See axolotl config
axolotl version: 0.13.0.dev0
base_model: codellama/CodeLlama-7b-hf
model_type: LlamaForCausalLM
tokenizer_type: LlamaTokenizer
# Keep full precision weights (fast on Hopper)
load_in_8bit: false
load_in_4bit: false
strict: false
chat_template: llama3
datasets:
- path: darwinkernelpanic/luau-reasoning-normalized
type: chat_template
conversation: llama3
field_messages: messages
add_generation_prompt: true
# Preprocessing workers (CPU). Fine as-is.
num_proc: 16
output_dir: ./outputs/luau-codellama-h200-fast
# ===== LoRA =====
adapter: lora
lora_r: 16
lora_alpha: 32
lora_dropout: 0.05
lora_target_modules:
- q_proj
- k_proj
- v_proj
- o_proj
# ===== Precision =====
bf16: true
fp16: false
tf32: true
# ===== Sequence / batching =====
sequence_len: 4096
# Keep packing for throughput, but enable length grouping to cut padding
sample_packing: true
group_by_length: true
# Lower micro-batch a bit to kill peak VRAM while staying fast
micro_batch_size: 5
gradient_accumulation_steps: 1
# ===== Training =====
num_epochs: 3
optimizer: adamw_torch
learning_rate: 2e-4
lr_scheduler_type: cosine
warmup_steps: 100
train_on_inputs: false
# Turn on checkpointing — tiny speed hit, big memory win
gradient_checkpointing: true
gradient_clipping: 1.0
# ===== Dataloader =====
# Keep pin_memory, but avoid too many loader workers in Accelerate
dataloader_num_workers: 2
dataloader_pin_memory: true
# Optional: avoid insanely large host->device prefetch
# dataloader_prefetch_factor: 2
# ===== Logging / eval =====
logging_steps: 25
val_set_size: 0.05
# Reduce eval/save frequency to avoid spikes
eval_steps: 1000
save_strategy: steps
save_steps: 1000
save_total_limit: 3
seed: 42
# ===== DeepSpeed =====
# Off for single H200 — overhead not worth it for 7B
outputs/luau-codellama-h200-fast
This model is a fine-tuned version of codellama/CodeLlama-7b-hf on the darwinkernelpanic/luau-reasoning-normalized dataset. It achieves the following results on the evaluation set:
- Loss: 0.4927
- Ppl: 1.6368
- Memory/max Active (gib): 19.1
- Memory/max Allocated (gib): 19.1
- Memory/device Reserved (gib): 139.06
Model description
More information needed
Intended uses & limitations
More information needed
Training and evaluation data
More information needed
Training procedure
Training hyperparameters
The following hyperparameters were used during training:
- learning_rate: 0.0002
- train_batch_size: 5
- eval_batch_size: 5
- seed: 42
- optimizer: Use OptimizerNames.ADAMW_TORCH with betas=(0.9,0.999) and epsilon=1e-08 and optimizer_args=No additional optimizer arguments
- lr_scheduler_type: cosine
- lr_scheduler_warmup_steps: 100
- training_steps: 3996
Training results
| Training Loss | Epoch | Step | Validation Loss | Ppl | Active (gib) | Allocated (gib) | Reserved (gib) |
|---|---|---|---|---|---|---|---|
| No log | 0 | 0 | 1.6888 | 5.4129 | 18.94 | 18.94 | 139.12 |
| 0.5511 | 0.7502 | 1000 | 0.5410 | 1.7177 | 19.1 | 19.1 | 139.02 |
| 0.5052 | 1.5004 | 2000 | 0.5064 | 1.6593 | 19.1 | 19.1 | 139.06 |
| 0.4733 | 2.2506 | 3000 | 0.4927 | 1.6368 | 19.1 | 19.1 | 139.06 |
Framework versions
- PEFT 0.18.0
- Transformers 4.57.1
- Pytorch 2.8.0+cu128
- Datasets 4.4.1
- Tokenizers 0.22.1
- Downloads last month
- 7