Dataset Viewer
The dataset viewer is not available for this split.
Cannot load the dataset split (in streaming mode) to extract the first rows.
Error code: StreamingRowsError
Exception: ValueError
Message: Bad split: raw_data. Available splits: ['train']
Traceback: Traceback (most recent call last):
File "/src/services/worker/src/worker/utils.py", line 99, in get_rows_or_raise
return get_rows(
^^^^^^^^^
File "/src/libs/libcommon/src/libcommon/utils.py", line 272, in decorator
return func(*args, **kwargs)
^^^^^^^^^^^^^^^^^^^^^
File "/src/services/worker/src/worker/utils.py", line 61, in get_rows
ds = load_dataset(
^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/load.py", line 1409, in load_dataset
return builder_instance.as_streaming_dataset(split=split)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1232, in as_streaming_dataset
raise ValueError(f"Bad split: {split}. Available splits: {list(splits_generators)}")
ValueError: Bad split: raw_data. Available splits: ['train']Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
The task_categories "sequence-modeling" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
YAML Metadata
Warning:
The task_categories "regression" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
YAML Metadata
Warning:
The task_categories "classification" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, image-text-to-image, image-text-to-video, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other
YAML Metadata
Warning:
The task_ids "time-series-forecasting" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
YAML Metadata
Warning:
The task_ids "player-behavior-analysis" is not in the official list: acceptability-classification, entity-linking-classification, fact-checking, intent-classification, language-identification, multi-class-classification, multi-label-classification, multi-input-text-classification, natural-language-inference, semantic-similarity-classification, sentiment-classification, topic-classification, semantic-similarity-scoring, sentiment-scoring, sentiment-analysis, hate-speech-detection, text-scoring, named-entity-recognition, part-of-speech, parsing, lemmatization, word-sense-disambiguation, coreference-resolution, extractive-qa, open-domain-qa, closed-domain-qa, news-articles-summarization, news-articles-headline-generation, dialogue-modeling, dialogue-generation, conversational, language-modeling, text-simplification, explanation-generation, abstractive-qa, open-domain-abstractive-qa, closed-domain-qa, open-book-qa, closed-book-qa, text2text-generation, slot-filling, masked-language-modeling, keyword-spotting, speaker-identification, audio-intent-classification, audio-emotion-recognition, audio-language-identification, multi-label-image-classification, multi-class-image-classification, face-detection, vehicle-detection, instance-segmentation, semantic-segmentation, panoptic-segmentation, image-captioning, image-inpainting, image-colorization, super-resolution, grasping, task-planning, tabular-multi-class-classification, tabular-multi-label-classification, tabular-single-column-regression, rdf-to-text, multiple-choice-qa, multiple-choice-coreference-resolution, document-retrieval, utterance-retrieval, entity-linking-retrieval, fact-checking-retrieval, univariate-time-series-forecasting, multivariate-time-series-forecasting, visual-question-answering, document-question-answering, pose-estimation
Wordle游戏预测项目 - 数据集描述文档
数据集概览
这个数据集包含了Wordle游戏玩家的历史记录,用于预测玩家完成游戏所需的尝试次数。数据集经过三个阶段的处理:原始数据、预处理数据和特征工程数据。
下载和使用
# 安装必要的库
!pip install datasets pandas numpy
# 加载数据集(示例)
from datasets import load_dataset
# 根据你的数据集名称调整
dataset = load_dataset("your-username/wordle-game-prediction")
