url
string | repository_url
string | labels_url
string | comments_url
string | events_url
string | html_url
string | id
int64 | node_id
string | number
int64 | title
string | user
dict | labels
list | state
string | locked
bool | assignee
dict | assignees
list | milestone
dict | comments
sequence | created_at
timestamp[ns, tz=UTC] | updated_at
timestamp[ns, tz=UTC] | closed_at
timestamp[ns, tz=UTC] | author_association
string | type
float64 | active_lock_reason
float64 | sub_issues_summary
dict | body
string | closed_by
dict | reactions
dict | timeline_url
string | performed_via_github_app
float64 | state_reason
string | draft
float64 | pull_request
dict |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
https://api.github.com/repos/huggingface/datasets/issues/7537
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7537/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7537/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7537/events
|
https://github.com/huggingface/datasets/issues/7537
| 3,018,792,966
|
I_kwDODunzps6z7yAG
| 7,537
|
`datasets.map(..., num_proc=4)` multi-processing fails
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/24477841?v=4",
"events_url": "https://api.github.com/users/faaany/events{/privacy}",
"followers_url": "https://api.github.com/users/faaany/followers",
"following_url": "https://api.github.com/users/faaany/following{/other_user}",
"gists_url": "https://api.github.com/users/faaany/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/faaany",
"id": 24477841,
"login": "faaany",
"node_id": "MDQ6VXNlcjI0NDc3ODQx",
"organizations_url": "https://api.github.com/users/faaany/orgs",
"received_events_url": "https://api.github.com/users/faaany/received_events",
"repos_url": "https://api.github.com/users/faaany/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/faaany/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/faaany/subscriptions",
"type": "User",
"url": "https://api.github.com/users/faaany",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-25T01:53:47
| 2025-04-25T05:53:29
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
The following code fails in python 3.11+
```python
tokenized_datasets = datasets.map(tokenize_function, batched=True, num_proc=4, remove_columns=["text"])
```
Error log:
```bash
Traceback (most recent call last):
File "/usr/local/lib/python3.12/dist-packages/multiprocess/process.py", line 315, in _bootstrap
self.run()
File "/usr/local/lib/python3.12/dist-packages/multiprocess/process.py", line 108, in run
self._target(*self._args, **self._kwargs)
File "/usr/local/lib/python3.12/dist-packages/multiprocess/pool.py", line 114, in worker
task = get()
^^^^^
File "/usr/local/lib/python3.12/dist-packages/multiprocess/queues.py", line 371, in get
return _ForkingPickler.loads(res)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 327, in loads
return load(file, ignore, **kwds)
^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 313, in load
return Unpickler(file, ignore=ignore, **kwds).load()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 525, in load
obj = StockUnpickler.load(self)
^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/dist-packages/dill/_dill.py", line 659, in _create_code
if len(args) == 16: return CodeType(*args)
^^^^^^^^^^^^^^^
TypeError: code() argument 13 must be str, not int
```
After upgrading dill to the latest 0.4.0 with "pip install --upgrade dill", it can pass. So it seems that there is a compatibility issue between dill 0.3.4 and python 3.11+, because python 3.10 works fine.
Is the dill deterministic issue mentioned in https://github.com/huggingface/datasets/blob/main/setup.py#L117) still valid? Any plan to unpin?
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7537/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7537/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7536
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7536/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7536/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7536/events
|
https://github.com/huggingface/datasets/issues/7536
| 3,018,425,549
|
I_kwDODunzps6z6YTN
| 7,536
|
[Errno 13] Permission denied: on `.incomplete` file
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/1282383?v=4",
"events_url": "https://api.github.com/users/ryan-clancy/events{/privacy}",
"followers_url": "https://api.github.com/users/ryan-clancy/followers",
"following_url": "https://api.github.com/users/ryan-clancy/following{/other_user}",
"gists_url": "https://api.github.com/users/ryan-clancy/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/ryan-clancy",
"id": 1282383,
"login": "ryan-clancy",
"node_id": "MDQ6VXNlcjEyODIzODM=",
"organizations_url": "https://api.github.com/users/ryan-clancy/orgs",
"received_events_url": "https://api.github.com/users/ryan-clancy/received_events",
"repos_url": "https://api.github.com/users/ryan-clancy/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/ryan-clancy/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/ryan-clancy/subscriptions",
"type": "User",
"url": "https://api.github.com/users/ryan-clancy",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"It must be an issue with umask being used by multiple threads indeed. Maybe we can try to make a thread safe function to apply the umask (using filelock for example)"
] | 2025-04-24T20:52:45
| 2025-04-26T12:40:25
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
When downloading a dataset, we frequently hit the below Permission Denied error. This looks to happen (at least) across datasets in from HF, S3, and GCS.
It looks like the `temp_file` being passed [here](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L412) can sometimes be created with `000` permissions leading to the permission denied error (the user running the code is still the owner of the file). Deleting that particular file and re-running the code with 0 changes will usually succeed.
Is there some race condition happening with the [umask](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L416), which is process global, and the [file creation](https://github.com/huggingface/datasets/blob/main/src/datasets/utils/file_utils.py#L404)?
