SentenceTransformer based on codersan/FaLabse
This is a sentence-transformers model finetuned from codersan/FaLabse. It maps sentences & paragraphs to a 768-dimensional dense vector space and can be used for semantic textual similarity, semantic search, paraphrase mining, text classification, clustering, and more.
Model Details
Model Description
- Model Type: Sentence Transformer
- Base model: codersan/FaLabse
- Maximum Sequence Length: 256 tokens
- Output Dimensionality: 768 dimensions
- Similarity Function: Cosine Similarity
Model Sources
- Documentation: Sentence Transformers Documentation
- Repository: Sentence Transformers on GitHub
- Hugging Face: Sentence Transformers on Hugging Face
Full Model Architecture
SentenceTransformer(
(0): Transformer({'max_seq_length': 256, 'do_lower_case': False}) with Transformer model: BertModel
(1): Pooling({'word_embedding_dimension': 768, 'pooling_mode_cls_token': True, 'pooling_mode_mean_tokens': False, 'pooling_mode_max_tokens': False, 'pooling_mode_mean_sqrt_len_tokens': False, 'pooling_mode_weightedmean_tokens': False, 'pooling_mode_lasttoken': False, 'include_prompt': True})
(2): Dense({'in_features': 768, 'out_features': 768, 'bias': True, 'activation_function': 'torch.nn.modules.activation.Tanh'})
(3): Normalize()
)
Usage
Direct Usage (Sentence Transformers)
First install the Sentence Transformers library:
pip install -U sentence-transformers
Then you can load this model and run inference.
from sentence_transformers import SentenceTransformer
# Download from the 🤗 Hub
model = SentenceTransformer("codersan/FaLaBSE_Mizan2")
# Run inference
sentences = [
'اگر این کار مداومت می\u200cیافت، سنگر قادر به مقاومت نمی\u200cبود.',
'If this were continued, the barricade was no longer tenable.',
'Well, for this moment she had a protector.',
]
embeddings = model.encode(sentences)
print(embeddings.shape)
# [3, 768]
# Get the similarity scores for the embeddings
similarities = model.similarity(embeddings, embeddings)
print(similarities.shape)
# [3, 3]
Training Details
Training Dataset
Unnamed Dataset
- Size: 1,021,596 training samples
- Columns:
anchorandpositive - Approximate statistics based on the first 1000 samples:
anchor positive type string string details - min: 3 tokens
- mean: 18.63 tokens
- max: 81 tokens
- min: 3 tokens
- mean: 16.37 tokens
- max: 85 tokens
- Samples:
anchor positive دختران برای اطاعت امر پدر از جا برخاستند.They arose to obey.همه چیز را بم وقع خواهی دانست.You'll know it all in timeاو هر لحظه گرفتار یک وضع است، زارزار گریه میکند. میگوید به ما توهین کردهاند، حیثیتمان را لکهدار نمودند.She is in hysterics up there, and moans and says that we have been 'shamed and disgraced. - Loss:
MultipleNegativesRankingLosswith these parameters:{ "scale": 20.0, "similarity_fct": "cos_sim" }
Training Hyperparameters
Non-Default Hyperparameters
eval_strategy: stepsper_device_train_batch_size: 12learning_rate: 5e-06weight_decay: 0.01max_grad_norm: 5num_train_epochs: 1warmup_ratio: 0.1push_to_hub: Truehub_model_id: codersan/FaLaBSE_Mizan2eval_on_start: Truebatch_sampler: no_duplicates
All Hyperparameters
Click to expand
overwrite_output_dir: Falsedo_predict: Falseeval_strategy: stepsprediction_loss_only: Trueper_device_train_batch_size: 12per_device_eval_batch_size: 8per_gpu_train_batch_size: Noneper_gpu_eval_batch_size: Nonegradient_accumulation_steps: 1eval_accumulation_steps: Nonetorch_empty_cache_steps: Nonelearning_rate: 5e-06weight_decay: 0.01adam_beta1: 0.9adam_beta2: 0.999adam_epsilon: 1e-08max_grad_norm: 5num_train_epochs: 1max_steps: -1lr_scheduler_type: linearlr_scheduler_kwargs: {}warmup_ratio: 0.1warmup_steps: 0log_level: passivelog_level_replica: warninglog_on_each_node: Truelogging_nan_inf_filter: Truesave_safetensors: Truesave_on_each_node: Falsesave_only_model: Falserestore_callback_states_from_checkpoint: