Dataset Viewer
The dataset viewer is not available for this subset.
Job manager crashed while running this job (missing heartbeats).
Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
YAML Metadata
Warning:
empty or missing yaml metadata in repo card
(https://huggingface.co/docs/hub/datasets-cards)
IPAD: Industrial Process Anomaly Detection Dataset
This is the official IPAD dataset for video anomaly detection in industrial scenarios.
Key Features
- 16 Industrial Devices: 12 synthetic + 4 real-world scenarios
- 597,979 Video Frames: Over 6 hours of footage
- Periodicity Annotations: Unique temporal features for industrial processes
- 39 Anomaly Classes: Various types including:
- Appearance anomalies (color, shape changes)
- Position anomalies (shifts, tilts)
- Motion anomalies (lagging, speed changes)
- Logic anomalies (sorting errors, wrong sequences)
Dataset Structure
ipad_dataset/
βββ S01_conveyer_belt/
βββ S02_automatic_lifter/
βββ S03_forklift_truck/
βββ S04_manual_cutter/
βββ S05_90_conveyer/
βββ S06_180_conveyer/
βββ S07_z_lifter/
βββ S08_box_sorter/
βββ S09_mechanical_gripper/
βββ S10_standing_crane/
βββ S11_automatic_cutter/
βββ S12_drilling_machine/
βββ R01_conveyer_belt_real/
βββ R02_automatic_lifter_real/
βββ R03_forklift_truck_real/
βββ R04_manual_cutter_real/
Each device folder contains:
training/frames/: Normal operation videostesting/frames/: Both normal and anomalous videos- Frame-level annotations for anomalies
Statistics
- Total Frames: 597,979
- Training Frames: 430,867 (normal only)
- Testing Frames: 167,112 (normal + anomalies)
- Resolution: 2492 Γ 988 pixels
- Frame Rate: Variable (5-30 second cycles)
Differences from Existing Datasets
Unlike human-centric VAD datasets (UCSD Ped, Avenue, ShanghaiTech):
- β Object-centric: Anomalies can occur anywhere in frame
- β Periodic: Equipment has cyclic motion patterns
- β Industrial-specific: Real factory scenarios
- β Synthetic + Real: Domain adaptation capability
Usage
Download and Extract
from huggingface_hub import hf_hub_download
import zipfile
# Download the dataset
zip_path = hf_hub_download(
repo_id="MSherbinii/ipad-industrial-anomaly",
filename="ipad_dataset.zip",
repo_type="dataset"
)
# Extract
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
zip_ref.extractall("./ipad_data")
Load with PyTorch
from torch.utils.data import Dataset
import cv2
import os
class IPADDataset(Dataset):
def __init__(self, root_dir, device="S01", split="train"):
self.root = os.path.join(root_dir, f"{device}/{split}/frames")
# ... implementation
def __getitem__(self, idx):
# Load 16-frame video clip
frames = []
for i in range(idx, idx+16):
frame = cv2.imread(f"{self.root}/frame_{i:05d}.jpg")
frame = cv2.resize(frame, (256, 256))
frames.append(frame)
return torch.tensor(frames)
Baseline Results
From the original paper using Video Swin Transformer + Periodic Memory:
| Device | AUC (%) | Device | AUC (%) |
|---|---|---|---|
| S01 | 69.5 | S07 | 60.6 |
| S02 | 63.9 | S08 | 85.6 |
| S03 | 70.6 | S09 | 71.2 |
| S04 | 58.3 | S10 | 62.2 |
| S05 | 86.2 | S11 | 60.9 |
| S06 | 61.2 | S12 | 67.1 |
| R01 | 84.4 | R03 | 43.5 |
| R02 | 75.4 | R04 | 76.7 |
| Average | 68.6 |
Citation
@article{liu2024ipad,
author = {Jinfan Liu, Yichao Yan, Junjie Li, Weiming Zhao,
Pengzhi Chu, Xingdong Sheng, Yunhui Liu and Xiaokang Yang},
title = {IPAD: Industrial Process Anomaly Detection Dataset},
year = {2024},
journal = {arXiv preprint arXiv:2404.15033},
}
License
Please refer to the original paper and project page for license information.
Acknowledgments
- Original dataset creators: Shanghai Jiao Tong University & Lenovo Research
- Uploaded to HuggingFace Hub by: MSherbinii
- Part of the IPAD VAD reproduction and improvement project
- Downloads last month
- 23
Paper
IPAD: Industrial Process Anomaly Detection Dataset
Project Page
ljf1113.github.io
Authors
: Jinfan Liu, Yichao Yan, Junjie Li, et al. (Shanghai Jiao Tong University & Lenovo Research)
Conference
: ACM MM 2024