```
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
.venv/lib/python3.12/site-packages/datasets/load.py:2084: in load_dataset
builder_instance.download_and_prepare(
.venv/lib/python3.12/site-packages/datasets/builder.py:925: in download_and_prepare
self._download_and_prepare(
.venv/lib/python3.12/site-packages/datasets/builder.py:1649: in _download_and_prepare
super()._download_and_prepare(
.venv/lib/python3.12/site-packages/datasets/builder.py:979: in _download_and_prepare
split_generators = self._split_generators(dl_manager, **split_generators_kwargs)
.venv/lib/python3.12/site-packages/datasets/packaged_modules/folder_based_builder/folder_based_builder.py:120: in _split_generators
downloaded_files = dl_manager.download(files)
.venv/lib/python3.12/site-packages/datasets/download/download_manager.py:159: in download
downloaded_path_or_paths = map_nested(
.venv/lib/python3.12/site-packages/datasets/utils/py_utils.py:514: in map_nested
_single_map_nested((function, obj, batched, batch_size, types, None, True, None))
.venv/lib/python3.12/site-packages/datasets/utils/py_utils.py:382: in _single_map_nested
return [mapped_item for batch in iter_batched(data_struct, batch_size) for mapped_item in function(batch)]
.venv/lib/python3.12/site-packages/datasets/download/download_manager.py:206: in _download_batched
return thread_map(
.venv/lib/python3.12/site-packages/tqdm/contrib/concurrent.py:69: in thread_map
return _executor_map(ThreadPoolExecutor, fn, *iterables, **tqdm_kwargs)
.venv/lib/python3.12/site-packages/tqdm/contrib/concurrent.py:51: in _executor_map
return list(tqdm_class(ex.map(fn, *iterables, chunksize=chunksize), **kwargs))
.venv/lib/python3.12/site-packages/tqdm/std.py:1181: in __iter__
for obj in iterable:
../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:619: in result_iterator
yield _result_or_cancel(fs.pop())
../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:317: in _result_or_cancel
return fut.result(timeout)
../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:449: in result
return self.__get_result()
../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/_base.py:401: in __get_result
raise self._exception
../../../_tool/Python/3.12.10/x64/lib/python3.12/concurrent/futures/thread.py:59: in run
result = self.fn(*self.args, **self.kwargs)
.venv/lib/python3.12/site-packages/datasets/download/download_manager.py:229: in _download_single
out = cached_path(url_or_filename, download_config=download_config)
.venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:206: in cached_path
output_path = get_from_cache(
.venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:412: in get_from_cache
fsspec_get(url, temp_file, storage_options=storage_options, desc=download_desc, disable_tqdm=disable_tqdm)
.venv/lib/python3.12/site-packages/datasets/utils/file_utils.py:331: in fsspec_get
fs.get_file(path, temp_file.name, callback=callback)
.venv/lib/python3.12/site-packages/fsspec/asyn.py:118: in wrapper
return sync(self.loop, func, *args, **kwargs)
.venv/lib/python3.12/site-packages/fsspec/asyn.py:103: in sync
raise return_result
.venv/lib/python3.12/site-packages/fsspec/asyn.py:56: in _runner
result[0] = await coro
_ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _
self = <s3fs.core.S3FileSystem object at 0x7f27c18b2e70>
rpath = '<my-bucket>/<my-prefix>/img_1.jpg'
lpath = '/home/runner/_work/_temp/hf_cache/downloads/6c97983efa4e24e534557724655df8247a0bd04326cdfc4a95b638c11e78222d.incomplete'
callback = <datasets.utils.file_utils.TqdmCallback object at 0x7f27c00cdbe0>
version_id = None, kwargs = {}
_open_file = <function S3FileSystem._get_file.<locals>._open_file at 0x7f27628d1120>
body = <StreamingBody at 0x7f276344fa80 for ClientResponse at 0x7f27c015fce0>
content_length = 521923, failed_reads = 0, bytes_read = 0
async def _get_file(
self, rpath, lpath, callback=_DEFAULT_CALLBACK, version_id=None, **kwargs
):
if os.path.isdir(lpath):
return
bucket, key, vers = self.split_path(rpath)
async def _open_file(range: int):
kw = self.req_kw.copy()
if range:
kw["Range"] = f"bytes={range}-"
resp = await self._call_s3(
"get_object",
Bucket=bucket,
Key=key,
**version_id_kw(version_id or vers),
**kw,
)
return resp["Body"], resp.get("ContentLength", None)
body, content_length = await _open_file(range=0)
callback.set_size(content_length)
failed_reads = 0
bytes_read = 0
try:
> with open(lpath, "wb") as f0:
E PermissionError: [Errno 13] Permission denied: '/home/runner/_work/_temp/hf_cache/downloads/6c97983efa4e24e534557724655df8247a0bd04326cdfc4a95b638c11e78222d.incomplete'
.venv/lib/python3.12/site-packages/s3fs/core.py:1355: PermissionError
```
### Steps to reproduce the bug
I believe this is a race condition and cannot reliably re-produce it, but it happens fairly frequently in our GitHub Actions tests and can also be re-produced (with lesser frequency) on cloud VMs.
### Expected behavior
The dataset loads properly with no permission denied error.
### Environment info
- `datasets` version: 3.5.0
- Platform: Linux-5.10.0-34-cloud-amd64-x86_64-with-glibc2.31
- Python version: 3.12.10
- `huggingface_hub` version: 0.30.2
- PyArrow version: 19.0.1
- Pandas version: 2.2.3
- `fsspec` version: 2024.12.0
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7536/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7536/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7535
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7535/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7535/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7535/events
|
https://github.com/huggingface/datasets/pull/7535
| 3,018,289,872
|
PR_kwDODunzps6T0lm3
| 7,535
|
Change dill version in requirements
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/98061329?v=4",
"events_url": "https://api.github.com/users/JGrel/events{/privacy}",
"followers_url": "https://api.github.com/users/JGrel/followers",
"following_url": "https://api.github.com/users/JGrel/following{/other_user}",
"gists_url": "https://api.github.com/users/JGrel/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/JGrel",
"id": 98061329,
"login": "JGrel",
"node_id": "U_kgDOBdhMEQ",
"organizations_url": "https://api.github.com/users/JGrel/orgs",
"received_events_url": "https://api.github.com/users/JGrel/received_events",
"repos_url": "https://api.github.com/users/JGrel/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/JGrel/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JGrel/subscriptions",
"type": "User",
"url": "https://api.github.com/users/JGrel",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7535). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 2025-04-24T19:44:28
| 2025-04-25T09:31:44
| null |
NONE
| null | null | null |
Change dill version to >=0.3.9,<0.4.5 and check for errors
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7535/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7535/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7535.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7535",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7535.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7535"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7534
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7534/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7534/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7534/events
|
https://github.com/huggingface/datasets/issues/7534
| 3,017,259,407
|
I_kwDODunzps6z17mP
| 7,534
|
TensorFlow RaggedTensor Support (batch-level)
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/7490199?v=4",
"events_url": "https://api.github.com/users/Lundez/events{/privacy}",
"followers_url": "https://api.github.com/users/Lundez/followers",
"following_url": "https://api.github.com/users/Lundez/following{/other_user}",
"gists_url": "https://api.github.com/users/Lundez/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Lundez",
"id": 7490199,
"login": "Lundez",
"node_id": "MDQ6VXNlcjc0OTAxOTk=",
"organizations_url": "https://api.github.com/users/Lundez/orgs",
"received_events_url": "https://api.github.com/users/Lundez/received_events",
"repos_url": "https://api.github.com/users/Lundez/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Lundez/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Lundez/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Lundez",
"user_view_type": "public"
}
|
[
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] |
open
| false
| null |
[] | null |
[] | 2025-04-24T13:14:52
| 2025-04-24T13:17:20
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Feature request
Hi,
Currently datasets does not support RaggedTensor output on batch-level.
When building a Object Detection Dataset (with TensorFlow) I need to enable RaggedTensors as that's how BBoxes & classes are expected from the Keras Model POV.
Currently there's a error thrown saying that "Nested Data is not supported".
It'd be very helpful if this was fixed! :)
### Motivation
Enabling Object Detection pipelines for TensorFlow.
### Your contribution
With guidance I'd happily help making the PR.