Falseno_cuda: Falseuse_cpu: Falseuse_mps_device: Falseseed: 42data_seed: Nonejit_mode_eval: Falseuse_ipex: Falsebf16: Falsefp16: Falsefp16_opt_level: O1half_precision_backend: autobf16_full_eval: Falsefp16_full_eval: Falsetf32: Nonelocal_rank: 0ddp_backend: Nonetpu_num_cores: Nonetpu_metrics_debug: Falsedebug: []dataloader_drop_last: Falsedataloader_num_workers: 0dataloader_prefetch_factor: Nonepast_index: -1disable_tqdm: Falseremove_unused_columns: Truelabel_names: Noneload_best_model_at_end: Falseignore_data_skip: Falsefsdp: []fsdp_min_num_params: 0fsdp_config: {'min_num_params': 0, 'xla': False, 'xla_fsdp_v2': False, 'xla_fsdp_grad_ckpt': False}fsdp_transformer_layer_cls_to_wrap: Noneaccelerator_config: {'split_batches': False, 'dispatch_batches': None, 'even_batches': True, 'use_seedable_sampler': True, 'non_blocking': False, 'gradient_accumulation_kwargs': None}deepspeed: Nonelabel_smoothing_factor: 0.0optim: adamw_torchoptim_args: Noneadafactor: Falsegroup_by_length: Falselength_column_name: lengthddp_find_unused_parameters: Noneddp_bucket_cap_mb: Noneddp_broadcast_buffers: Falsedataloader_pin_memory: Truedataloader_persistent_workers: Falseskip_memory_metrics: Trueuse_legacy_prediction_loop: Falsepush_to_hub: Trueresume_from_checkpoint: Nonehub_model_id: codersan/FaLaBSE_Mizan2hub_strategy: every_savehub_private_repo: Nonehub_always_push: Falsegradient_checkpointing: Falsegradient_checkpointing_kwargs: Noneinclude_inputs_for_metrics: Falseinclude_for_metrics: []eval_do_concat_batches: Truefp16_backend: autopush_to_hub_model_id: Nonepush_to_hub_organization: Nonemp_parameters:auto_find_batch_size: Falsefull_determinism: Falsetorchdynamo: Noneray_scope: lastddp_timeout: 1800torch_compile: Falsetorch_compile_backend: Nonetorch_compile_mode: Nonedispatch_batches: Nonesplit_batches: Noneinclude_tokens_per_second: Falseinclude_num_input_tokens_seen: Falseneftune_noise_alpha: Noneoptim_target_modules: Nonebatch_eval_metrics: Falseeval_on_start: Trueuse_liger_kernel: Falseeval_use_gather_object: Falseaverage_tokens_across_devices: Falseprompts: Nonebatch_sampler: no_duplicatesmulti_dataset_batch_sampler: proportional
Training Logs
Click to expand
| Epoch | Step | Training Loss |
|---|---|---|
| 0 | 0 | - |
| 0.0012 | 100 | 0.054 |
| 0.0023 | 200 | 0.0442 |
| 0.0035 | 300 | 0.0714 |
| 0.0047 | 400 | 0.0715 |
| 0.0059 | 500 | 0.0642 |
| 0.0070 | 600 | 0.058 |
| 0.0082 | 700 | 0.062 |
| 0.0094 | 800 | 0.0626 |
| 0.0106 | 900 | 0.0466 |
| 0.0117 | 1000 | 0.0617 |
| 0.0129 | 1100 | 0.0464 |
| 0.0141 | 1200 | 0.0532 |
| 0.0153 | 1300 | 0.0472 |
| 0.0164 | 1400 | 0.0396 |
| 0.0176 | 1500 | 0.0587 |
| 0.0188 | 1600 | 0.0378 |
| 0.0200 | 1700 | 0.0448 |
| 0.0211 | 1800 | 0.0475 |
| 0.0223 | 1900 | 0.0533 |
| 0.0235 | 2000 | 0.0693 |
| 0.0247 | 2100 | 0.0451 |
| 0.0258 | 2200 | 0.0397 |
| 0.0270 | 2300 | 0.0392 |
| 0.0282 | 2400 | 0.0437 |
| 0.0294 | 2500 | 0.0467 |
| 0.0305 | 2600 | 0.0456 |
| 0.0317 | 2700 | 0.0274 |
| 0.0329 | 2800 | 0.0379 |
| 0.0341 | 2900 | 0.0412 |
| 0.0352 | 3000 | 0.0445 |
| 0.0364 | 3100 | 0.0419 |
| 0.0376 | 3200 | 0.032 |
| 0.0388 | 3300 | 0.0351 |
| 0.0399 | 3400 | 0.0442 |
| 0.0411 | 3500 | 0.0434 |
| 0.0423 | 3600 | 0.0331 |
| 0.0435 | 3700 | 0.0398 |
| 0.0446 | 3800 | 0.0518 |
| 0.0458 | 3900 | 0.0287 |
| 0.0470 | 4000 | 0.0322 |
| 0.0482 | 4100 | 0.0389 |
| 0.0493 | 4200 | 0.0268 |
| 0.0505 | 4300 | 0.0352 |
| 0.0517 | 4400 | 0.021 |
| 0.0529 | 4500 | 0.0322 |
| 0.0540 | 4600 | 0.0228 |
| 0.0552 | 4700 | 0.0396 |
| 0.0564 | 4800 | 0.033 |
| 0.0576 | 4900 | 0.0444 |
| 0.0587 | 5000 | 0.0392 |
| 0.0599 | 5100 | 0.033 |
| 0.0611 | 5200 | 0.0401 |
| 0.0623 | 5300 | 0.0397 |
| 0.0634 | 5400 | 0.0327 |
| 0.0646 | 5500 | 0.0346 |
| 0.0658 | 5600 | 0.0315 |
| 0.0670 | 5700 | 0.0315 |
| 0.0681 | 5800 | 0.0234 |
| 0.0693 | 5900 | 0.0311 |
| 0.0705 | 6000 | 0.0323 |
