Datasets:
License:
Create README.md
Browse files
README.md
ADDED
|
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
license: mit
|
| 3 |
+
language:
|
| 4 |
+
- en
|
| 5 |
+
task_categories:
|
| 6 |
+
- feature-extraction
|
| 7 |
+
- text-classification
|
| 8 |
+
tags:
|
| 9 |
+
- embeddings
|
| 10 |
+
- qwen3
|
| 11 |
+
- topic-modeling
|
| 12 |
+
- social-science
|
| 13 |
+
- simcse
|
| 14 |
+
- contrastive-learning
|
| 15 |
+
- numpy
|
| 16 |
+
pretty_name: THETA Embeddings
|
| 17 |
+
|
| 18 |
+
---
|
| 19 |
+
|
| 20 |
+
# THETA-embeddings
|
| 21 |
+
|
| 22 |
+
Pre-computed embeddings generated by [THETA](https://huggingface.co/CodeSoulco/THETA), a domain-specific embedding model fine-tuned on Qwen3-Embedding for sociology and social science texts.
|
| 23 |
+
|
| 24 |
+
## Description
|
| 25 |
+
|
| 26 |
+
This dataset contains dense vector embeddings produced under three settings:
|
| 27 |
+
|
| 28 |
+
- **zero_shot:** Embeddings from the base Qwen3-Embedding model without fine-tuning
|
| 29 |
+
- **supervised:** Embeddings from the LoRA-adapted model trained with label-guided contrastive learning
|
| 30 |
+
- **unsupervised:** Embeddings from the LoRA-adapted model trained with SimCSE
|
| 31 |
+
|
| 32 |
+
## Repository Structure
|
| 33 |
+
|
| 34 |
+
```
|
| 35 |
+
CodeSoulco/THETA-embeddings/
|
| 36 |
+
├── 0.6B/
|
| 37 |
+
│ ├── zero_shot/
|
| 38 |
+
│ ├── supervised/
|
| 39 |
+
│ └── unsupervised/
|
| 40 |
+
└── 4B/
|
| 41 |
+
├── zero_shot/
|
| 42 |
+
├── supervised/
|
| 43 |
+
└── unsupervised/
|
| 44 |
+
```
|
| 45 |
+
|
| 46 |
+
## Embedding Details
|
| 47 |
+
|
| 48 |
+
| Model | Dimension | Format |
|
| 49 |
+
|---|---|---|
|
| 50 |
+
| Qwen3-Embedding-0.6B | 896 | `.npy` |
|
| 51 |
+
| Qwen3-Embedding-4B | 2560 | `.npy` |
|
| 52 |
+
|
| 53 |
+
**Source Datasets:** germanCoal, FCPB, socialTwitter, hatespeech, mental_health
|
| 54 |
+
|
| 55 |
+
## How to Use
|
| 56 |
+
|
| 57 |
+
```python
|
| 58 |
+
import numpy as np
|
| 59 |
+
|
| 60 |
+
# Load pre-computed embeddings
|
| 61 |
+
embeddings = np.load("0.6B/zero_shot/germanCoal_zero_shot_embeddings.npy")
|
| 62 |
+
print(embeddings.shape) # (num_samples, 896)
|
| 63 |
+
```
|
| 64 |
+
|
| 65 |
+
Or download via `huggingface_hub`:
|
| 66 |
+
|
| 67 |
+
```python
|
| 68 |
+
from huggingface_hub import hf_hub_download
|
| 69 |
+
import numpy as np
|
| 70 |
+
|
| 71 |
+
path = hf_hub_download(
|
| 72 |
+
repo_id="CodeSoulco/THETA-embeddings",
|
| 73 |
+
filename="0.6B/supervised/socialTwitter_supervised_embeddings.npy",
|
| 74 |
+
repo_type="dataset"
|
| 75 |
+
)
|
| 76 |
+
embeddings = np.load(path)
|
| 77 |
+
```
|
| 78 |
+
|
| 79 |
+
## Related
|
| 80 |
+
|
| 81 |
+
- **Model (LoRA weights):** [CodeSoulco/THETA](https://huggingface.co/CodeSoulco/THETA)
|
| 82 |
+
|
| 83 |
+
## License
|
| 84 |
+
|
| 85 |
+
This dataset is released under the **MIT License**.
|
| 86 |
+
|
| 87 |
+
## Citation
|
| 88 |
+
|
| 89 |
+
```bibtex
|
| 90 |
+
@misc{theta2026,
|
| 91 |
+
title={THETA: Textual Hybrid Embedding--based Topic Analysis},
|
| 92 |
+
author={CodeSoul},
|
| 93 |
+
year={2026},
|
| 94 |
+
publisher={Hugging Face},
|
| 95 |
+
url={https://huggingface.co/CodeSoulco/THETA}
|
| 96 |
+
}
|
| 97 |
+
```
|