The current implementation with DataCollator and later enforcing `np.array` is the problematic part (at the end of `np_get_batch` in `tf_utils.py`). As `numpy` don't support "Raggednes"
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7534/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7534/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7533
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7533/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7533/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7533/events
|
https://github.com/huggingface/datasets/pull/7533
| 3,015,075,086
|
PR_kwDODunzps6TpraJ
| 7,533
|
Add custom fingerprint support to `from_generator`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4",
"events_url": "https://api.github.com/users/simonreise/events{/privacy}",
"followers_url": "https://api.github.com/users/simonreise/followers",
"following_url": "https://api.github.com/users/simonreise/following{/other_user}",
"gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/simonreise",
"id": 43753582,
"login": "simonreise",
"node_id": "MDQ6VXNlcjQzNzUzNTgy",
"organizations_url": "https://api.github.com/users/simonreise/orgs",
"received_events_url": "https://api.github.com/users/simonreise/received_events",
"repos_url": "https://api.github.com/users/simonreise/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simonreise/subscriptions",
"type": "User",
"url": "https://api.github.com/users/simonreise",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"This is great !\r\n\r\nWhat do you think of passing `config_id=` directly to the builder instead of just the suffix ? This would be a power user argument though, or for internal use. And in from_generator the new argument can be `fingerprint=` as in `Dataset.__init__()`\r\n\r\nThe `config_id` can be defined using something like `config_id = \"default-fingerprint=\" + fingerprint`\r\n\r\nI feel ike this could make the Dataset API more coherent if we avoid introducing a new argument while we can juste use `fingerprint=`"
] | 2025-04-23T19:31:35
| 2025-04-24T10:22:53
| null |
NONE
| null | null | null |
This PR adds `dataset_id_suffix` parameter to 'Dataset.from_generator' function.
`Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including generator function itself. `BuilderConfig.create_config_id` function tries to hash all the args, which can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough.
This PR allows user to pass a custom fingerprint (`dataset_id_suffix`) to be used as a suffix in a dataset name instead of the one generated by hashing the args.
This PR is a possible solution of #7513
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7533/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7533/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7533.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7533",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7533.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7533"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7532
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7532/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7532/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7532/events
|
https://github.com/huggingface/datasets/pull/7532
| 3,009,546,204
|
PR_kwDODunzps6TW8Ss
| 7,532
|
Document the HF_DATASETS_CACHE environment variable in the datasets cache documentation
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/129883215?v=4",
"events_url": "https://api.github.com/users/Harry-Yang0518/events{/privacy}",
"followers_url": "https://api.github.com/users/Harry-Yang0518/followers",
"following_url": "https://api.github.com/users/Harry-Yang0518/following{/other_user}",
"gists_url": "https://api.github.com/users/Harry-Yang0518/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Harry-Yang0518",
"id": 129883215,
"login": "Harry-Yang0518",
"node_id": "U_kgDOB73cTw",
"organizations_url": "https://api.github.com/users/Harry-Yang0518/orgs",
"received_events_url": "https://api.github.com/users/Harry-Yang0518/received_events",
"repos_url": "https://api.github.com/users/Harry-Yang0518/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Harry-Yang0518/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Harry-Yang0518/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Harry-Yang0518",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-22T00:23:13
| 2025-04-22T00:23:13
| null |
NONE
| null | null | null |
This pull request updates the Datasets documentation to include the `HF_DATASETS_CACHE` environment variable. While the current documentation only mentions `HF_HOME` for overriding the default cache directory, `HF_DATASETS_CACHE` is also a supported and useful option for specifying a custom cache location for datasets stored in Arrow format.
This addition is based on the discussion in (https://github.com/huggingface/datasets/issues/7457), where users noted the absence of this variable in the documentation despite its functionality. The update adds a new section to `cache.mdx` that explains how to use `HF_DATASETS_CACHE` with an example.
This change aims to improve clarity and help users better manage their cache directories when working in shared environments or with limited local storage.
Closes #7457.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7532/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7532/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7532.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7532",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7532.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7532"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7531
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7531/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7531/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7531/events
|
https://github.com/huggingface/datasets/issues/7531
| 3,008,914,887
|
I_kwDODunzps6zWGXH
| 7,531
|
Deepspeed reward training hangs at end of training with Dataset.from_list
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/60710414?v=4",
"events_url": "https://api.github.com/users/Matt00n/events{/privacy}",
"followers_url": "https://api.github.com/users/Matt00n/followers",
"following_url": "https://api.github.com/users/Matt00n/following{/other_user}",
"gists_url": "https://api.github.com/users/Matt00n/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Matt00n",
"id": 60710414,
"login": "Matt00n",
"node_id": "MDQ6VXNlcjYwNzEwNDE0",
"organizations_url": "https://api.github.com/users/Matt00n/orgs",
"received_events_url": "https://api.github.com/users/Matt00n/received_events",
"repos_url": "https://api.github.com/users/Matt00n/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Matt00n/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Matt00n/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Matt00n",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-21T17:29:20
| 2025-04-21T17:29:20
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
There seems to be a weird interaction between Deepspeed, the Dataset.from_list method and trl's RewardTrainer. On a multi-GPU setup (10 A100s), training always hangs at the very end of training until it times out. The training itself works fine until the end of training and running the same script with Deepspeed on a single GPU works without hangig. The issue persisted across a wide range of Deepspeed configs and training arguments. The issue went away when storing the exact same dataset as a JSON and using `dataset = load_dataset("json", ...)`. Here is my training script:
```python
import pickle
import os
import random
import warnings
import torch
from datasets import load_dataset, Dataset
from transformers import AutoModelForSequenceClassification, AutoTokenizer
from trl import RewardConfig, RewardTrainer, ModelConfig
####################################### Reward model #################################################
# Explicitly set arguments
model_name_or_path = "Qwen/Qwen2.5-1.5B"
output_dir = "Qwen2-0.5B-Reward-LoRA"
per_device_train_batch_size = 2
num_train_epochs = 5
gradient_checkpointing = True
learning_rate = 1.0e-4
logging_steps = 25
eval_strategy = "steps"
eval_steps = 50
max_length = 2048
torch_dtype = "auto"
trust_remote_code = False
model_args = ModelConfig(
model_name_or_path=model_name_or_path,
model_revision=None,
trust_remote_code=trust_remote_code,
torch_dtype=torch_dtype,
lora_task_type="SEQ_CLS", # Make sure task type is seq_cls
)
training_args = RewardConfig(
output_dir=output_dir,
per_device_train_batch_size=per_device_train_batch_size,
num_train_epochs=num_train_epochs,
gradient_checkpointing=gradient_checkpointing,
learning_rate=learning_rate,
logging_steps=logging_steps,
eval_strategy=eval_strategy,
eval_steps=eval_steps,
max_length=max_length,
gradient_checkpointing_kwargs=dict(use_reentrant=False),
center_rewards_coefficient = 0.01,
fp16=False,
bf16=True,
save_strategy="no",
dataloader_num_workers=0,
# deepspeed="./configs/deepspeed_config.json",
)
################
# Model & Tokenizer
################
model_kwargs = dict(
revision=model_args.model_revision,
use_cache=False if training_args.gradient_checkpointing else True,
torch_dtype=model_args.torch_dtype,
)
tokenizer = AutoTokenizer.from_pretrained(