| 0.0717 | 6100 | 0.0248 |
| 0.0728 | 6200 | 0.0384 |
| 0.0740 | 6300 | 0.0394 |
| 0.0752 | 6400 | 0.0299 |
| 0.0764 | 6500 | 0.0479 |
| 0.0775 | 6600 | 0.0253 |
| 0.0787 | 6700 | 0.0424 |
| 0.0799 | 6800 | 0.0269 |
| 0.0810 | 6900 | 0.035 |
| 0.0822 | 7000 | 0.0349 |
| 0.0834 | 7100 | 0.0302 |
| 0.0846 | 7200 | 0.0426 |
| 0.0857 | 7300 | 0.0287 |
| 0.0869 | 7400 | 0.0254 |
| 0.0881 | 7500 | 0.0306 |
| 0.0893 | 7600 | 0.0356 |
| 0.0904 | 7700 | 0.0393 |
| 0.0916 | 7800 | 0.035 |
| 0.0928 | 7900 | 0.0449 |
| 0.0940 | 8000 | 0.0228 |
| 0.0951 | 8100 | 0.0342 |
| 0.0963 | 8200 | 0.0233 |
| 0.0975 | 8300 | 0.0259 |
| 0.0987 | 8400 | 0.0402 |
| 0.0998 | 8500 | 0.0277 |
| 0.1010 | 8600 | 0.0345 |
| 0.1022 | 8700 | 0.0361 |
| 0.1034 | 8800 | 0.0326 |
| 0.1045 | 8900 | 0.0367 |
| 0.1057 | 9000 | 0.0408 |
| 0.1069 | 9100 | 0.0289 |
| 0.1081 | 9200 | 0.026 |
| 0.1092 | 9300 | 0.0367 |
| 0.1104 | 9400 | 0.0327 |
| 0.1116 | 9500 | 0.0273 |
| 0.1128 | 9600 | 0.0545 |
| 0.1139 | 9700 | 0.0395 |
| 0.1151 | 9800 | 0.0394 |
| 0.1163 | 9900 | 0.0293 |
| 0.1175 | 10000 | 0.0411 |
| 0.1186 | 10100 | 0.0353 |
| 0.1198 | 10200 | 0.0369 |
| 0.1210 | 10300 | 0.0222 |
| 0.1222 | 10400 | 0.0418 |
| 0.1233 | 10500 | 0.039 |
| 0.1245 | 10600 | 0.041 |
| 0.1257 | 10700 | 0.0316 |
| 0.1269 | 10800 | 0.0351 |
| 0.1280 | 10900 | 0.0258 |
| 0.1292 | 11000 | 0.0481 |
| 0.1304 | 11100 | 0.027 |
| 0.1316 | 11200 | 0.0357 |
| 0.1327 | 11300 | 0.0366 |
| 0.1339 | 11400 | 0.0345 |
| 0.1351 | 11500 | 0.0311 |
| 0.1363 | 11600 | 0.0335 |
| 0.1374 | 11700 | 0.0268 |
| 0.1386 | 11800 | 0.0272 |
| 0.1398 | 11900 | 0.0317 |
| 0.1410 | 12000 | 0.052 |
| 0.1421 | 12100 | 0.027 |
| 0.1433 | 12200 | 0.028 |
| 0.1445 | 12300 | 0.0435 |
| 0.1457 | 12400 | 0.0335 |
| 0.1468 | 12500 | 0.0506 |
| 0.1480 | 12600 | 0.033 |
| 0.1492 | 12700 | 0.0278 |
| 0.1504 | 12800 | 0.0298 |
| 0.1515 | 12900 | 0.0317 |
| 0.1527 | 13000 | 0.0157 |
| 0.1539 | 13100 | 0.0252 |
| 0.1551 | 13200 | 0.0214 |
| 0.1562 | 13300 | 0.0269 |
| 0.1574 | 13400 | 0.0287 |
| 0.1586 | 13500 | 0.0261 |
| 0.1598 | 13600 | 0.0195 |
| 0.1609 | 13700 | 0.0262 |
| 0.1621 | 13800 | 0.0446 |
| 0.1633 | 13900 | 0.0402 |
| 0.1644 | 14000 | 0.0318 |
| 0.1656 | 14100 | 0.039 |
| 0.1668 | 14200 | 0.0227 |
| 0.1680 | 14300 | 0.0247 |
| 0.1691 | 14400 | 0.0236 |
| 0.1703 | 14500 | 0.0213 |
| 0.1715 | 14600 | 0.0434 |
| 0.1727 | 14700 | 0.0486 |
| 0.1738 | 14800 | 0.0537 |
| 0.1750 | 14900 | 0.033 |
| 0.1762 | 15000 | 0.0289 |
| 0.1774 | 15100 | 0.0389 |
| 0.1785 | 15200 | 0.0267 |
| 0.1797 | 15300 | 0.031 |
| 0.1809 | 15400 | 0.029 |
| 0.1821 | 15500 | 0.0357 |
| 0.1832 | 15600 | 0.0231 |
| 0.1844 | 15700 | 0.035 |
| 0.1856 | 15800 | 0.0201 |
| 0.1868 | 15900 | 0.0361 |
| 0.1879 | 16000 | 0.0297 |
| 0.1891 | 16100 | 0.0216 |
| 0.1903 | 16200 | 0.0283 |
| 0.1915 | 16300 | 0.0205 |
| 0.1926 | 16400 | 0.0318 |
| 0.1938 | 16500 | 0.0385 |
| 0.1950 | 16600 | 0.0363 |
| 0.1962 | 16700 | 0.0462 |
| 0.1973 | 16800 | 0.0342 |
| 0.1985 | 16900 | 0.0213 |
| 0.1997 | 17000 | 0.0492 |
| 0.2009 | 17100 | 0.0354 |
| 0.2020 | 17200 | 0.0219 |
| 0.2032 | 17300 | 0.0338 |
| 0.2044 | 17400 | 0.0322 |
| 0.2056 | 17500 | 0.0283 |
| 0.2067 | 17600 | 0.024 |
| 0.2079 | 17700 | 0.0206 |
| 0.2091 | 17800 | 0.0416 |
| 0.2103 | 17900 | 0.0284 |
| 0.2114 | 18000 | 0.0305 |
| 0.2126 | 18100 | 0.0261 |
| 0.2138 | 18200 | 0.0228 |
| 0.2150 | 18300 | 0.048 |
| 0.2161 | 18400 | 0.0241 |
| 0.2173 | 18500 | 0.0484 |
| 0.2185 | 18600 | 0.0362 |
| 0.2197 | 18700 | 0.0296 |
| 0.2208 | 18800 | 0.0335 |
| 0.2220 | 18900 | 0.0383 |
| 0.2232 | 19000 | 0.0378 |
| 0.2244 | 19100 | 0.042 |
| 0.2255 | 19200 | 0.0405 |
| 0.2267 | 19300 | 0.0369 |
| 0.2279 | 19400 | 0.0238 |
| 0.2291 | 19500 | 0.0226 |
| 0.2302 | 19600 | 0.0338 |
| 0.2314 | 19700 | 0.0299 |
| 0.2326 | 19800 | 0.0436 |
| 0.2338 | 19900 | 0.0302 |
