Dataset Viewer
The dataset viewer is not available for this subset.
Job manager crashed while running this job (missing heartbeats).

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

YAML Metadata Warning: empty or missing yaml metadata in repo card (https://huggingface.co/docs/hub/datasets-cards)

IPAD: Industrial Process Anomaly Detection Dataset

This is the official IPAD dataset for video anomaly detection in industrial scenarios.

Key Features

  • 16 Industrial Devices: 12 synthetic + 4 real-world scenarios
  • 597,979 Video Frames: Over 6 hours of footage
  • Periodicity Annotations: Unique temporal features for industrial processes
  • 39 Anomaly Classes: Various types including:
    • Appearance anomalies (color, shape changes)
    • Position anomalies (shifts, tilts)
    • Motion anomalies (lagging, speed changes)
    • Logic anomalies (sorting errors, wrong sequences)

Dataset Structure

ipad_dataset/
β”œβ”€β”€ S01_conveyer_belt/
β”œβ”€β”€ S02_automatic_lifter/
β”œβ”€β”€ S03_forklift_truck/
β”œβ”€β”€ S04_manual_cutter/
β”œβ”€β”€ S05_90_conveyer/
β”œβ”€β”€ S06_180_conveyer/
β”œβ”€β”€ S07_z_lifter/
β”œβ”€β”€ S08_box_sorter/
β”œβ”€β”€ S09_mechanical_gripper/
β”œβ”€β”€ S10_standing_crane/
β”œβ”€β”€ S11_automatic_cutter/
β”œβ”€β”€ S12_drilling_machine/
β”œβ”€β”€ R01_conveyer_belt_real/
β”œβ”€β”€ R02_automatic_lifter_real/
β”œβ”€β”€ R03_forklift_truck_real/
└── R04_manual_cutter_real/

Each device folder contains:

  • training/frames/: Normal operation videos
  • testing/frames/: Both normal and anomalous videos
  • Frame-level annotations for anomalies

Statistics

  • Total Frames: 597,979
  • Training Frames: 430,867 (normal only)
  • Testing Frames: 167,112 (normal + anomalies)
  • Resolution: 2492 Γ— 988 pixels
  • Frame Rate: Variable (5-30 second cycles)

Differences from Existing Datasets

Unlike human-centric VAD datasets (UCSD Ped, Avenue, ShanghaiTech):

  • βœ… Object-centric: Anomalies can occur anywhere in frame
  • βœ… Periodic: Equipment has cyclic motion patterns
  • βœ… Industrial-specific: Real factory scenarios
  • βœ… Synthetic + Real: Domain adaptation capability

Usage

Download and Extract

from huggingface_hub import hf_hub_download
import zipfile

# Download the dataset
zip_path = hf_hub_download(
    repo_id="MSherbinii/ipad-industrial-anomaly",
    filename="ipad_dataset.zip",
    repo_type="dataset"
)

# Extract
with zipfile.ZipFile(zip_path, 'r') as zip_ref:
    zip_ref.extractall("./ipad_data")

Load with PyTorch

from torch.utils.data import Dataset
import cv2
import os

class IPADDataset(Dataset):
    def __init__(self, root_dir, device="S01", split="train"):
        self.root = os.path.join(root_dir, f"{device}/{split}/frames")
        # ... implementation

    def __getitem__(self, idx):
        # Load 16-frame video clip
        frames = []
        for i in range(idx, idx+16):
            frame = cv2.imread(f"{self.root}/frame_{i:05d}.jpg")
            frame = cv2.resize(frame, (256, 256))
            frames.append(frame)
        return torch.tensor(frames)

Baseline Results

From the original paper using Video Swin Transformer + Periodic Memory:

Device AUC (%) Device AUC (%)
S01 69.5 S07 60.6
S02 63.9 S08 85.6
S03 70.6 S09 71.2
S04 58.3 S10 62.2
S05 86.2 S11 60.9
S06 61.2 S12 67.1
R01 84.4 R03 43.5
R02 75.4 R04 76.7
Average 68.6

Citation

@article{liu2024ipad,
  author    = {Jinfan Liu, Yichao Yan, Junjie Li, Weiming Zhao,
               Pengzhi Chu, Xingdong Sheng, Yunhui Liu and Xiaokang Yang},
  title     = {IPAD: Industrial Process Anomaly Detection Dataset},
  year      = {2024},
  journal   = {arXiv preprint arXiv:2404.15033},
}

License

Please refer to the original paper and project page for license information.

Acknowledgments

  • Original dataset creators: Shanghai Jiao Tong University & Lenovo Research
  • Uploaded to HuggingFace Hub by: MSherbinii
  • Part of the IPAD VAD reproduction and improvement project
Downloads last month
23

Space using MSherbinii/ipad-industrial-anomaly 1