model_args.model_name_or_path, use_fast=True
)
model = AutoModelForSequenceClassification.from_pretrained(
model_args.model_name_or_path, num_labels=1, trust_remote_code=model_args.trust_remote_code, **model_kwargs
)
# Align padding tokens between tokenizer and model
model.config.pad_token_id = tokenizer.pad_token_id
# If post-training a base model, use ChatML as the default template
if tokenizer.chat_template is None:
model, tokenizer = setup_chat_format(model, tokenizer)
if model_args.use_peft and model_args.lora_task_type != "SEQ_CLS":
warnings.warn(
"You are using a `task_type` that is different than `SEQ_CLS` for PEFT. This will lead to silent bugs"
" Make sure to pass --lora_task_type SEQ_CLS when using this script with PEFT.",
UserWarning,
)
##############
# Load dataset
##############
with open('./prefs.pkl', 'rb') as fh:
loaded_data = pickle.load(fh)
random.shuffle(loaded_data)
dataset = []
for a_wins, a, b in loaded_data:
if a_wins == 0:
a, b = b, a
dataset.append({'chosen': a, 'rejected': b})
dataset = Dataset.from_list(dataset)
# Split the dataset into training and evaluation sets
train_eval_split = dataset.train_test_split(test_size=0.15, shuffle=True, seed=42)
# Access the training and evaluation datasets
train_dataset = train_eval_split['train']
eval_dataset = train_eval_split['test']
##########
# Training
##########
trainer = RewardTrainer(
model=model,
processing_class=tokenizer,
args=training_args,
train_dataset=train_dataset,
eval_dataset=eval_dataset,
)
trainer.train()
```
Replacing `dataset = Dataset.from_list(dataset)` with
```python
with open('./prefs.json', 'w') as fh:
json.dump(dataset, fh)
dataset = load_dataset("json", data_files="./prefs.json", split='train')
```
resolves the issue.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7531/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7531/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7530
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7530/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7530/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7530/events
|
https://github.com/huggingface/datasets/issues/7530
| 3,007,452,499
|
I_kwDODunzps6zQhVT
| 7,530
|
How to solve "Spaces stuck in Building" problems
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/185799756?v=4",
"events_url": "https://api.github.com/users/kakamond/events{/privacy}",
"followers_url": "https://api.github.com/users/kakamond/followers",
"following_url": "https://api.github.com/users/kakamond/following{/other_user}",
"gists_url": "https://api.github.com/users/kakamond/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kakamond",
"id": 185799756,
"login": "kakamond",
"node_id": "U_kgDOCxMUTA",
"organizations_url": "https://api.github.com/users/kakamond/orgs",
"received_events_url": "https://api.github.com/users/kakamond/received_events",
"repos_url": "https://api.github.com/users/kakamond/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kakamond/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kakamond/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kakamond",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"I'm facing the same issue—Space stuck in \"Building\" even after restart and Factory rebuild. Any fix?\n",
"> I'm facing the same issue—Space stuck in \"Building\" even after restart and Factory rebuild. Any fix?\n\nAlso see https://github.com/huggingface/huggingface_hub/issues/3019",
"I'm facing the same issue. The build fails with the same error, and restarting won't help. Is there a fix or ETA? "
] | 2025-04-21T03:08:38
| 2025-04-22T07:49:52
| 2025-04-22T07:49:52
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Public spaces may stuck in Building after restarting, error log as follows:
build error
Unexpected job error
ERROR: failed to push spaces-registry.huggingface.tech/spaces/*:cpu-*-*: unexpected status from HEAD request to https://spaces-registry.huggingface.tech/v2/spaces/*/manifests/cpu-*-*: 401 Unauthorized
### Steps to reproduce the bug
Restart space / Factory rebuild cannot avoid it
### Expected behavior
Fix this problem
### Environment info
no requirements.txt can still happen
python gradio spaces
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/185799756?v=4",
"events_url": "https://api.github.com/users/kakamond/events{/privacy}",
"followers_url": "https://api.github.com/users/kakamond/followers",
"following_url": "https://api.github.com/users/kakamond/following{/other_user}",
"gists_url": "https://api.github.com/users/kakamond/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/kakamond",
"id": 185799756,
"login": "kakamond",
"node_id": "U_kgDOCxMUTA",
"organizations_url": "https://api.github.com/users/kakamond/orgs",
"received_events_url": "https://api.github.com/users/kakamond/received_events",
"repos_url": "https://api.github.com/users/kakamond/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/kakamond/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/kakamond/subscriptions",
"type": "User",
"url": "https://api.github.com/users/kakamond",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7530/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7530/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7529
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7529/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7529/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7529/events
|
https://github.com/huggingface/datasets/issues/7529
| 3,007,118,969
|
I_kwDODunzps6zPP55
| 7,529
|
audio folder builder cannot detect custom split name
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/37548991?v=4",
"events_url": "https://api.github.com/users/phineas-pta/events{/privacy}",
"followers_url": "https://api.github.com/users/phineas-pta/followers",
"following_url": "https://api.github.com/users/phineas-pta/following{/other_user}",
"gists_url": "https://api.github.com/users/phineas-pta/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/phineas-pta",
"id": 37548991,
"login": "phineas-pta",
"node_id": "MDQ6VXNlcjM3NTQ4OTkx",
"organizations_url": "https://api.github.com/users/phineas-pta/orgs",
"received_events_url": "https://api.github.com/users/phineas-pta/received_events",
"repos_url": "https://api.github.com/users/phineas-pta/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/phineas-pta/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/phineas-pta/subscriptions",
"type": "User",
"url": "https://api.github.com/users/phineas-pta",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-20T16:53:21
| 2025-04-20T16:53:21
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
when using audio folder builder (`load_dataset("audiofolder", data_dir="/path/to/folder")`), it cannot detect custom split name other than train/validation/test
### Steps to reproduce the bug
i have the following folder structure
```
my_dataset/
├── train/
│ ├── lorem.wav
│ ├── …
│ └── metadata.csv
├── test/
│ ├── ipsum.wav
│ ├── …
│ └── metadata.csv
├── validation/
│ ├── dolor.wav
│ ├── …
│ └── metadata.csv
└── custom/
├── sit.wav
├── …
└── metadata.csv
```
using `ds = load_dataset("audiofolder", data_dir="/path/to/my_dataset")`
### Expected behavior
i got `ds` with only 3 splits train/validation/test, whenever i rename train/validation/test folder it also disappear if i re-create `ds`
### Environment info
- `datasets` version: 3.5.0
- Platform: Windows-11-10.0.26100-SP0
- Python version: 3.12.8
- `huggingface_hub` version: 0.30.2
- PyArrow version: 18.1.0
- Pandas version: 2.2.3
- `fsspec` version: 2024.9.0
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7529/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7529/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7528
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7528/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7528/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7528/events
|
https://github.com/huggingface/datasets/issues/7528
| 3,006,433,485
|
I_kwDODunzps6zMojN
| 7,528
|
Data Studio Error: Convert JSONL incorrectly
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/144962041?v=4",
"events_url": "https://api.github.com/users/zxccade/events{/privacy}",
"followers_url": "https://api.github.com/users/zxccade/followers",
"following_url": "https://api.github.com/users/zxccade/following{/other_user}",
"gists_url": "https://api.github.com/users/zxccade/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/zxccade",
"id": 144962041,
"login": "zxccade",
"node_id": "U_kgDOCKPx-Q",
"organizations_url": "https://api.github.com/users/zxccade/orgs",
"received_events_url": "https://api.github.com/users/zxccade/received_events",
"repos_url": "https://api.github.com/users/zxccade/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/zxccade/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/zxccade/subscriptions",
"type": "User",
"url": "https://api.github.com/users/zxccade",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-19T13:21:44
| 2025-04-19T13:21:44
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Hi there,
I uploaded a dataset here https://huggingface.co/datasets/V-STaR-Bench/V-STaR, but I found that Data Studio incorrectly convert the "bboxes" value for the whole dataset. Therefore, anyone who downloaded the dataset via the API would get the wrong "bboxes" value in the data file.