| 0.2349 | 20000 | 0.0253 |
| 0.2361 | 20100 | 0.0233 |
| 0.2373 | 20200 | 0.0427 |
| 0.2385 | 20300 | 0.0328 |
| 0.2396 | 20400 | 0.0366 |
| 0.2408 | 20500 | 0.0231 |
| 0.2420 | 20600 | 0.0467 |
| 0.2431 | 20700 | 0.0287 |
| 0.2443 | 20800 | 0.0393 |
| 0.2455 | 20900 | 0.0276 |
| 0.2467 | 21000 | 0.0355 |
| 0.2478 | 21100 | 0.0189 |
| 0.2490 | 21200 | 0.0152 |
| 0.2502 | 21300 | 0.0272 |
| 0.2514 | 21400 | 0.0267 |
| 0.2525 | 21500 | 0.044 |
| 0.2537 | 21600 | 0.024 |
| 0.2549 | 21700 | 0.0142 |
| 0.2561 | 21800 | 0.0263 |
| 0.2572 | 21900 | 0.0273 |
| 0.2584 | 22000 | 0.0238 |
| 0.2596 | 22100 | 0.0185 |
| 0.2608 | 22200 | 0.0459 |
| 0.2619 | 22300 | 0.0351 |
| 0.2631 | 22400 | 0.0498 |
| 0.2643 | 22500 | 0.0478 |
| 0.2655 | 22600 | 0.0331 |
| 0.2666 | 22700 | 0.0276 |
| 0.2678 | 22800 | 0.025 |
| 0.2690 | 22900 | 0.0424 |
| 0.2702 | 23000 | 0.0335 |
| 0.2713 | 23100 | 0.0401 |
| 0.2725 | 23200 | 0.038 |
| 0.2737 | 23300 | 0.0184 |
| 0.2749 | 23400 | 0.0235 |
| 0.2760 | 23500 | 0.0361 |
| 0.2772 | 23600 | 0.0359 |
| 0.2784 | 23700 | 0.0279 |
| 0.2796 | 23800 | 0.038 |
| 0.2807 | 23900 | 0.0198 |
| 0.2819 | 24000 | 0.0466 |
| 0.2831 | 24100 | 0.0297 |
| 0.2843 | 24200 | 0.0189 |
| 0.2854 | 24300 | 0.0418 |
| 0.2866 | 24400 | 0.0247 |
| 0.2878 | 24500 | 0.054 |
| 0.2890 | 24600 | 0.0449 |
| 0.2901 | 24700 | 0.0532 |
| 0.2913 | 24800 | 0.0317 |
| 0.2925 | 24900 | 0.0427 |
| 0.2937 | 25000 | 0.0282 |
| 0.2948 | 25100 | 0.029 |
| 0.2960 | 25200 | 0.0298 |
| 0.2972 | 25300 | 0.0297 |
| 0.2984 | 25400 | 0.0414 |
| 0.2995 | 25500 | 0.0297 |
| 0.3007 | 25600 | 0.0525 |
| 0.3019 | 25700 | 0.0478 |
| 0.3031 | 25800 | 0.0287 |
| 0.3042 | 25900 | 0.0235 |
| 0.3054 | 26000 | 0.0344 |
| 0.3066 | 26100 | 0.041 |
| 0.3078 | 26200 | 0.0325 |
| 0.3089 | 26300 | 0.0334 |
| 0.3101 | 26400 | 0.0211 |
| 0.3113 | 26500 | 0.0461 |
| 0.3125 | 26600 | 0.025 |
| 0.3136 | 26700 | 0.0276 |
| 0.3148 | 26800 | 0.0322 |
| 0.3160 | 26900 | 0.0261 |
| 0.3172 | 27000 | 0.0268 |
| 0.3183 | 27100 | 0.0349 |
| 0.3195 | 27200 | 0.0303 |
| 0.3207 | 27300 | 0.026 |
| 0.3218 | 27400 | 0.0328 |
| 0.3230 | 27500 | 0.0294 |
| 0.3242 | 27600 | 0.0275 |
| 0.3254 | 27700 | 0.0343 |
| 0.3265 | 27800 | 0.0294 |
| 0.3277 | 27900 | 0.032 |
| 0.3289 | 28000 | 0.0221 |
| 0.3301 | 28100 | 0.0249 |
| 0.3312 | 28200 | 0.0311 |
| 0.3324 | 28300 | 0.0257 |
| 0.3336 | 28400 | 0.0424 |
| 0.3348 | 28500 | 0.0394 |
| 0.3359 | 28600 | 0.044 |
| 0.3371 | 28700 | 0.0271 |
| 0.3383 | 28800 | 0.0363 |
| 0.3395 | 28900 | 0.0329 |
| 0.3406 | 29000 | 0.0383 |
| 0.3418 | 29100 | 0.0414 |
| 0.3430 | 29200 | 0.0219 |
| 0.3442 | 29300 | 0.0137 |
| 0.3453 | 29400 | 0.0389 |
| 0.3465 | 29500 | 0.0355 |
| 0.3477 | 29600 | 0.0105 |
| 0.3489 | 29700 | 0.0347 |
| 0.3500 | 29800 | 0.037 |
| 0.3512 | 29900 | 0.0333 |
| 0.3524 | 30000 | 0.0164 |
| 0.3536 | 30100 | 0.0336 |
| 0.3547 | 30200 | 0.0345 |
| 0.3559 | 30300 | 0.0359 |
| 0.3571 | 30400 | 0.0343 |
| 0.3583 | 30500 | 0.0528 |
| 0.3594 | 30600 | 0.0332 |
| 0.3606 | 30700 | 0.0487 |
| 0.3618 | 30800 | 0.0302 |
| 0.3630 | 30900 | 0.037 |
| 0.3641 | 31000 | 0.0339 |
| 0.3653 | 31100 | 0.0359 |
| 0.3665 | 31200 | 0.0403 |
| 0.3677 | 31300 | 0.0376 |
| 0.3688 | 31400 | 0.0367 |
| 0.3700 | 31500 | 0.0452 |
| 0.3712 | 31600 | 0.023 |
| 0.3724 | 31700 | 0.0281 |
| 0.3735 | 31800 | 0.0297 |
| 0.3747 | 31900 | 0.0353 |
| 0.3759 | 32000 | 0.0215 |
| 0.3771 | 32100 | 0.0234 |
| 0.3782 | 32200 | 0.0245 |
| 0.3794 | 32300 | 0.0485 |
| 0.3806 | 32400 | 0.0249 |
| 0.3818 | 32500 | 0.021 |
| 0.3829 | 32600 | 0.0381 |
| 0.3841 | 32700 | 0.0332 |
| 0.3853 | 32800 | 0.0263 |
| 0.3865 | 32900 | 0.0346 |
| 0.3876 | 33000 | 0.0401 |
| 0.3888 | 33100 | 0.0318 |
| 0.3900 | 33200 | 0.0224 |
| 0.3912 | 33300 | 0.0225 |
| 0.3923 | 33400 | 0.0265 |
| 0.3935 | 33500 | 0.0204 |
| 0.3947 | 33600 | 0.0321 |
