e95d67f6498d1635ca432d43052b374b
This model is a fine-tuned version of albert/albert-large-v1 on the fancyzhx/dbpedia_14 dataset. It achieves the following results on the evaluation set:
- Loss: 0.0538
- Data Size: 1.0
- Epoch Runtime: 1018.6313
- Accuracy: 0.9891
- F1 Macro: 0.9891
- Rouge1: 0.9891
- Rouge2: 0.0
- Rougel: 0.9891
- Rougelsum: 0.9891
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 5e-05
- train_batch_size: 8
- eval_batch_size: 8
- seed: 42
- distributed_type: multi-GPU
- num_devices: 4
- total_train_batch_size: 32
- total_eval_batch_size: 32
- optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: constant
- num_epochs: 50
Training results
| Training Loss | Epoch | Step | Validation Loss | Data Size | Epoch Runtime | Accuracy | F1 Macro | Rouge1 | Rouge2 | Rougel | Rougelsum |
|---|---|---|---|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 2.7476 | 0 | 36.9465 | 0.0690 | 0.0408 | 0.0690 | 0.0 | 0.0690 | 0.0690 |
| 0.1381 | 1 | 17500 | 0.2494 | 0.0078 | 45.5837 | 0.9515 | 0.9508 | 0.9515 | 0.0 | 0.9516 | 0.9515 |
| 0.082 | 2 | 35000 | 0.1065 | 0.0156 | 52.7113 | 0.9798 | 0.9798 | 0.9798 | 0.0 | 0.9797 | 0.9798 |
| 0.1112 | 3 | 52500 | 0.0855 | 0.0312 | 68.4845 | 0.9849 | 0.9849 | 0.9849 | 0.0 | 0.9848 | 0.9849 |
| 0.1005 | 4 | 70000 | 0.0809 | 0.0625 | 98.1065 | 0.9841 | 0.9841 | 0.9841 | 0.0 | 0.9841 | 0.9841 |
| 0.0741 | 5 | 87500 | 0.0857 | 0.125 | 161.0668 | 0.9856 | 0.9856 | 0.9856 | 0.0 | 0.9856 | 0.9857 |
| 0.0892 | 6 | 105000 | 0.0901 | 0.25 | 284.2256 | 0.9832 | 0.9832 | 0.9832 | 0.0 | 0.9832 | 0.9832 |
| 0.0005 | 7 | 122500 | 0.0606 | 0.5 | 524.0239 | 0.9883 | 0.9883 | 0.9883 | 0.0 | 0.9882 | 0.9882 |
| 0.0708 | 8.0 | 140000 | 0.0572 | 1.0 | 1019.5611 | 0.9886 | 0.9886 | 0.9886 | 0.0 | 0.9885 | 0.9886 |
| 0.0402 | 9.0 | 157500 | 0.0528 | 1.0 | 1014.3520 | 0.9892 | 0.9892 | 0.9892 | 0.0 | 0.9892 | 0.9892 |
| 0.0444 | 10.0 | 175000 | 0.0543 | 1.0 | 1023.6434 | 0.9886 | 0.9886 | 0.9886 | 0.0 | 0.9886 | 0.9886 |
| 0.0547 | 11.0 | 192500 | 0.0640 | 1.0 | 1013.8691 | 0.9884 | 0.9884 | 0.9885 | 0.0 | 0.9884 | 0.9884 |
| 0.0401 | 12.0 | 210000 | 0.0721 | 1.0 | 1018.3700 | 0.9871 | 0.9871 | 0.9871 | 0.0 | 0.9871 | 0.9871 |
| 0.0573 | 13.0 | 227500 | 0.0493 | 1.0 | 1018.5676 | 0.9899 | 0.9899 | 0.9899 | 0.0 | 0.9899 | 0.9899 |
| 0.0471 | 14.0 | 245000 | 0.0523 | 1.0 | 1016.3818 | 0.9895 | 0.9895 | 0.9895 | 0.0 | 0.9895 | 0.9895 |
| 0.0384 | 15.0 | 262500 | 0.0569 | 1.0 | 1034.3212 | 0.9894 | 0.9893 | 0.9894 | 0.0 | 0.9894 | 0.9894 |
| 0.0269 | 16.0 | 280000 | 0.0540 | 1.0 | 1020.6855 | 0.9894 | 0.9894 | 0.9895 | 0.0 | 0.9894 | 0.9894 |
| 0.0298 | 17.0 | 297500 | 0.0538 | 1.0 | 1018.6313 | 0.9891 | 0.9891 | 0.9891 | 0.0 | 0.9891 | 0.9891 |
Framework versions
- Transformers 4.57.0
- Pytorch 2.8.0+cu128
- Datasets 4.0.0
- Tokenizers 0.22.1
- Downloads last month
- 9
Model tree for contemmcm/e95d67f6498d1635ca432d43052b374b
Base model
albert/albert-large-v1