Could you help me address the issue?
Many thanks,
### Steps to reproduce the bug
The JSONL file of [V_STaR_test_release.jsonl](https://huggingface.co/datasets/V-STaR-Bench/V-STaR/blob/main/V_STaR_test_release.jsonl) has the correct values of every "bboxes" for each sample.
But in the Data Studio, we can see that the values of "bboxes" have changed, and load the dataset via API will also get the wrong values.
### Expected behavior
Fix the bug to correctly download my dataset.
### Environment info
- `datasets` version: 2.16.1
- Platform: Linux-5.14.0-427.22.1.el9_4.x86_64-x86_64-with-glibc2.34
- Python version: 3.10.16
- `huggingface_hub` version: 0.29.3
- PyArrow version: 19.0.0
- Pandas version: 2.2.3
- `fsspec` version: 2023.10.0
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7528/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7528/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7527
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7527/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7527/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7527/events
|
https://github.com/huggingface/datasets/issues/7527
| 3,005,242,422
|
I_kwDODunzps6zIFw2
| 7,527
|
Auto-merge option for `convert-to-parquet`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/17013474?v=4",
"events_url": "https://api.github.com/users/klamike/events{/privacy}",
"followers_url": "https://api.github.com/users/klamike/followers",
"following_url": "https://api.github.com/users/klamike/following{/other_user}",
"gists_url": "https://api.github.com/users/klamike/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/klamike",
"id": 17013474,
"login": "klamike",
"node_id": "MDQ6VXNlcjE3MDEzNDc0",
"organizations_url": "https://api.github.com/users/klamike/orgs",
"received_events_url": "https://api.github.com/users/klamike/received_events",
"repos_url": "https://api.github.com/users/klamike/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/klamike/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/klamike/subscriptions",
"type": "User",
"url": "https://api.github.com/users/klamike",
"user_view_type": "public"
}
|
[
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] |
open
| false
| null |
[] | null |
[
"Alternatively, there could be an option to switch from submitting PRs to just committing changes directly to `main`."
] | 2025-04-18T16:03:22
| 2025-04-18T16:05:30
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Feature request
Add a command-line option, e.g. `--auto-merge-pull-request` that enables automatic merging of the commits created by the `convert-to-parquet` tool.
### Motivation
Large datasets may result in dozens of PRs due to the splitting mechanism. Each of these has to be manually accepted via the website.
### Your contribution
Happy to look into submitting a PR if this is of interest to maintainers.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7527/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7527/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7526
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7526/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7526/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7526/events
|
https://github.com/huggingface/datasets/issues/7526
| 3,005,107,536
|
I_kwDODunzps6zHk1Q
| 7,526
|
[WIP] Faster downloads/uploads with Xet storage
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-18T14:46:42
| 2025-04-18T14:50:40
| null |
MEMBER
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|

Over the past few weeks, Hugging Face’s [Xet Team](https://huggingface.co/xet-team) took a major step forward by [migrating the first Model and Dataset repositories off LFS and to Xet storage](https://huggingface.co/posts/jsulz/911431940353906).
See more information on the HF blog: https://huggingface.co/blog/xet-on-the-hub
You can already enable Xet on Hugging Face account to benefit from faster downloads and uploads :)
We’re finalizing an official integration with the `huggingface_hub`library that will mean you get the benefits of Xet without any significant changes to your current workflow. In the meantime you might see this warning in `push_to_hub()`:
```
Uploading files as bytes or binary IO objects is not supported by Xet Storage.
```
This means the `huggingface_hub` + Xet integration isn't enabled for `datasets` yet. Stay tuned !
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 3,
"total_count": 3,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7526/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7526/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7525
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7525/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7525/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7525/events
|
https://github.com/huggingface/datasets/pull/7525
| 3,003,032,248
|
PR_kwDODunzps6TBOH1
| 7,525
|
Fix indexing in split commit messages
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/17013474?v=4",
"events_url": "https://api.github.com/users/klamike/events{/privacy}",
"followers_url": "https://api.github.com/users/klamike/followers",
"following_url": "https://api.github.com/users/klamike/following{/other_user}",
"gists_url": "https://api.github.com/users/klamike/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/klamike",
"id": 17013474,
"login": "klamike",
"node_id": "MDQ6VXNlcjE3MDEzNDc0",
"organizations_url": "https://api.github.com/users/klamike/orgs",
"received_events_url": "https://api.github.com/users/klamike/received_events",
"repos_url": "https://api.github.com/users/klamike/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/klamike/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/klamike/subscriptions",
"type": "User",
"url": "https://api.github.com/users/klamike",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-17T17:06:26
| 2025-04-18T15:14:01
| null |
NONE
| null | null | null |
When a large commit is split up, it seems the commit index in the message is zero-based while the total number is one-based. I came across this running `convert-to-parquet` and was wondering why there was no `6-of-6` commit. This PR fixes that by adding one to the commit index, so both are one-based.