| 0.3959 | 33700 | 0.0188 |
| 0.3970 | 33800 | 0.0338 |
| 0.3982 | 33900 | 0.0309 |
| 0.3994 | 34000 | 0.0233 |
| 0.4005 | 34100 | 0.0303 |
| 0.4017 | 34200 | 0.0387 |
| 0.4029 | 34300 | 0.0255 |
| 0.4041 | 34400 | 0.0212 |
| 0.4052 | 34500 | 0.0324 |
| 0.4064 | 34600 | 0.0412 |
| 0.4076 | 34700 | 0.0203 |
| 0.4088 | 34800 | 0.0211 |
| 0.4099 | 34900 | 0.031 |
| 0.4111 | 35000 | 0.0178 |
| 0.4123 | 35100 | 0.0222 |
| 0.4135 | 35200 | 0.018 |
| 0.4146 | 35300 | 0.0274 |
| 0.4158 | 35400 | 0.0364 |
| 0.4170 | 35500 | 0.0254 |
| 0.4182 | 35600 | 0.0219 |
| 0.4193 | 35700 | 0.0352 |
| 0.4205 | 35800 | 0.0324 |
| 0.4217 | 35900 | 0.026 |
| 0.4229 | 36000 | 0.0212 |
| 0.4240 | 36100 | 0.0326 |
| 0.4252 | 36200 | 0.0332 |
| 0.4264 | 36300 | 0.0358 |
| 0.4276 | 36400 | 0.0301 |
| 0.4287 | 36500 | 0.0328 |
| 0.4299 | 36600 | 0.0289 |
| 0.4311 | 36700 | 0.0351 |
| 0.4323 | 36800 | 0.0331 |
| 0.4334 | 36900 | 0.0209 |
| 0.4346 | 37000 | 0.0392 |
| 0.4358 | 37100 | 0.0171 |
| 0.4370 | 37200 | 0.035 |
| 0.4381 | 37300 | 0.0395 |
| 0.4393 | 37400 | 0.0437 |
| 0.4405 | 37500 | 0.0355 |
| 0.4417 | 37600 | 0.0383 |
| 0.4428 | 37700 | 0.0227 |
| 0.4440 | 37800 | 0.0286 |
| 0.4452 | 37900 | 0.0337 |
| 0.4464 | 38000 | 0.0514 |
| 0.4475 | 38100 | 0.0299 |
| 0.4487 | 38200 | 0.0343 |
| 0.4499 | 38300 | 0.025 |
| 0.4511 | 38400 | 0.0193 |
| 0.4522 | 38500 | 0.0293 |
| 0.4534 | 38600 | 0.0159 |
| 0.4546 | 38700 | 0.0183 |
| 0.4558 | 38800 | 0.0226 |
| 0.4569 | 38900 | 0.0437 |
| 0.4581 | 39000 | 0.0242 |
| 0.4593 | 39100 | 0.0396 |
| 0.4605 | 39200 | 0.0414 |
| 0.4616 | 39300 | 0.0337 |
| 0.4628 | 39400 | 0.035 |
| 0.4640 | 39500 | 0.0175 |
| 0.4652 | 39600 | 0.0228 |
| 0.4663 | 39700 | 0.019 |
| 0.4675 | 39800 | 0.0402 |
| 0.4687 | 39900 | 0.0177 |
| 0.4699 | 40000 | 0.0287 |
| 0.4710 | 40100 | 0.0262 |
| 0.4722 | 40200 | 0.0347 |
| 0.4734 | 40300 | 0.0249 |
| 0.4746 | 40400 | 0.0217 |
| 0.4757 | 40500 | 0.0258 |
| 0.4769 | 40600 | 0.0336 |
| 0.4781 | 40700 | 0.0391 |
| 0.4793 | 40800 | 0.042 |
| 0.4804 | 40900 | 0.03 |
| 0.4816 | 41000 | 0.0205 |
| 0.4828 | 41100 | 0.0273 |
| 0.4839 | 41200 | 0.0564 |
| 0.4851 | 41300 | 0.0311 |
| 0.4863 | 41400 | 0.0333 |
| 0.4875 | 41500 | 0.0162 |
| 0.4886 | 41600 | 0.0414 |
| 0.4898 | 41700 | 0.044 |
| 0.4910 | 41800 | 0.0411 |
| 0.4922 | 41900 | 0.0384 |
| 0.4933 | 42000 | 0.0269 |
| 0.4945 | 42100 | 0.0414 |
| 0.4957 | 42200 | 0.0175 |
| 0.4969 | 42300 | 0.0223 |
| 0.4980 | 42400 | 0.0354 |
| 0.4992 | 42500 | 0.0338 |
| 0.5004 | 42600 | 0.0182 |
| 0.5016 | 42700 | 0.0217 |
| 0.5027 | 42800 | 0.0227 |
| 0.5039 | 42900 | 0.0247 |
| 0.5051 | 43000 | 0.0238 |
| 0.5063 | 43100 | 0.0357 |
| 0.5074 | 43200 | 0.0237 |
| 0.5086 | 43300 | 0.0308 |
| 0.5098 | 43400 | 0.0294 |
| 0.5110 | 43500 | 0.0258 |
| 0.5121 | 43600 | 0.0234 |
| 0.5133 | 43700 | 0.0324 |
| 0.5145 | 43800 | 0.0334 |
| 0.5157 | 43900 | 0.0256 |
| 0.5168 | 44000 | 0.0243 |
| 0.5180 | 44100 | 0.0231 |
| 0.5192 | 44200 | 0.0312 |
| 0.5204 | 44300 | 0.0278 |
| 0.5215 | 44400 | 0.0432 |
| 0.5227 | 44500 | 0.0413 |
| 0.5239 | 44600 | 0.047 |
| 0.5251 | 44700 | 0.0384 |
| 0.5262 | 44800 | 0.0181 |
| 0.5274 | 44900 | 0.0303 |
| 0.5286 | 45000 | 0.0297 |
| 0.5298 | 45100 | 0.0292 |
| 0.5309 | 45200 | 0.033 |
| 0.5321 | 45300 | 0.0299 |
| 0.5333 | 45400 | 0.0269 |
| 0.5345 | 45500 | 0.0255 |
| 0.5356 | 45600 | 0.0395 |
| 0.5368 | 45700 | 0.0302 |
| 0.5380 | 45800 | 0.0237 |
| 0.5392 | 45900 | 0.0228 |
| 0.5403 | 46000 | 0.0329 |
| 0.5415 | 46100 | 0.0265 |
| 0.5427 | 46200 | 0.0187 |
| 0.5439 | 46300 | 0.0358 |
| 0.5450 | 46400 | 0.0319 |
| 0.5462 | 46500 | 0.0292 |
| 0.5474 | 46600 | 0.0366 |
| 0.5486 | 46700 | 0.0369 |
| 0.5497 | 46800 | 0.0219 |
| 0.5509 | 46900 | 0.0339 |
| 0.5521 | 47000 | 0.0383 |
| 0.5533 | 47100 | 0.0316 |
| 0.5544 | 47200 | 0.0374 |
| 0.5556 | 47300 | 0.0199 |
| 0.5568 | 47400 | 0.0279 |
