lxxx0304 commited on
Commit
34395ff
·
verified ·
1 Parent(s): 717d7a1

Create README.md

Browse files
Files changed (1) hide show
  1. README.md +97 -0
README.md ADDED
@@ -0,0 +1,97 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ---
2
+ license: mit
3
+ language:
4
+ - en
5
+ task_categories:
6
+ - feature-extraction
7
+ - text-classification
8
+ tags:
9
+ - embeddings
10
+ - qwen3
11
+ - topic-modeling
12
+ - social-science
13
+ - simcse
14
+ - contrastive-learning
15
+ - numpy
16
+ pretty_name: THETA Embeddings
17
+
18
+ ---
19
+
20
+ # THETA-embeddings
21
+
22
+ Pre-computed embeddings generated by [THETA](https://huggingface.co/CodeSoulco/THETA), a domain-specific embedding model fine-tuned on Qwen3-Embedding for sociology and social science texts.
23
+
24
+ ## Description
25
+
26
+ This dataset contains dense vector embeddings produced under three settings:
27
+
28
+ - **zero_shot:** Embeddings from the base Qwen3-Embedding model without fine-tuning
29
+ - **supervised:** Embeddings from the LoRA-adapted model trained with label-guided contrastive learning
30
+ - **unsupervised:** Embeddings from the LoRA-adapted model trained with SimCSE
31
+
32
+ ## Repository Structure
33
+
34
+ ```
35
+ CodeSoulco/THETA-embeddings/
36
+ ├── 0.6B/
37
+ │ ├── zero_shot/
38
+ │ ├── supervised/
39
+ │ └── unsupervised/
40
+ └── 4B/
41
+ ├── zero_shot/
42
+ ├── supervised/
43
+ └── unsupervised/
44
+ ```
45
+
46
+ ## Embedding Details
47
+
48
+ | Model | Dimension | Format |
49
+ |---|---|---|
50
+ | Qwen3-Embedding-0.6B | 896 | `.npy` |
51
+ | Qwen3-Embedding-4B | 2560 | `.npy` |
52
+
53
+ **Source Datasets:** germanCoal, FCPB, socialTwitter, hatespeech, mental_health
54
+
55
+ ## How to Use
56
+
57
+ ```python
58
+ import numpy as np
59
+
60
+ # Load pre-computed embeddings
61
+ embeddings = np.load("0.6B/zero_shot/germanCoal_zero_shot_embeddings.npy")
62
+ print(embeddings.shape) # (num_samples, 896)
63
+ ```
64
+
65
+ Or download via `huggingface_hub`:
66
+
67
+ ```python
68
+ from huggingface_hub import hf_hub_download
69
+ import numpy as np
70
+
71
+ path = hf_hub_download(
72
+ repo_id="CodeSoulco/THETA-embeddings",
73
+ filename="0.6B/supervised/socialTwitter_supervised_embeddings.npy",
74
+ repo_type="dataset"
75
+ )
76
+ embeddings = np.load(path)
77
+ ```
78
+
79
+ ## Related
80
+
81
+ - **Model (LoRA weights):** [CodeSoulco/THETA](https://huggingface.co/CodeSoulco/THETA)
82
+
83
+ ## License
84
+
85
+ This dataset is released under the **MIT License**.
86
+
87
+ ## Citation
88
+
89
+ ```bibtex
90
+ @misc{theta2026,
91
+ title={THETA: Textual Hybrid Embedding--based Topic Analysis},
92
+ author={CodeSoul},
93
+ year={2026},
94
+ publisher={Hugging Face},
95
+ url={https://huggingface.co/CodeSoulco/THETA}
96
+ }
97
+ ```