0.0239
0.6437 54800 0.0287
0.6449 54900 0.0186
0.6460 55000 0.0141
0.6472 55100 0.0182
0.6484 55200 0.0275
0.6496 55300 0.0227
0.6507 55400 0.027
0.6519 55500 0.0242
0.6531 55600 0.0179
0.6543 55700 0.0245
0.6554 55800 0.0288
0.6566 55900 0.0189
0.6578 56000 0.0336
0.6590 56100 0.0328
0.6601 56200 0.0295
0.6613 56300 0.032
0.6625 56400 0.0256
0.6637 56500 0.0387
0.6648 56600 0.031
0.6660 56700 0.0188
0.6672 56800 0.028
0.6684 56900 0.0397
0.6695 57000 0.0285
0.6707 57100 0.033
0.6719 57200 0.0281
0.6731 57300 0.0196
0.6742 57400 0.025
0.6754 57500 0.0397
0.6766 57600 0.0403
0.6778 57700 0.022
0.6789 57800 0.0392
0.6801 57900 0.0254
0.6813 58000 0.0316
0.6825 58100 0.0186
0.6836 58200 0.0271
0.6848 58300 0.035
0.6860 58400 0.0322
0.6872 58500 0.0147
0.6883 58600 0.0314
0.6895 58700 0.0214
0.6907 58800 0.0177
0.6919 58900 0.0307
0.6930 59000 0.0246
0.6942 59100 0.0125
0.6954 59200 0.0232
0.6966 59300 0.0325
0.6977 59400 0.0253
0.6989 59500 0.0151
0.7001 59600 0.0261
0.7013 59700 0.0253
0.7024 59800 0.0124
0.7036 59900 0.0298
0.7048 60000 0.0254
0.7060 60100 0.0262
0.7071 60200 0.0274
0.7083 60300 0.0344
0.7095 60400 0.03
0.7107 60500 0.0312
0.7118 60600 0.0354
0.7130 60700 0.0334
0.7142 60800 0.0325
0.7154 60900 0.0236
0.7165 61000 0.0266
0.7177 61100 0.0183
0.7189 61200 0.045
0.7200 61300 0.0174
0.7212 61400 0.0518
0.7224 61500 0.0247
0.7236 61600 0.0255
0.7247 61700 0.0209
0.7259 61800 0.0206
0.7271 61900 0.0306
0.7283 62000 0.0215
0.7294 62100 0.0241
0.7306 62200 0.0324
0.7318 62300 0.0433
0.7330 62400 0.0238
0.7341 62500 0.0302
0.7353 62600 0.0282
0.7365 62700 0.0371
0.7377 62800 0.0397
0.7388 62900 0.0488
0.7400 63000 0.032
0.7412 63100 0.0161
0.7424 63200 0.0351
0.7435 63300 0.0282
0.7447 63400 0.0221
0.7459 63500 0.0275
0.7471 63600 0.0198
0.7482 63700 0.0339
0.7494 63800 0.0285
0.7506 63900 0.0314
0.7518 64000 0.0216
0.7529 64100 0.0383
0.7541 64200 0.0386
0.7553 64300 0.0305
0.7565 64400 0.0265
0.7576 64500 0.0288
0.7588 64600 0.0125
0.7600 64700 0.0212
0.7612 64800 0.0242
0.7623 64900 0.0384
0.7635 65000 0.0163
0.7647 65100 0.0132
0.7659 65200 0.0209
0.7670 65300 0.0408
0.7682 65400 0.0312
0.7694 65500 0.0382
0.7706 65600 0.0217
0.7717 65700 0.0384
0.7729 65800 0.0267
0.7741 65900 0.047
0.7753 66000 0.021
0.7764 66100 0.0138
0.7776 66200 0.0308
0.7788 66300 0.0193
0.7800 66400 0.0285
0.7811 66500 0.0235
0.7823 66600 0.0281
0.7835 66700 0.0407
0.7847 66800 0.0269
0.7858 66900 0.0346
0.7870 67000 0.0223
0.7882 67100 0.0278
0.7894 67200 0.0255
0.7905 67300 0.014
0.7917 67400 0.0248
0.7929 67500 0.022
0.7941 67600 0.0292
0.7952 67700 0.038
0.7964 67800 0.0158
0.7976 67900 0.0212
0.7988 68000 0.0405
0.7999 68100 0.029
0.8011 68200 0.0379
0.8023 68300 0.0256
0.8034 68400 0.0263
0.8046 68500 0.0214
0.8058 68600 0.0224
0.8070 68700 0.0159
0.8081 68800 0.0302
0.8093 68900 0.0313
0.8105 69000 0.0395
0.8117 69100 0.0296
0.8128 69200 0.0353
0.8140 69300 0.025
0.8152 69400 0.0246
0.8164 69500 0.0312
0.8175 69600 0.0199
0.8187 69700 0.0225
0.8199 69800 0.0254
0.8211 69900 0.0095
0.8222 70000 0.0326
0.8234 70100 0.0355
0.8246 70200 0.0368
0.8258 70300 0.0339
0.8269 70400 0.0278
0.8281 70500 0.0249
0.8293 70600 0.0379
0.8305 70700 0.0368
0.8316 70800 0.0146
0.8328 70900 0.0153
0.8340 71000 0.0352
0.8352 71100 0.0248
0.8363 71200 0.0255
0.8375 71300 0.0306
0.8387 71400 0.0293
0.8399 71500 0.0303
0.8410 71600 0.0244
0.8422 71700 0.0174
0.8434 71800 0.0241
0.8446 71900 0.0276
0.8457 72000 0.0359
0.8469 72100 0.0257
0.8481 72200 0.0344
0.8493 72300 0.0275
0.8504 72400 0.022
0.8516 72500 0.0275
0.8528 72600 0.0317
0.8540 72700 0.0386
0.8551 72800 0.0421
