e95d67f6498d1635ca432d43052b374b

This model is a fine-tuned version of albert/albert-large-v1 on the fancyzhx/dbpedia_14 dataset. It achieves the following results on the evaluation set:

  • Loss: 0.0538
  • Data Size: 1.0
  • Epoch Runtime: 1018.6313
  • Accuracy: 0.9891
  • F1 Macro: 0.9891
  • Rouge1: 0.9891
  • Rouge2: 0.0
  • Rougel: 0.9891
  • Rougelsum: 0.9891

Model description

More information needed

Intended uses & limitations

More information needed

Training and evaluation data

More information needed

Training procedure

Training hyperparameters

The following hyperparameters were used during training:

  • learning_rate: 5e-05
  • train_batch_size: 8
  • eval_batch_size: 8
  • seed: 42
  • distributed_type: multi-GPU
  • num_devices: 4
  • total_train_batch_size: 32
  • total_eval_batch_size: 32
  • optimizer: Use adamw_torch with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
  • lr_scheduler_type: constant
  • num_epochs: 50

Training results

Training Loss Epoch Step Validation Loss Data Size Epoch Runtime Accuracy F1 Macro Rouge1 Rouge2 Rougel Rougelsum
No log 0 0 2.7476 0 36.9465 0.0690 0.0408 0.0690 0.0 0.0690 0.0690
0.1381 1 17500 0.2494 0.0078 45.5837 0.9515 0.9508 0.9515 0.0 0.9516 0.9515
0.082 2 35000 0.1065 0.0156 52.7113 0.9798 0.9798 0.9798 0.0 0.9797 0.9798
0.1112 3 52500 0.0855 0.0312 68.4845 0.9849 0.9849 0.9849 0.0 0.9848 0.9849
0.1005 4 70000 0.0809 0.0625 98.1065 0.9841 0.9841 0.9841 0.0 0.9841 0.9841
0.0741 5 87500 0.0857 0.125 161.0668 0.9856 0.9856 0.9856 0.0 0.9856 0.9857
0.0892 6 105000 0.0901 0.25 284.2256 0.9832 0.9832 0.9832 0.0 0.9832 0.9832
0.0005 7 122500 0.0606 0.5 524.0239 0.9883 0.9883 0.9883 0.0 0.9882 0.9882
0.0708 8.0 140000 0.0572 1.0 1019.5611 0.9886 0.9886 0.9886 0.0 0.9885 0.9886
0.0402 9.0 157500 0.0528 1.0 1014.3520 0.9892 0.9892 0.9892 0.0 0.9892 0.9892
0.0444 10.0 175000 0.0543 1.0 1023.6434 0.9886 0.9886 0.9886 0.0 0.9886 0.9886
0.0547 11.0 192500 0.0640 1.0 1013.8691 0.9884 0.9884 0.9885 0.0 0.9884 0.9884
0.0401 12.0 210000 0.0721 1.0 1018.3700 0.9871 0.9871 0.9871 0.0 0.9871 0.9871
0.0573 13.0 227500 0.0493 1.0 1018.5676 0.9899 0.9899 0.9899 0.0 0.9899 0.9899
0.0471 14.0 245000 0.0523 1.0 1016.3818 0.9895 0.9895 0.9895 0.0 0.9895 0.9895
0.0384 15.0 262500 0.0569 1.0 1034.3212 0.9894 0.9893 0.9894 0.0 0.9894 0.9894
0.0269 16.0 280000 0.0540 1.0 1020.6855 0.9894 0.9894 0.9895 0.0 0.9894 0.9894
0.0298 17.0 297500 0.0538 1.0 1018.6313 0.9891 0.9891 0.9891 0.0 0.9891 0.9891

Framework versions

  • Transformers 4.57.0
  • Pytorch 2.8.0+cu128
  • Datasets 4.0.0
  • Tokenizers 0.22.1
Downloads last month
9
Safetensors
Model size
17.7M params
Tensor type
F32
ยท
Inference Providers NEW
This model isn't deployed by any Inference Provider. ๐Ÿ™‹ Ask for provider support

Model tree for contemmcm/e95d67f6498d1635ca432d43052b374b

Finetuned
(13)
this model