Current behavior:
<img width="463" alt="Screenshot 2025-04-17 at 1 00 17 PM" src="https://github.com/user-attachments/assets/7f3d389e-cb92-405d-a3c2-f2b1cdf0cb79" />
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7525/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7525/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7525.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7525",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7525.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7525"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7524
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7524/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7524/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7524/events
|
https://github.com/huggingface/datasets/pull/7524
| 3,002,067,826
|
PR_kwDODunzps6S99KB
| 7,524
|
correct use with polars example
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43832476?v=4",
"events_url": "https://api.github.com/users/SiQube/events{/privacy}",
"followers_url": "https://api.github.com/users/SiQube/followers",
"following_url": "https://api.github.com/users/SiQube/following{/other_user}",
"gists_url": "https://api.github.com/users/SiQube/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/SiQube",
"id": 43832476,
"login": "SiQube",
"node_id": "MDQ6VXNlcjQzODMyNDc2",
"organizations_url": "https://api.github.com/users/SiQube/orgs",
"received_events_url": "https://api.github.com/users/SiQube/received_events",
"repos_url": "https://api.github.com/users/SiQube/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/SiQube/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/SiQube/subscriptions",
"type": "User",
"url": "https://api.github.com/users/SiQube",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-17T10:19:19
| 2025-04-17T10:19:19
| null |
NONE
| null | null | null | null | null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7524/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7524/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7524.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7524",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7524.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7524"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7523
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7523/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7523/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7523/events
|
https://github.com/huggingface/datasets/pull/7523
| 2,999,616,692
|
PR_kwDODunzps6S1r8w
| 7,523
|
mention av in video docs
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7523). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 2025-04-16T13:11:12
| 2025-04-16T13:13:45
| 2025-04-16T13:11:42
|
MEMBER
| null | null | null | null |
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 1,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 1,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7523/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7523/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7523.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7523",
"merged_at": "2025-04-16T13:11:42Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7523.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7523"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7522
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7522/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7522/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7522/events
|
https://github.com/huggingface/datasets/pull/7522
| 2,998,169,017
|
PR_kwDODunzps6SwwXW
| 7,522
|
Preserve formatting in concatenated IterableDataset
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/5140987?v=4",
"events_url": "https://api.github.com/users/francescorubbo/events{/privacy}",
"followers_url": "https://api.github.com/users/francescorubbo/followers",
"following_url": "https://api.github.com/users/francescorubbo/following{/other_user}",
"gists_url": "https://api.github.com/users/francescorubbo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/francescorubbo",
"id": 5140987,
"login": "francescorubbo",
"node_id": "MDQ6VXNlcjUxNDA5ODc=",
"organizations_url": "https://api.github.com/users/francescorubbo/orgs",
"received_events_url": "https://api.github.com/users/francescorubbo/received_events",
"repos_url": "https://api.github.com/users/francescorubbo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/francescorubbo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/francescorubbo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/francescorubbo",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[] | 2025-04-16T02:37:33
| 2025-04-16T02:37:33
| null |
NONE
| null | null | null |
Fixes #7515
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7522/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7522/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7522.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7522",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7522.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7522"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7521
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7521/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7521/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7521/events
|
https://github.com/huggingface/datasets/pull/7521
| 2,997,666,366
|
PR_kwDODunzps6SvEZp
| 7,521
|
fix: Image Feature in Datasets Library Fails to Handle bytearray Objects from Spark DataFrames (#7517)
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/73196164?v=4",
"events_url": "https://api.github.com/users/giraffacarp/events{/privacy}",
"followers_url": "https://api.github.com/users/giraffacarp/followers",
"following_url": "https://api.github.com/users/giraffacarp/following{/other_user}",
"gists_url": "https://api.github.com/users/giraffacarp/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/giraffacarp",
"id": 73196164,
"login": "giraffacarp",
"node_id": "MDQ6VXNlcjczMTk2MTY0",
"organizations_url": "https://api.github.com/users/giraffacarp/orgs",
"received_events_url": "https://api.github.com/users/giraffacarp/received_events",
"repos_url": "https://api.github.com/users/giraffacarp/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/giraffacarp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/giraffacarp/subscriptions",
"type": "User",
"url": "https://api.github.com/users/giraffacarp",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"@lhoestq let me know if you prefer to change the spark iterator so it outputs `bytes`"
] | 2025-04-15T21:23:58
| 2025-04-16T06:57:22
| null |
NONE
| null | null | null |
## Task
Support bytes-like objects (bytes and bytearray) in Features classes
### Description
The `Features` classes only accept `bytes` objects for binary data, but not `bytearray`. This leads to errors when using `IterableDataset.from_spark()` with Spark DataFrames as they contain `bytearray` objects, even though both `bytes` and `bytearray` are valid [*bytes-like objects* in Python](https://docs.python.org/3/glossary.html#term-bytes-like-object).
### Changes
- Updated `Features` classes to accept both `bytes` and `bytearray` types for binary data fields.
### Reasoning
- `bytes` and `bytearray` serve the same purpose for binary data, with the only difference being mutability.
- Modifying the Spark iterator to convert `bytearray` to `bytes` would be a workaround, not a true fix. I think the correct solution is to accept all bytes-like objects as input.
- This approach is more robust and future-proof since Python 3.12+ provides a [standard way to check for buffer protocol](https://docs.python.org/3/c-api/buffer.html#bufferobjects).
### Testing
- Added tests to cover `bytearray` inputs for image features.
### Related Issues
- Fixes: #7517
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7521/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7521/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7521.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7521",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7521.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7521"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7520
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7520/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7520/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7520/events
|
https://github.com/huggingface/datasets/issues/7520
| 2,997,422,044
|
I_kwDODunzps6yqQfc
| 7,520
|
Update items in the dataset without `map`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/122402293?v=4",
"events_url": "https://api.github.com/users/mashdragon/events{/privacy}",
"followers_url": "https://api.github.com/users/mashdragon/followers",
"following_url": "https://api.github.com/users/mashdragon/following{/other_user}",
"gists_url": "https://api.github.com/users/mashdragon/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/mashdragon",
"id": 122402293,
"login": "mashdragon",
"node_id": "U_kgDOB0u19Q",
"organizations_url": "https://api.github.com/users/mashdragon/orgs",
"received_events_url": "https://api.github.com/users/mashdragon/received_events",
"repos_url": "https://api.github.com/users/mashdragon/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/mashdragon/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/mashdragon/subscriptions",
"type": "User",
"url": "https://api.github.com/users/mashdragon",
"user_view_type": "public"
}
|
[
{
"color": "a2eeef",
"default": true,
"description": "New feature or request",
"id": 1935892871,
"name": "enhancement",
"node_id": "MDU6TGFiZWwxOTM1ODkyODcx",
"url": "https://api.github.com/repos/huggingface/datasets/labels/enhancement"
}
] |
open
| false
| null |
[] | null |
[
"Hello!\n\nHave you looked at `Dataset.shard`? [Docs](https://huggingface.co/docs/datasets/en/process#shard)\n\nUsing this method you could break your dataset in N shards. Apply `map` on each shard and concatenate them back."
] | 2025-04-15T19:39:01
| 2025-04-19T18:47:46
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Feature request
I would like to be able to update items in my dataset without affecting all rows. At least if there was a range option, I would be able to process those items, save the dataset, and then continue.
If I am supposed to split the dataset first, that is not clear, since the docs suggest that any of those functions returns a new object, so I don't think I can do that.
### Motivation
I am applying an extremely time-consuming function to each item in my `Dataset`. Unfortunately, datasets only supports updating values via `map`, so if my computer dies in the middle of this long-running process, I lose all progress. This is far from ideal. I would like to use `datasets` throughout this processing, but this limitation is now forcing me to write my own dataset format just to do this intermediary operation.
It would be less intuitive but I suppose I could split and then concatenate the dataset before saving? But this feels very inefficient.
### Your contribution
I can test the feature.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7520/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7520/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7519
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7519/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7519/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7519/events
|
https://github.com/huggingface/datasets/pull/7519
| 2,996,458,961
|
PR_kwDODunzps6Sq76Z
| 7,519
|
pdf docs fixes
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[
"The docs for this PR live [here](https://moon-ci-docs.huggingface.co/docs/datasets/pr_7519). All of your documentation changes will be reflected on that endpoint. The docs are available until 30 days after the last update."