0.8563 72900 0.0259
0.8575 73000 0.0244
0.8587 73100 0.0231
0.8598 73200 0.0373
0.8610 73300 0.0296
0.8622 73400 0.024
0.8634 73500 0.0382
0.8645 73600 0.0223
0.8657 73700 0.0254
0.8669 73800 0.0259
0.8681 73900 0.0171
0.8692 74000 0.0268
0.8704 74100 0.0196
0.8716 74200 0.0206
0.8728 74300 0.0411
0.8739 74400 0.039
0.8751 74500 0.0197
0.8763 74600 0.0144
0.8775 74700 0.0231
0.8786 74800 0.0217
0.8798 74900 0.0244
0.8810 75000 0.0291
0.8821 75100 0.0243
0.8833 75200 0.0294
0.8845 75300 0.0129
0.8857 75400 0.0291
0.8868 75500 0.0273
0.8880 75600 0.0297
0.8892 75700 0.0266
0.8904 75800 0.0374
0.8915 75900 0.0225
0.8927 76000 0.0223
0.8939 76100 0.0229
0.8951 76200 0.0306
0.8962 76300 0.0238
0.8974 76400 0.0197
0.8986 76500 0.0265
0.8998 76600 0.0411
0.9009 76700 0.022
0.9021 76800 0.0151
0.9033 76900 0.0251
0.9045 77000 0.0211
0.9056 77100 0.0302
0.9068 77200 0.0229
0.9080 77300 0.0398
0.9092 77400 0.0174
0.9103 77500 0.0327
0.9115 77600 0.0258
0.9127 77700 0.026
0.9139 77800 0.0251
0.9150 77900 0.0351
0.9162 78000 0.0315
0.9174 78100 0.0342
0.9186 78200 0.0244
0.9197 78300 0.0171
0.9209 78400 0.043
0.9221 78500 0.0189
0.9233 78600 0.0241
0.9244 78700 0.0266
0.9256 78800 0.0173
0.9268 78900 0.0238
0.9280 79000 0.0222
0.9291 79100 0.0416
0.9303 79200 0.0377
0.9315 79300 0.0311
0.9327 79400 0.0251
0.9338 79500 0.0208
0.9350 79600 0.0274
0.9362 79700 0.0327
0.9374 79800 0.0258
0.9385 79900 0.0175
0.9397 80000 0.0297
0.9409 80100 0.0182
0.9421 80200 0.0279
0.9432 80300 0.0197
0.9444 80400 0.0122
0.9456 80500 0.0293
0.9468 80600 0.0126
0.9479 80700 0.0317
0.9491 80800 0.0276
0.9503 80900 0.025
0.9515 81000 0.0264
0.9526 81100 0.0236
0.9538 81200 0.0273
0.9550 81300 0.0276
0.9562 81400 0.0262
0.9573 81500 0.0167
0.9585 81600 0.0313
0.9597 81700 0.0253
0.9608 81800 0.0207
0.9620 81900 0.0199
0.9632 82000 0.0411
0.9644 82100 0.0302
0.9655 82200 0.0244
0.9667 82300 0.0264
0.9679 82400 0.0213
0.9691 82500 0.0137
0.9702 82600 0.019
0.9714 82700 0.0318
0.9726 82800 0.037
0.9738 82900 0.0249
0.9749 83000 0.0193
0.9761 83100 0.0243
0.9773 83200 0.0222
0.9785 83300 0.0271
0.9796 83400 0.0147
0.9808 83500 0.0211
0.9820 83600 0.0248
0.9832 83700 0.0216
0.9843 83800 0.0238
0.9855 83900 0.0231
0.9867 84000 0.0308
0.9879 84100 0.0282
0.9890 84200 0.0217
0.9902 84300 0.021
0.9914 84400 0.0162
0.9926 84500 0.0288
0.9937 84600 0.0343
0.9949 84700 0.0192
0.9961 84800 0.0256
0.9973 84900 0.0181
0.9984 85000 0.0186
0.9996 85100 0.0206

Framework Versions

  • Python: 3.10.12
  • Sentence Transformers: 3.3.1
  • Transformers: 4.47.0
  • PyTorch: 2.5.1+cu121
  • Accelerate: 1.2.1
  • Datasets: 3.2.0
  • Tokenizers: 0.21.0

Citation

BibTeX

Sentence Transformers

@inproceedings{reimers-2019-sentence-bert,
    title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
    author = "Reimers, Nils and Gurevych, Iryna",
    booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
    month = "11",
    year = "2019",
    publisher = "Association for Computational Linguistics",
    url = "https://arxiv.org/abs/1908.10084",
}

MultipleNegativesRankingLoss

@misc{henderson2017efficient,
    title={Efficient Natural Language Response Suggestion for Smart Reply},
    author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
    year={2017},
    eprint={1705.00652},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Downloads last month
2
Safetensors
Model size
0.5B params
Tensor type
F32
·
Inference Providers NEW
This model isn't deployed by any Inference Provider. 🙋 Ask for provider support

Model tree for codersan/FaLaBSE_Mizan2

Finetuned
codersan/FaLabse
Finetuned
(3)
this model