| 0.5580 | 47500 | 0.04 |
| 0.5591 | 47600 | 0.0276 |
| 0.5603 | 47700 | 0.0281 |
| 0.5615 | 47800 | 0.0288 |
| 0.5626 | 47900 | 0.0256 |
| 0.5638 | 48000 | 0.0262 |
| 0.5650 | 48100 | 0.0264 |
| 0.5662 | 48200 | 0.0222 |
| 0.5673 | 48300 | 0.0202 |
| 0.5685 | 48400 | 0.0233 |
| 0.5697 | 48500 | 0.034 |
| 0.5709 | 48600 | 0.0354 |
| 0.5720 | 48700 | 0.0455 |
| 0.5732 | 48800 | 0.0384 |
| 0.5744 | 48900 | 0.0362 |
| 0.5756 | 49000 | 0.0249 |
| 0.5767 | 49100 | 0.0392 |
| 0.5779 | 49200 | 0.0279 |
| 0.5791 | 49300 | 0.0255 |
| 0.5803 | 49400 | 0.0254 |
| 0.5814 | 49500 | 0.0187 |
| 0.5826 | 49600 | 0.0215 |
| 0.5838 | 49700 | 0.0407 |
| 0.5850 | 49800 | 0.0158 |
| 0.5861 | 49900 | 0.0404 |
| 0.5873 | 50000 | 0.0303 |
| 0.5885 | 50100 | 0.0296 |
| 0.5897 | 50200 | 0.0307 |
| 0.5908 | 50300 | 0.0217 |
| 0.5920 | 50400 | 0.0436 |
| 0.5932 | 50500 | 0.0253 |
| 0.5944 | 50600 | 0.0191 |
| 0.5955 | 50700 | 0.032 |
| 0.5967 | 50800 | 0.0399 |
| 0.5979 | 50900 | 0.0346 |
| 0.5991 | 51000 | 0.031 |
| 0.6002 | 51100 | 0.0214 |
| 0.6014 | 51200 | 0.0134 |
| 0.6026 | 51300 | 0.0337 |
| 0.6038 | 51400 | 0.0394 |
| 0.6049 | 51500 | 0.0359 |
| 0.6061 | 51600 | 0.019 |
| 0.6073 | 51700 | 0.0145 |
| 0.6085 | 51800 | 0.0157 |
| 0.6096 | 51900 | 0.0496 |
| 0.6108 | 52000 | 0.0113 |
| 0.6120 | 52100 | 0.0293 |
| 0.6132 | 52200 | 0.0165 |
| 0.6143 | 52300 | 0.03 |
| 0.6155 | 52400 | 0.0266 |
| 0.6167 | 52500 | 0.0244 |
| 0.6179 | 52600 | 0.0234 |
| 0.6190 | 52700 | 0.0354 |
| 0.6202 | 52800 | 0.0176 |
| 0.6214 | 52900 | 0.0377 |
| 0.6226 | 53000 | 0.0374 |
| 0.6237 | 53100 | 0.0147 |
| 0.6249 | 53200 | 0.0408 |
| 0.6261 | 53300 | 0.0281 |
| 0.6273 | 53400 | 0.0474 |
| 0.6284 | 53500 | 0.0389 |
| 0.6296 | 53600 | 0.0294 |
| 0.6308 | 53700 | 0.0316 |
| 0.6320 | 53800 | 0.0314 |
| 0.6331 | 53900 | 0.0246 |
| 0.6343 | 54000 | 0.0243 |
| 0.6355 | 54100 | 0.0138 |
| 0.6367 | 54200 | 0.0242 |
| 0.6378 | 54300 | 0.0164 |
| 0.6390 | 54400 | 0.0279 |
| 0.6402 | 54500 | 0.0195 |
| 0.6413 | 54600 | 0.0202 |
| 0.6425 | 54700 | 0.0239 |
| 0.6437 | 54800 | 0.0287 |
| 0.6449 | 54900 | 0.0186 |
| 0.6460 | 55000 | 0.0141 |
| 0.6472 | 55100 | 0.0182 |
| 0.6484 | 55200 | 0.0275 |
| 0.6496 | 55300 | 0.0227 |
| 0.6507 | 55400 | 0.027 |
| 0.6519 | 55500 | 0.0242 |
| 0.6531 | 55600 | 0.0179 |
| 0.6543 | 55700 | 0.0245 |
| 0.6554 | 55800 | 0.0288 |
| 0.6566 | 55900 | 0.0189 |
| 0.6578 | 56000 | 0.0336 |
| 0.6590 | 56100 | 0.0328 |
| 0.6601 | 56200 | 0.0295 |
| 0.6613 | 56300 | 0.032 |
| 0.6625 | 56400 | 0.0256 |
| 0.6637 | 56500 | 0.0387 |
| 0.6648 | 56600 | 0.031 |
| 0.6660 | 56700 | 0.0188 |
| 0.6672 | 56800 | 0.028 |
| 0.6684 | 56900 | 0.0397 |
| 0.6695 | 57000 | 0.0285 |
| 0.6707 | 57100 | 0.033 |
| 0.6719 | 57200 | 0.0281 |
| 0.6731 | 57300 | 0.0196 |
| 0.6742 | 57400 | 0.025 |
| 0.6754 | 57500 | 0.0397 |
| 0.6766 | 57600 | 0.0403 |
| 0.6778 | 57700 | 0.022 |
| 0.6789 | 57800 | 0.0392 |
| 0.6801 | 57900 | 0.0254 |
| 0.6813 | 58000 | 0.0316 |
| 0.6825 | 58100 | 0.0186 |
| 0.6836 | 58200 | 0.0271 |
| 0.6848 | 58300 | 0.035 |
| 0.6860 | 58400 | 0.0322 |
| 0.6872 | 58500 | 0.0147 |
| 0.6883 | 58600 | 0.0314 |
| 0.6895 | 58700 | 0.0214 |
| 0.6907 | 58800 | 0.0177 |
| 0.6919 | 58900 | 0.0307 |
| 0.6930 | 59000 | 0.0246 |
| 0.6942 | 59100 | 0.0125 |
| 0.6954 | 59200 | 0.0232 |
| 0.6966 | 59300 | 0.0325 |
| 0.6977 | 59400 | 0.0253 |
| 0.6989 | 59500 | 0.0151 |
| 0.7001 | 59600 | 0.0261 |
| 0.7013 | 59700 | 0.0253 |
| 0.7024 | 59800 | 0.0124 |
| 0.7036 | 59900 | 0.0298 |
| 0.7048 | 60000 | 0.0254 |
| 0.7060 | 60100 | 0.0262 |
| 0.7071 | 60200 | 0.0274 |
| 0.7083 | 60300 | 0.0344 |
| 0.7095 | 60400 | 0.03 |
| 0.7107 | 60500 | 0.0312 |
| 0.7118 | 60600 | 0.0354 |
| 0.7130 | 60700 | 0.0334 |
| 0.7142 | 60800 | 0.0325 |
| 0.7154 | 60900 | 0.0236 |
| 0.7165 | 61000 | 0.0266 |
| 0.7177 | 61100 | 0.0183 |