1. 原始数据集(01_raw_data/wordle_games.csv)
1.1 数据集基本信息
- 数据来源:Wordle游戏玩家历史记录
- 数据格式:CSV格式
- 数据量:根据预处理脚本输出,原始记录数约为处理前的数量
1.2 字段描述
| 字段名 | 数据类型 | 描述 |
|---|---|---|
| Username | 字符串 | 玩家唯一标识符 |
| Game | 整数 | 游戏ID,标识每一局游戏 |
| Trial | 整数 | 玩家完成该局游戏所需的尝试次数(1-6次成功,>6次失败) |
| processed_text | 字符串 | 包含玩家每一次尝试的反馈序列,以空格分隔,如"🟩🟨⬜⬜⬜ 🟩🟩🟩🟩🟩" |
| target | 字符串 | 该局游戏的目标单词(5个字母) |
1.3 数据示例
Username,Game,Trial,processed_text,target
player1,1,2,"🟩🟨⬜⬜⬜ 🟩🟩🟩🟩🟩",apple
player2,2,4,"⬜⬜⬜⬜⬜ 🟨🟨⬜⬜⬜ 🟩🟩🟨⬜⬜ 🟩🟩🟩🟩🟩",banana
2. 预处理数据集(02_data_preprocessing/output/wordle_preprocessed.csv)
2.1 数据集基本信息
- 生成脚本:
wordle_lstm_project/02_data_preprocessing/data_preprocessing.py - 数据格式:CSV格式
- 数据处理流程:
- 加载原始数据
- 保留必要字段并删除空值
- 解析反馈序列文本
- 将反馈符号编码为数字(🟩→2, 🟨→1, ⬜→0)
- 填充或截断反馈序列至固定长度7
- 转换为numpy友好格式
- 按玩家和时间排序
2.2 字段描述
| 字段名 | 数据类型 | 描述 |
|---|---|---|
| Username | 字符串 | 玩家唯一标识符 |
| Game | 整数 | 游戏ID |
| Trial | 整数 | 玩家完成该局游戏所需的尝试次数 |
| processed_text | 列表 | 解析后的反馈序列列表,每个元素为5个反馈符号的字符串 |
| target | 字符串 | 目标单词 |
| feedback_sequence | 列表 | 编码并填充后的反馈序列,形状为(7,5),每个元素为0-2的整数 |
2.3 数据编码说明
- 反馈符号编码:🟩(正确位置)→2, 🟨(存在但位置错误)→1, ⬜(不存在)→0
- 序列长度:固定为7,不足则用全0填充,超过则截断
- 序列形状:每个序列包含7个尝试,每个尝试包含5个字母的反馈结果
3. 特征工程数据集(03_feature_engineering/output/wordle_with_player_features.csv)
3.1 数据集基本信息
- 生成脚本:
wordle_lstm_project/03_feature_engineering/player_statistics.py - 数据格式:CSV格式
- 数据处理流程:
- 加载预处理数据
- 计算成功指标
- 为每个玩家计算历史统计特征
- 计算最近N场游戏的滚动统计特征
- 计算反馈序列的熵
- 分配玩家活跃度等级
- 计算目标单词的难度特征
3.2 字段描述
3.2.1 基础字段
| 字段名 | 数据类型 | 描述 |
|---|---|---|
| Username | 字符串 | 玩家唯一标识符 |
| Game | 整数 | 游戏ID |
| Trial | 整数 | 玩家完成该局游戏所需的尝试次数 |
| processed_text | 列表 | 解析后的反馈序列列表 |
| target | 字符串 | 目标单词 |
| feedback_sequence | 列表 | 编码并填充后的反馈序列 |
| is_success | 整数 | 是否成功完成游戏(0=失败,1=成功) |
3.2.2 玩家历史特征
| 字段名 | 数据类型 | 描述 |
|---|---|---|
| hist_game_count | 整数 | 玩家历史游戏次数(截至当前局前) |
| hist_avg_trial | 浮点数 | 玩家历史平均尝试次数(截至当前局前) |
| hist_success_rate | 浮点数 | 玩家历史成功率(截至当前局前) |
| recent_avg_trial | 浮点数 | 最近5场游戏的平均尝试次数(截至当前局前) |
| recent_success_rate | 浮点数 | 最近5场游戏的成功率(截至当前局前) |
| recent_stability | 浮点数 | 最近5场游戏尝试次数的标准差,衡量稳定性 |
| activity_level | 字符串 | 玩家活跃度等级(newbie/casual/active/veteran/master) |
3.2.3 反馈序列特征
| 字段名 | 数据类型 | 描述 |
|---|---|---|
| feedback_entropy | 浮点数 | 反馈序列的熵值,衡量反馈的不确定性 |
3.2.4 目标单词难度特征
| 字段名 | 数据类型 | 描述 |
|---|---|---|
| word_length | 整数 | 单词长度(固定为5) |
| num_vowels | 整数 | 元音字母数量 |
| num_consonants | 整数 | 辅音字母数量 |
| avg_letter_frequency | 浮点数 | 平均字母频率,基于英文字母频率表 |
| num_unique_letters | 整数 | 唯一字母数量 |
| has_repeated_letters | 整数 | 是否有重复字母(0=无,1=有) |
| total_letter_frequency | 浮点数 | 总字母频率,衡量单词的常见程度 |
3.3 活跃度等级划分
| 等级 | 游戏次数范围 | 描述 |
|---|---|---|
| newbie | ≤5 | 新玩家 |
| casual | 6-20 | 休闲玩家 |
| active | 21-50 | 活跃玩家 |
| veteran | 51-100 | 资深玩家 |
| master | >100 | 大师玩家 |
3.4 单词难度计算说明
- 基于字母频率、元音/辅音比例、唯一性等多个维度计算
- 字母频率基于标准英文文本统计
- 总频率越高,单词越常见,难度越低
- 唯一字母数量越多,通常难度越高
4. 数据关系
原始数据集 → 预处理数据集 → 特征工程数据集
↓ ↓ ↓
wordle_games.csv → wordle_preprocessed.csv → wordle_with_player_features.csv
5. 数据用途
- 原始数据集:用于初始数据分析和理解玩家行为模式
- 预处理数据集:用于模型训练的基础数据,包含编码后的反馈序列
- 特征工程数据集:用于深度模型训练,包含丰富的玩家特征和单词难度特征
6. 数据质量
- 所有数据集均经过清洗,删除了空值
- 反馈序列已标准化为固定长度
- 特征计算采用了防止数据泄漏的方法(如使用shift(1)避免未来信息)
- 玩家特征基于历史数据计算,确保了模型训练的有效性
7. 数据格式说明
所有数据集均为CSV格式,支持直接用Pandas等工具读取和处理。对于包含列表类型的字段,读取时需要使用适当的解析方法(如ast.literal_eval)。
8. 后续处理
特征工程数据集将进一步用于:
- 构建模型训练所需的序列数据和特征数据
- 训练LSTM、BiLSTM、LSTM-Attention和Transformer等模型
- 预测玩家完成游戏的尝试次数和成功率
- 分析模型注意力机制和性能表现
引用信息
如果你在研究中使用了这个数据集,请引用:
@dataset{wordle_prediction_2024,
title = {Wordle Game Prediction Dataset},
author = {Your Name},
year = {2024},
publisher = {Hugging Face},
url = {https://huggingface.co/datasets/your-username/dataset-name}
}
许可证
本数据集基于 Apache 2.0 许可证发布。
- Downloads last month
- 13