Dataset Viewer
Auto-converted to Parquet Duplicate
chr
string
pos
int32
pileup
int32
chrI
787
1
chrI
791
1
chrI
796
1
chrI
800
2
chrI
803
1
chrI
814
1
chrI
828
1
chrI
830
2
chrI
845
2
chrI
850
1
chrI
852
1
chrI
865
1
chrI
867
1
chrI
873
1
chrI
876
1
chrI
877
1
chrI
884
1
chrI
890
1
chrI
896
1
chrI
901
1
chrI
904
3
chrI
905
1
chrI
925
1
chrI
932
1
chrI
936
1
chrI
941
1
chrI
943
1
chrI
950
2
chrI
952
1
chrI
953
3
chrI
969
1
chrI
970
1
chrI
973
2
chrI
975
1
chrI
988
1
chrI
990
1
chrI
991
2
chrI
993
1
chrI
995
1
chrI
1,002
3
chrI
1,021
1
chrI
1,023
1
chrI
1,031
1
chrI
1,033
1
chrI
1,037
1
chrI
1,038
1
chrI
1,041
1
chrI
1,042
1
chrI
1,046
1
chrI
1,050
1
chrI
1,053
1
chrI
1,061
1
chrI
1,063
1
chrI
1,064
1
chrI
1,068
2
chrI
1,074
1
chrI
1,079
1
chrI
1,085
1
chrI
1,091
1
chrI
1,102
1
chrI
1,103
1
chrI
1,104
1
chrI
1,106
1
chrI
1,114
1
chrI
1,124
1
chrI
1,130
1
chrI
1,131
1
chrI
1,132
2
chrI
1,133
2
chrI
1,135
1
chrI
1,137
1
chrI
1,152
1
chrI
1,157
1
chrI
1,166
1
chrI
1,177
1
chrI
1,180
1
chrI
1,190
1
chrI
1,201
1
chrI
1,206
1
chrI
1,212
1
chrI
1,215
2
chrI
1,228
1
chrI
1,231
1
chrI
1,234
1
chrI
1,247
1
chrI
1,249
1
chrI
1,257
1
chrI
1,264
1
chrI
1,270
1
chrI
1,272
1
chrI
1,273
1
chrI
1,279
1
chrI
1,282
1
chrI
1,283
1
chrI
1,285
1
chrI
1,288
1
chrI
1,296
1
chrI
1,297
1
chrI
1,301
1
chrI
1,302
1
End of preview. Expand in Data Studio

Rossi 2021

This data is gathered from yeastepigenome.org. This work was published in

Rossi MJ, Kuntala PK, Lai WKM, Yamada N, Badjatia N, Mittal C, Kuzu G, Bocklund K, Farrell NP, Blanda TR, Mairose JD, Basting AV, Mistretta KS, Rocco DJ, Perkinson ES, Kellogg GD, Mahony S, Pugh BF. A high-resolution protein architecture of the budding yeast genome. Nature. 2021 Apr;592(7853):309-314. doi: 10.1038/s41586-021-03314-8. Epub 2021 Mar 10. PMID: 33692541; PMCID: PMC8035251.

Usage

The python package tfbpapi provides an interface to this data which eases examining the datasets, field definitions and other operations. You may also download the parquet datasets directly from hugging face by clicking on "Files and Versions", or by using the huggingface_cli and duckdb directly. In both cases, this provides a method of retrieving dataset and field definitions.

tfbpapi

After installing tfbpapi, you can adapt this tutorial in order to explore the contents of this repository.

huggingface_cli/duckdb

You can retrieves and displays the file paths for each configuration of the "BrentLab/rossi_2021" dataset from Hugging Face Hub.

from huggingface_hub import ModelCard
from pprint import pprint

card = ModelCard.load("BrentLab/rossi_2021", repo_type="dataset")

# cast to dict
card_dict = card.data.to_dict()

# Get partition information
dataset_paths_dict = {d.get("config_name"): d.get("data_files")[0].get("path") for d in card_dict.get("configs")}

pprint(dataset_paths_dict)

The entire repository is large. It may be preferable to only retrieve specific files or partitions. You can use the metadata files to choose which files to pull.

from huggingface_hub import snapshot_download
import duckdb
import os
# Download only the metadata first
repo_path = snapshot_download(
    repo_id="BrentLab/rossi_2021",
    repo_type="dataset",
    allow_patterns="rossi_2021_metadata.parquet"
)

dataset_path = os.path.join(repo_path, "rossi_2021_metadata.parquet")
conn = duckdb.connect()
meta_res = conn.execute("SELECT * FROM read_parquet(?) LIMIT 10", [dataset_path]).df()
print(meta_res)

We might choose to take a look at the file with accession SRR11466106:

# Download only a specific sample's genome coverage data
repo_path = snapshot_download(
    repo_id="BrentLab/rossi_2021",
    repo_type="dataset",
    allow_patterns="genome_map/accession=SRR11466106/*.parquet"
)

# Query the specific partition
dataset_path = os.path.join(repo_path, "genome_map")
result = conn.execute("SELECT * FROM read_parquet(?) LIMIT 10", 
                     [f"{dataset_path}/**/*.parquet"]).df()
print(result)

If you wish to pull the entire repo, due to its size you may need to use an authentication token. If you do not have one, try omitting the token related code below and see if it works. Else, create a token and provide it like so:


repo_id = "BrentLab/rossi_2021"

hf_token = os.getenv("HF_TOKEN")

# Download entire repo to local directory
repo_path = snapshot_download(
    repo_id=repo_id,
    repo_type="dataset",
    token=hf_token
)

print(f"\n✓ Repository downloaded to: {repo_path}")

# Construct path to the rossi_annotated_features parquet file
parquet_path = os.path.join(repo_path, "yeastepigenome_annotatedfeatures.parquet")
print(f"✓ Parquet file at: {parquet_path}")
Downloads last month
252

Collection including BrentLab/rossi_2021