| 0.7189 | 61200 | 0.045 |
| 0.7200 | 61300 | 0.0174 |
| 0.7212 | 61400 | 0.0518 |
| 0.7224 | 61500 | 0.0247 |
| 0.7236 | 61600 | 0.0255 |
| 0.7247 | 61700 | 0.0209 |
| 0.7259 | 61800 | 0.0206 |
| 0.7271 | 61900 | 0.0306 |
| 0.7283 | 62000 | 0.0215 |
| 0.7294 | 62100 | 0.0241 |
| 0.7306 | 62200 | 0.0324 |
| 0.7318 | 62300 | 0.0433 |
| 0.7330 | 62400 | 0.0238 |
| 0.7341 | 62500 | 0.0302 |
| 0.7353 | 62600 | 0.0282 |
| 0.7365 | 62700 | 0.0371 |
| 0.7377 | 62800 | 0.0397 |
| 0.7388 | 62900 | 0.0488 |
| 0.7400 | 63000 | 0.032 |
| 0.7412 | 63100 | 0.0161 |
| 0.7424 | 63200 | 0.0351 |
| 0.7435 | 63300 | 0.0282 |
| 0.7447 | 63400 | 0.0221 |
| 0.7459 | 63500 | 0.0275 |
| 0.7471 | 63600 | 0.0198 |
| 0.7482 | 63700 | 0.0339 |
| 0.7494 | 63800 | 0.0285 |
| 0.7506 | 63900 | 0.0314 |
| 0.7518 | 64000 | 0.0216 |
| 0.7529 | 64100 | 0.0383 |
| 0.7541 | 64200 | 0.0386 |
| 0.7553 | 64300 | 0.0305 |
| 0.7565 | 64400 | 0.0265 |
| 0.7576 | 64500 | 0.0288 |
| 0.7588 | 64600 | 0.0125 |
| 0.7600 | 64700 | 0.0212 |
| 0.7612 | 64800 | 0.0242 |
| 0.7623 | 64900 | 0.0384 |
| 0.7635 | 65000 | 0.0163 |
| 0.7647 | 65100 | 0.0132 |
| 0.7659 | 65200 | 0.0209 |
| 0.7670 | 65300 | 0.0408 |
| 0.7682 | 65400 | 0.0312 |
| 0.7694 | 65500 | 0.0382 |
| 0.7706 | 65600 | 0.0217 |
| 0.7717 | 65700 | 0.0384 |
| 0.7729 | 65800 | 0.0267 |
| 0.7741 | 65900 | 0.047 |
| 0.7753 | 66000 | 0.021 |
| 0.7764 | 66100 | 0.0138 |
| 0.7776 | 66200 | 0.0308 |
| 0.7788 | 66300 | 0.0193 |
| 0.7800 | 66400 | 0.0285 |
| 0.7811 | 66500 | 0.0235 |
| 0.7823 | 66600 | 0.0281 |
| 0.7835 | 66700 | 0.0407 |
| 0.7847 | 66800 | 0.0269 |
| 0.7858 | 66900 | 0.0346 |
| 0.7870 | 67000 | 0.0223 |
| 0.7882 | 67100 | 0.0278 |
| 0.7894 | 67200 | 0.0255 |
| 0.7905 | 67300 | 0.014 |
| 0.7917 | 67400 | 0.0248 |
| 0.7929 | 67500 | 0.022 |
| 0.7941 | 67600 | 0.0292 |
| 0.7952 | 67700 | 0.038 |
| 0.7964 | 67800 | 0.0158 |
| 0.7976 | 67900 | 0.0212 |
| 0.7988 | 68000 | 0.0405 |
| 0.7999 | 68100 | 0.029 |
| 0.8011 | 68200 | 0.0379 |
| 0.8023 | 68300 | 0.0256 |
| 0.8034 | 68400 | 0.0263 |
| 0.8046 | 68500 | 0.0214 |
| 0.8058 | 68600 | 0.0224 |
| 0.8070 | 68700 | 0.0159 |
| 0.8081 | 68800 | 0.0302 |
| 0.8093 | 68900 | 0.0313 |
| 0.8105 | 69000 | 0.0395 |
| 0.8117 | 69100 | 0.0296 |
| 0.8128 | 69200 | 0.0353 |
| 0.8140 | 69300 | 0.025 |
| 0.8152 | 69400 | 0.0246 |
| 0.8164 | 69500 | 0.0312 |
| 0.8175 | 69600 | 0.0199 |
| 0.8187 | 69700 | 0.0225 |
| 0.8199 | 69800 | 0.0254 |
| 0.8211 | 69900 | 0.0095 |
| 0.8222 | 70000 | 0.0326 |
| 0.8234 | 70100 | 0.0355 |
| 0.8246 | 70200 | 0.0368 |
| 0.8258 | 70300 | 0.0339 |
| 0.8269 | 70400 | 0.0278 |
| 0.8281 | 70500 | 0.0249 |
| 0.8293 | 70600 | 0.0379 |
| 0.8305 | 70700 | 0.0368 |
| 0.8316 | 70800 | 0.0146 |
| 0.8328 | 70900 | 0.0153 |
| 0.8340 | 71000 | 0.0352 |
| 0.8352 | 71100 | 0.0248 |
| 0.8363 | 71200 | 0.0255 |
| 0.8375 | 71300 | 0.0306 |
| 0.8387 | 71400 | 0.0293 |
| 0.8399 | 71500 | 0.0303 |
| 0.8410 | 71600 | 0.0244 |
| 0.8422 | 71700 | 0.0174 |
| 0.8434 | 71800 | 0.0241 |
| 0.8446 | 71900 | 0.0276 |
| 0.8457 | 72000 | 0.0359 |
| 0.8469 | 72100 | 0.0257 |
| 0.8481 | 72200 | 0.0344 |
| 0.8493 | 72300 | 0.0275 |
| 0.8504 | 72400 | 0.022 |
| 0.8516 | 72500 | 0.0275 |
| 0.8528 | 72600 | 0.0317 |
| 0.8540 | 72700 | 0.0386 |
| 0.8551 | 72800 | 0.0421 |
| 0.8563 | 72900 | 0.0259 |
| 0.8575 | 73000 | 0.0244 |
| 0.8587 | 73100 | 0.0231 |
| 0.8598 | 73200 | 0.0373 |
| 0.8610 | 73300 | 0.0296 |
| 0.8622 | 73400 | 0.024 |
| 0.8634 | 73500 | 0.0382 |
| 0.8645 | 73600 | 0.0223 |
| 0.8657 | 73700 | 0.0254 |
| 0.8669 | 73800 | 0.0259 |
| 0.8681 | 73900 | 0.0171 |
| 0.8692 | 74000 | 0.0268 |
| 0.8704 | 74100 | 0.0196 |
| 0.8716 | 74200 | 0.0206 |
| 0.8728 | 74300 | 0.0411 |
| 0.8739 | 74400 | 0.039 |
| 0.8751 | 74500 | 0.0197 |
| 0.8763 | 74600 | 0.0144 |
| 0.8775 | 74700 | 0.0231 |
| 0.8786 | 74800 | 0.0217 |
| 0.8798 | 74900 | 0.0244 |
