Qwen3-VL-8B-Thinking NVFP4 W4A16

First NVFP4 Quantization of Qwen3-VL-8B-Thinking

By Mutaz Al Awamleh | ELK-AI

Docker HuggingFace License


Model Description

This is the first publicly available NVFP4 W4A16 quantized version of Qwen3-VL-8B-Thinking, a vision-language model optimized for NVIDIA Blackwell (SM121) architecture.

Attribute Original NVFP4 Quantized
Parameters 8B Same
Architecture Vision-Language + Thinking Same
Model Size ~17 GB ~7.1 GB
Memory Savings - 58%
Precision BF16 FP4 W4A16

Quick Start

Using vLLM (Recommended)

from vllm import LLM, SamplingParams

model = LLM(
    model="cybermotaz/qwen3-vl-8b-thinking-nvfp4-w4a16",
    trust_remote_code=True,
    quantization="modelopt_fp4",
    kv_cache_dtype="fp8",
    gpu_memory_utilization=0.95
)

sampling_params = SamplingParams(temperature=0.7, max_tokens=512)
prompt = "Think step by step: What is shown in this image?"

outputs = model.generate([prompt], sampling_params)
print(outputs[0].outputs[0].text)

Using Docker (Pre-loaded)

# Pull the optimized container
docker pull elkaioptimization/vllm-nvfp4-cuda-13:qwen3-vl-8b-thinking-nvfp4-1.0

# Run with OpenAI-compatible API
docker run --gpus all -p 8000:8000 \
    elkaioptimization/vllm-nvfp4-cuda-13:qwen3-vl-8b-thinking-nvfp4-1.0

Quantization Details

Parameter Value
Quantization Format NVFP4 (FP4 E2M1)
Weight Precision 4-bit (W4)
Activation Precision 16-bit (A16)
Block Size 16 elements
Scale Format FP8 E4M3
Calibration Dataset CNN/DailyMail (512 samples)
Calibration Method AWQ-style
Tool Used NVIDIA TensorRT-Model-Optimizer

Hardware Requirements

Requirement Minimum Recommended
GPU RTX 4070 (12GB) RTX 4090 / DGX Spark
GPU Memory 12 GB 24 GB+
CUDA 12.4+ 13.0
Driver 560+ 570+

Model Architecture

Qwen3-VL-8B-Thinking features:

  • Vision-Language: Processes both images and text inputs
  • Enhanced Reasoning: Optimized for step-by-step thinking and complex reasoning
  • Extended Context: 32K native, 262K extended context length
  • Multilingual: Strong performance in English and Chinese

Links

Resource Link
Original Model Qwen/Qwen3-VL-8B-Thinking
Docker (Org) elkaioptimization/vllm-nvfp4-cuda-13
Docker (Personal) mutazai/vllm-spark-blackwell-nvfp4-optimized
Author Mutaz Al Awamleh
Organization ELK-AI

License

This model is released under the Apache 2.0 License, same as the original Qwen3 model.


Built by Mutaz Al Awamleh | ELK-AI

First to quantize Qwen3-VL-8B-Thinking to NVFP4 for Blackwell

Downloads last month
24
Safetensors
Model size
5B params
Tensor type
BF16
F8_E4M3
U8
Inference Providers NEW
This model isn't deployed by any Inference Provider. 馃檵 Ask for provider support

Model tree for cybermotaz/qwen3-vl-8b-thinking-nvfp4-w4a16

Quantized
(26)
this model

Evaluation results