] | 2025-04-15T13:35:56
| 2025-04-15T13:38:31
| 2025-04-15T13:36:03
|
MEMBER
| null | null | null |
close https://github.com/huggingface/datasets/issues/7494
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/42851186?v=4",
"events_url": "https://api.github.com/users/lhoestq/events{/privacy}",
"followers_url": "https://api.github.com/users/lhoestq/followers",
"following_url": "https://api.github.com/users/lhoestq/following{/other_user}",
"gists_url": "https://api.github.com/users/lhoestq/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/lhoestq",
"id": 42851186,
"login": "lhoestq",
"node_id": "MDQ6VXNlcjQyODUxMTg2",
"organizations_url": "https://api.github.com/users/lhoestq/orgs",
"received_events_url": "https://api.github.com/users/lhoestq/received_events",
"repos_url": "https://api.github.com/users/lhoestq/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/lhoestq/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/lhoestq/subscriptions",
"type": "User",
"url": "https://api.github.com/users/lhoestq",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7519/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7519/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7519.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7519",
"merged_at": "2025-04-15T13:36:03Z",
"patch_url": "https://github.com/huggingface/datasets/pull/7519.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7519"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7518
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7518/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7518/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7518/events
|
https://github.com/huggingface/datasets/issues/7518
| 2,996,141,825
|
I_kwDODunzps6ylX8B
| 7,518
|
num_proc parallelization works only for first ~10s.
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/33901783?v=4",
"events_url": "https://api.github.com/users/pshishodiaa/events{/privacy}",
"followers_url": "https://api.github.com/users/pshishodiaa/followers",
"following_url": "https://api.github.com/users/pshishodiaa/following{/other_user}",
"gists_url": "https://api.github.com/users/pshishodiaa/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/pshishodiaa",
"id": 33901783,
"login": "pshishodiaa",
"node_id": "MDQ6VXNlcjMzOTAxNzgz",
"organizations_url": "https://api.github.com/users/pshishodiaa/orgs",
"received_events_url": "https://api.github.com/users/pshishodiaa/received_events",
"repos_url": "https://api.github.com/users/pshishodiaa/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/pshishodiaa/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/pshishodiaa/subscriptions",
"type": "User",
"url": "https://api.github.com/users/pshishodiaa",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Hi, can you check if the processes are still alive ? It's a bit weird because `datasets` does check if processes crash and return an error in that case",
"Thank you for reverting quickly. I digged a bit, and realized my disk's IOPS is also limited - which is causing this. will check further and report if it's an issue of hf datasets' side or mine. "
] | 2025-04-15T11:44:03
| 2025-04-15T13:12:13
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
When I try to load an already downloaded dataset with num_proc=64, the speed is very high for the first 10-20 seconds acheiving 30-40K samples / s, and 100% utilization for all cores but it soon drops to <= 1000 with almost 0% utilization for most cores.
### Steps to reproduce the bug
```
// download dataset with cli
!huggingface-cli download --repo-type dataset timm/imagenet-1k-wds --max-workers 32
from datasets import load_dataset
ds = load_dataset("timm/imagenet-1k-wds", num_proc=64)
```
### Expected behavior
100% core utilization throughout.
### Environment info
Azure A100-80GB, 16 cores VM

| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7518/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7518/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7517
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7517/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7517/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7517/events
|
https://github.com/huggingface/datasets/issues/7517
| 2,996,106,077
|
I_kwDODunzps6ylPNd
| 7,517
|
Image Feature in Datasets Library Fails to Handle bytearray Objects from Spark DataFrames
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/73196164?v=4",
"events_url": "https://api.github.com/users/giraffacarp/events{/privacy}",
"followers_url": "https://api.github.com/users/giraffacarp/followers",
"following_url": "https://api.github.com/users/giraffacarp/following{/other_user}",
"gists_url": "https://api.github.com/users/giraffacarp/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/giraffacarp",
"id": 73196164,
"login": "giraffacarp",
"node_id": "MDQ6VXNlcjczMTk2MTY0",
"organizations_url": "https://api.github.com/users/giraffacarp/orgs",
"received_events_url": "https://api.github.com/users/giraffacarp/received_events",
"repos_url": "https://api.github.com/users/giraffacarp/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/giraffacarp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/giraffacarp/subscriptions",
"type": "User",
"url": "https://api.github.com/users/giraffacarp",
"user_view_type": "public"
}
|
[] |
open
| false
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/73196164?v=4",
"events_url": "https://api.github.com/users/giraffacarp/events{/privacy}",
"followers_url": "https://api.github.com/users/giraffacarp/followers",
"following_url": "https://api.github.com/users/giraffacarp/following{/other_user}",
"gists_url": "https://api.github.com/users/giraffacarp/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/giraffacarp",
"id": 73196164,
"login": "giraffacarp",
"node_id": "MDQ6VXNlcjczMTk2MTY0",
"organizations_url": "https://api.github.com/users/giraffacarp/orgs",
"received_events_url": "https://api.github.com/users/giraffacarp/received_events",
"repos_url": "https://api.github.com/users/giraffacarp/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/giraffacarp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/giraffacarp/subscriptions",
"type": "User",
"url": "https://api.github.com/users/giraffacarp",
"user_view_type": "public"
}
|
[
{
"avatar_url": "https://avatars.githubusercontent.com/u/73196164?v=4",
"events_url": "https://api.github.com/users/giraffacarp/events{/privacy}",
"followers_url": "https://api.github.com/users/giraffacarp/followers",
"following_url": "https://api.github.com/users/giraffacarp/following{/other_user}",
"gists_url": "https://api.github.com/users/giraffacarp/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/giraffacarp",
"id": 73196164,
"login": "giraffacarp",
"node_id": "MDQ6VXNlcjczMTk2MTY0",
"organizations_url": "https://api.github.com/users/giraffacarp/orgs",
"received_events_url": "https://api.github.com/users/giraffacarp/received_events",
"repos_url": "https://api.github.com/users/giraffacarp/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/giraffacarp/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/giraffacarp/subscriptions",
"type": "User",
"url": "https://api.github.com/users/giraffacarp",
"user_view_type": "public"
}
] | null |
[
"Hi ! The `Image()` type accepts either\n- a `bytes` object containing the image bytes\n- a `str` object containing the image path\n- a `PIL.Image` object\n\nbut it doesn't support `bytearray`, maybe you can convert to `bytes` beforehand ?",
"Hi @lhoestq, \nconverting to bytes is certainly possible and would work around the error. However, the core issue is that `Dataset` and `IterableDataset` behave differently with the features.\n\nI’d be happy to work on a fix for this issue.",
"I see, that's an issue indeed. Feel free to ping me if I can help with reviews or any guidance\n\nIf it can help, the code that takes a Spark DataFrame and iterates on the rows for `IterableDataset` is here: \n\nhttps://github.com/huggingface/datasets/blob/6a96bf313085d7538a999b929a550e14e1d406c9/src/datasets/packaged_modules/spark/spark.py#L49-L53",
"#self-assign"
] | 2025-04-15T11:29:17
| 2025-04-15T15:57:15
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