| 0.8810 | 75000 | 0.0291 |
| 0.8821 | 75100 | 0.0243 |
| 0.8833 | 75200 | 0.0294 |
| 0.8845 | 75300 | 0.0129 |
| 0.8857 | 75400 | 0.0291 |
| 0.8868 | 75500 | 0.0273 |
| 0.8880 | 75600 | 0.0297 |
| 0.8892 | 75700 | 0.0266 |
| 0.8904 | 75800 | 0.0374 |
| 0.8915 | 75900 | 0.0225 |
| 0.8927 | 76000 | 0.0223 |
| 0.8939 | 76100 | 0.0229 |
| 0.8951 | 76200 | 0.0306 |
| 0.8962 | 76300 | 0.0238 |
| 0.8974 | 76400 | 0.0197 |
| 0.8986 | 76500 | 0.0265 |
| 0.8998 | 76600 | 0.0411 |
| 0.9009 | 76700 | 0.022 |
| 0.9021 | 76800 | 0.0151 |
| 0.9033 | 76900 | 0.0251 |
| 0.9045 | 77000 | 0.0211 |
| 0.9056 | 77100 | 0.0302 |
| 0.9068 | 77200 | 0.0229 |
| 0.9080 | 77300 | 0.0398 |
| 0.9092 | 77400 | 0.0174 |
| 0.9103 | 77500 | 0.0327 |
| 0.9115 | 77600 | 0.0258 |
| 0.9127 | 77700 | 0.026 |
| 0.9139 | 77800 | 0.0251 |
| 0.9150 | 77900 | 0.0351 |
| 0.9162 | 78000 | 0.0315 |
| 0.9174 | 78100 | 0.0342 |
| 0.9186 | 78200 | 0.0244 |
| 0.9197 | 78300 | 0.0171 |
| 0.9209 | 78400 | 0.043 |
| 0.9221 | 78500 | 0.0189 |
| 0.9233 | 78600 | 0.0241 |
| 0.9244 | 78700 | 0.0266 |
| 0.9256 | 78800 | 0.0173 |
| 0.9268 | 78900 | 0.0238 |
| 0.9280 | 79000 | 0.0222 |
| 0.9291 | 79100 | 0.0416 |
| 0.9303 | 79200 | 0.0377 |
| 0.9315 | 79300 | 0.0311 |
| 0.9327 | 79400 | 0.0251 |
| 0.9338 | 79500 | 0.0208 |
| 0.9350 | 79600 | 0.0274 |
| 0.9362 | 79700 | 0.0327 |
| 0.9374 | 79800 | 0.0258 |
| 0.9385 | 79900 | 0.0175 |
| 0.9397 | 80000 | 0.0297 |
| 0.9409 | 80100 | 0.0182 |
| 0.9421 | 80200 | 0.0279 |
| 0.9432 | 80300 | 0.0197 |
| 0.9444 | 80400 | 0.0122 |
| 0.9456 | 80500 | 0.0293 |
| 0.9468 | 80600 | 0.0126 |
| 0.9479 | 80700 | 0.0317 |
| 0.9491 | 80800 | 0.0276 |
| 0.9503 | 80900 | 0.025 |
| 0.9515 | 81000 | 0.0264 |
| 0.9526 | 81100 | 0.0236 |
| 0.9538 | 81200 | 0.0273 |
| 0.9550 | 81300 | 0.0276 |
| 0.9562 | 81400 | 0.0262 |
| 0.9573 | 81500 | 0.0167 |
| 0.9585 | 81600 | 0.0313 |
| 0.9597 | 81700 | 0.0253 |
| 0.9608 | 81800 | 0.0207 |
| 0.9620 | 81900 | 0.0199 |
| 0.9632 | 82000 | 0.0411 |
| 0.9644 | 82100 | 0.0302 |
| 0.9655 | 82200 | 0.0244 |
| 0.9667 | 82300 | 0.0264 |
| 0.9679 | 82400 | 0.0213 |
| 0.9691 | 82500 | 0.0137 |
| 0.9702 | 82600 | 0.019 |
| 0.9714 | 82700 | 0.0318 |
| 0.9726 | 82800 | 0.037 |
| 0.9738 | 82900 | 0.0249 |
| 0.9749 | 83000 | 0.0193 |
| 0.9761 | 83100 | 0.0243 |
| 0.9773 | 83200 | 0.0222 |
| 0.9785 | 83300 | 0.0271 |
| 0.9796 | 83400 | 0.0147 |
| 0.9808 | 83500 | 0.0211 |
| 0.9820 | 83600 | 0.0248 |
| 0.9832 | 83700 | 0.0216 |
| 0.9843 | 83800 | 0.0238 |
| 0.9855 | 83900 | 0.0231 |
| 0.9867 | 84000 | 0.0308 |
| 0.9879 | 84100 | 0.0282 |
| 0.9890 | 84200 | 0.0217 |
| 0.9902 | 84300 | 0.021 |
| 0.9914 | 84400 | 0.0162 |
| 0.9926 | 84500 | 0.0288 |
| 0.9937 | 84600 | 0.0343 |
| 0.9949 | 84700 | 0.0192 |
| 0.9961 | 84800 | 0.0256 |
| 0.9973 | 84900 | 0.0181 |
| 0.9984 | 85000 | 0.0186 |
| 0.9996 | 85100 | 0.0206 |
Framework Versions
- Python: 3.10.12
- Sentence Transformers: 3.3.1
- Transformers: 4.47.0
- PyTorch: 2.5.1+cu121
- Accelerate: 1.2.1
- Datasets: 3.2.0
- Tokenizers: 0.21.0
Citation
BibTeX
Sentence Transformers
@inproceedings{reimers-2019-sentence-bert,
title = "Sentence-BERT: Sentence Embeddings using Siamese BERT-Networks",
author = "Reimers, Nils and Gurevych, Iryna",
booktitle = "Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing",
month = "11",
year = "2019",
publisher = "Association for Computational Linguistics",
url = "https://arxiv.org/abs/1908.10084",
}
MultipleNegativesRankingLoss
@misc{henderson2017efficient,
title={Efficient Natural Language Response Suggestion for Smart Reply},
author={Matthew Henderson and Rami Al-Rfou and Brian Strope and Yun-hsuan Sung and Laszlo Lukacs and Ruiqi Guo and Sanjiv Kumar and Balint Miklos and Ray Kurzweil},
year={2017},
eprint={1705.00652},
archivePrefix={arXiv},
primaryClass={cs.CL}
}
- Downloads last month
- 2