Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

THETA-embeddings

Pre-computed embeddings generated by THETA, a domain-specific embedding model fine-tuned on Qwen3-Embedding for sociology and social science texts.

Description

This dataset contains dense vector embeddings produced under three settings:

  • zero_shot: Embeddings from the base Qwen3-Embedding model without fine-tuning
  • supervised: Embeddings from the LoRA-adapted model trained with label-guided contrastive learning
  • unsupervised: Embeddings from the LoRA-adapted model trained with SimCSE

Repository Structure

CodeSoulco/THETA-embeddings/
β”œβ”€β”€ 0.6B/
β”‚   β”œβ”€β”€ zero_shot/
β”‚   β”œβ”€β”€ supervised/
β”‚   └── unsupervised/
└── 4B/
    β”œβ”€β”€ zero_shot/
    β”œβ”€β”€ supervised/
    └── unsupervised/

Embedding Details

Model Dimension Format
Qwen3-Embedding-0.6B 896 .npy
Qwen3-Embedding-4B 2560 .npy

Source Datasets: germanCoal, FCPB, socialTwitter, hatespeech, mental_health

How to Use

import numpy as np

# Load pre-computed embeddings
embeddings = np.load("0.6B/zero_shot/germanCoal_zero_shot_embeddings.npy")
print(embeddings.shape)  # (num_samples, 896)

Or download via huggingface_hub:

from huggingface_hub import hf_hub_download
import numpy as np

path = hf_hub_download(
    repo_id="CodeSoulco/THETA-embeddings",
    filename="0.6B/supervised/socialTwitter_supervised_embeddings.npy",
    repo_type="dataset"
)
embeddings = np.load(path)

Related

License

This dataset is released under the MIT License.

Citation

@misc{theta2026,
  title={THETA: Textual Hybrid Embedding--based Topic Analysis},
  author={CodeSoul},
  year={2026},
  publisher={Hugging Face},
  url={https://huggingface.co/CodeSoulco/THETA}
}
Downloads last month
26