Search is not available for this dataset
image
imagewidth (px) 224
224
| epoch
int64 0
2.57k
| label_str
class label 3
classes | label
class label 3
classes |
|---|---|---|---|
0
| 0No Event
| 0No Event
|
|
1
| 0No Event
| 0No Event
|
|
2
| 0No Event
| 0No Event
|
|
3
| 0No Event
| 0No Event
|
|
4
| 0No Event
| 0No Event
|
|
5
| 0No Event
| 0No Event
|
|
6
| 0No Event
| 0No Event
|
|
7
| 0No Event
| 0No Event
|
|
8
| 2seiz
| 2seiz
|
|
9
| 2seiz
| 2seiz
|
|
10
| 2seiz
| 2seiz
|
|
11
| 2seiz
| 2seiz
|
|
12
| 2seiz
| 2seiz
|
|
13
| 2seiz
| 2seiz
|
|
14
| 2seiz
| 2seiz
|
|
15
| 2seiz
| 2seiz
|
|
16
| 2seiz
| 2seiz
|
|
17
| 2seiz
| 2seiz
|
|
18
| 2seiz
| 2seiz
|
|
19
| 2seiz
| 2seiz
|
|
20
| 2seiz
| 2seiz
|
|
21
| 2seiz
| 2seiz
|
|
22
| 2seiz
| 2seiz
|
|
23
| 2seiz
| 2seiz
|
|
24
| 2seiz
| 2seiz
|
|
25
| 2seiz
| 2seiz
|
|
26
| 2seiz
| 2seiz
|
|
27
| 2seiz
| 2seiz
|
|
28
| 2seiz
| 2seiz
|
|
29
| 2seiz
| 2seiz
|
|
30
| 2seiz
| 2seiz
|
|
31
| 2seiz
| 2seiz
|
|
32
| 2seiz
| 2seiz
|
|
33
| 2seiz
| 2seiz
|
|
34
| 2seiz
| 2seiz
|
|
35
| 2seiz
| 2seiz
|
|
36
| 2seiz
| 2seiz
|
|
37
| 2seiz
| 2seiz
|
|
38
| 2seiz
| 2seiz
|
|
39
| 2seiz
| 2seiz
|
|
40
| 2seiz
| 2seiz
|
|
41
| 2seiz
| 2seiz
|
|
42
| 2seiz
| 2seiz
|
|
43
| 2seiz
| 2seiz
|
|
44
| 2seiz
| 2seiz
|
|
45
| 2seiz
| 2seiz
|
|
46
| 2seiz
| 2seiz
|
|
47
| 2seiz
| 2seiz
|
|
48
| 2seiz
| 2seiz
|
|
49
| 2seiz
| 2seiz
|
|
50
| 2seiz
| 2seiz
|
|
51
| 2seiz
| 2seiz
|
|
52
| 2seiz
| 2seiz
|
|
53
| 2seiz
| 2seiz
|
|
54
| 2seiz
| 2seiz
|
|
55
| 2seiz
| 2seiz
|
|
56
| 2seiz
| 2seiz
|
|
57
| 2seiz
| 2seiz
|
|
58
| 2seiz
| 2seiz
|
|
59
| 2seiz
| 2seiz
|
|
60
| 0No Event
| 0No Event
|
|
61
| 0No Event
| 0No Event
|
|
62
| 0No Event
| 0No Event
|
|
63
| 0No Event
| 0No Event
|
|
64
| 0No Event
| 0No Event
|
|
65
| 0No Event
| 0No Event
|
|
66
| 0No Event
| 0No Event
|
|
67
| 0No Event
| 0No Event
|
|
68
| 0No Event
| 0No Event
|
|
69
| 0No Event
| 0No Event
|
|
70
| 0No Event
| 0No Event
|
|
71
| 0No Event
| 0No Event
|
|
72
| 0No Event
| 0No Event
|
|
73
| 0No Event
| 0No Event
|
|
0
| 0No Event
| 0No Event
|
|
1
| 0No Event
| 0No Event
|
|
2
| 2seiz
| 2seiz
|
|
3
| 2seiz
| 2seiz
|
|
4
| 2seiz
| 2seiz
|
|
5
| 2seiz
| 2seiz
|
|
6
| 2seiz
| 2seiz
|
|
7
| 2seiz
| 2seiz
|
|
8
| 2seiz
| 2seiz
|
|
9
| 2seiz
| 2seiz
|
|
10
| 2seiz
| 2seiz
|
|
11
| 2seiz
| 2seiz
|
|
12
| 2seiz
| 2seiz
|
|
13
| 2seiz
| 2seiz
|
|
14
| 2seiz
| 2seiz
|
|
15
| 2seiz
| 2seiz
|
|
16
| 2seiz
| 2seiz
|
|
17
| 2seiz
| 2seiz
|
|
18
| 2seiz
| 2seiz
|
|
19
| 2seiz
| 2seiz
|
|
20
| 2seiz
| 2seiz
|
|
21
| 2seiz
| 2seiz
|
|
22
| 2seiz
| 2seiz
|
|
23
| 2seiz
| 2seiz
|
|
24
| 2seiz
| 2seiz
|
|
25
| 2seiz
| 2seiz
|
End of preview. Expand
in Data Studio
Dataset Card for "seizure_eeg_train"
from datasets import load_dataset
dataset_name = "JLB-JLB/seizure_eeg_train"
dataset = load_dataset(
dataset_name,
split="train",
)
display(dataset)
# create train and test/val split
train_testvalid = dataset.train_test_split(test_size=0.1, shuffle=True, seed=12071998)
display(train_testvalid)
# get the number of different labels in the train, test and validation set
display(train_testvalid["train"].features["label"])
display(train_testvalid["test"].features["label"].num_classes)
# check how many labels/number of classes
num_classes = len(set(train_testvalid["train"]['label']))
labels = train_testvalid["train"].features['label']
print(um_classes, labels)
display(train_testvalid["train"][0]['image'])
- Downloads last month
- 2,046