When using `IterableDataset.from_spark()` with a Spark DataFrame containing image data, the `Image` feature class fails to properly process this data type, causing an `AttributeError: 'bytearray' object has no attribute 'get'`
### Steps to reproduce the bug
1. Create a Spark DataFrame with a column containing image data as bytearray objects
2. Define a Feature schema with an Image feature
3. Create an IterableDataset using `IterableDataset.from_spark()`
4. Attempt to iterate through the dataset
```
from pyspark.sql import SparkSession
from datasets import Dataset, IterableDataset, Features, Image, Value
# initialize spark
spark = SparkSession.builder.appName("MinimalRepro").getOrCreate()
# create spark dataframe
data = [(0, open("image.png", "rb").read())]
df = spark.createDataFrame(data, "idx: int, image: binary")
# convert to dataset
features = Features({"idx": Value("int64"), "image": Image()})
ds = Dataset.from_spark(df, features=features)
ds_iter = IterableDataset.from_spark(df, features=features)
# iterate
print(next(iter(ds)))
print(next(iter(ds_iter)))
```
### Expected behavior
The features should work on `IterableDataset` the same way they work on `Dataset`
### Environment info
- `datasets` version: 3.5.0
- Platform: macOS-15.3.2-arm64-arm-64bit
- Python version: 3.12.7
- `huggingface_hub` version: 0.30.2
- PyArrow version: 18.1.0
- Pandas version: 2.2.3
- `fsspec` version: 2024.12.0
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7517/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7517/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7516
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7516/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7516/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7516/events
|
https://github.com/huggingface/datasets/issues/7516
| 2,995,780,283
|
I_kwDODunzps6yj_q7
| 7,516
|
unsloth/DeepSeek-R1-Distill-Qwen-32B server error
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/164353862?v=4",
"events_url": "https://api.github.com/users/Editor-1/events{/privacy}",
"followers_url": "https://api.github.com/users/Editor-1/followers",
"following_url": "https://api.github.com/users/Editor-1/following{/other_user}",
"gists_url": "https://api.github.com/users/Editor-1/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Editor-1",
"id": 164353862,
"login": "Editor-1",
"node_id": "U_kgDOCcvXRg",
"organizations_url": "https://api.github.com/users/Editor-1/orgs",
"received_events_url": "https://api.github.com/users/Editor-1/received_events",
"repos_url": "https://api.github.com/users/Editor-1/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Editor-1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Editor-1/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Editor-1",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[] | 2025-04-15T09:26:53
| 2025-04-15T09:57:26
| 2025-04-15T09:57:26
|
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
hfhubhttperror: 500 server error: internal server error for url: https://huggingface.co/api/models/unsloth/deepseek-r1-distill-qwen-32b-bnb-4bit/commits/main (request id: root=1-67fe23fa-3a2150eb444c2a823c388579;de3aed68-c397-4da5-94d4-6565efd3b919) internal error - we're working hard to fix this as soon as possible!
### Steps to reproduce the bug
unsloth/DeepSeek-R1-Distill-Qwen-32B server error
### Expected behavior
Network repair
### Environment info
The web side is also unavailable
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/164353862?v=4",
"events_url": "https://api.github.com/users/Editor-1/events{/privacy}",
"followers_url": "https://api.github.com/users/Editor-1/followers",
"following_url": "https://api.github.com/users/Editor-1/following{/other_user}",
"gists_url": "https://api.github.com/users/Editor-1/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/Editor-1",
"id": 164353862,
"login": "Editor-1",
"node_id": "U_kgDOCcvXRg",
"organizations_url": "https://api.github.com/users/Editor-1/orgs",
"received_events_url": "https://api.github.com/users/Editor-1/received_events",
"repos_url": "https://api.github.com/users/Editor-1/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/Editor-1/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/Editor-1/subscriptions",
"type": "User",
"url": "https://api.github.com/users/Editor-1",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7516/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7516/timeline
| null |
completed
| null | null |
https://api.github.com/repos/huggingface/datasets/issues/7515
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7515/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7515/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7515/events
|
https://github.com/huggingface/datasets/issues/7515
| 2,995,082,418
|
I_kwDODunzps6yhVSy
| 7,515
|
`concatenate_datasets` does not preserve Pytorch format for IterableDataset
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/5140987?v=4",
"events_url": "https://api.github.com/users/francescorubbo/events{/privacy}",
"followers_url": "https://api.github.com/users/francescorubbo/followers",
"following_url": "https://api.github.com/users/francescorubbo/following{/other_user}",
"gists_url": "https://api.github.com/users/francescorubbo/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/francescorubbo",
"id": 5140987,
"login": "francescorubbo",
"node_id": "MDQ6VXNlcjUxNDA5ODc=",
"organizations_url": "https://api.github.com/users/francescorubbo/orgs",
"received_events_url": "https://api.github.com/users/francescorubbo/received_events",
"repos_url": "https://api.github.com/users/francescorubbo/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/francescorubbo/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/francescorubbo/subscriptions",
"type": "User",
"url": "https://api.github.com/users/francescorubbo",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Hi ! Oh indeed it would be cool to return the same format in that case. Would you like to submit a PR ? The function that does the concatenation is here:\n\nhttps://github.com/huggingface/datasets/blob/90e5bf8a8599b625d6103ee5ac83b98269991141/src/datasets/iterable_dataset.py#L3375-L3380",
"Thank you for the pointer, @lhoestq ! See #7522 "
] | 2025-04-15T04:36:34
| 2025-04-16T02:39:16
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
When concatenating datasets with `concatenate_datasets`, I would expect the resulting combined dataset to be in the same format as the inputs (assuming it's consistent). This is indeed the behavior when combining `Dataset`, but not when combining `IterableDataset`. Specifically, when applying `concatenate_datasets` to a list of `IterableDataset` in Pytorch format (i.e. using `.with_format(Pytorch)`), the output `IterableDataset` is not in Pytorch format.
### Steps to reproduce the bug
```
import datasets
ds = datasets.Dataset.from_dict({"a": [1,2,3]})
iterable_ds = ds.to_iterable_dataset()
datasets.concatenate_datasets([ds.with_format("torch")]) # <- this preserves Pytorch format
datasets.concatenate_datasets([iterable_ds.with_format("torch")]) # <- this does NOT preserves Pytorch format
```
### Expected behavior
Pytorch format should be preserved when combining IterableDataset in Pytorch format.
### Environment info
datasets==3.5.0, Python 3.11.11, torch==2.2.2
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7515/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7515/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7514
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7514/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7514/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7514/events
|
https://github.com/huggingface/datasets/pull/7514
| 2,994,714,923
|
PR_kwDODunzps6Sk7Et
| 7,514
|
Do not hash `generator` in `BuilderConfig.create_config_id`
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4",
"events_url": "https://api.github.com/users/simonreise/events{/privacy}",
"followers_url": "https://api.github.com/users/simonreise/followers",
"following_url": "https://api.github.com/users/simonreise/following{/other_user}",
"gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/simonreise",
"id": 43753582,
"login": "simonreise",
"node_id": "MDQ6VXNlcjQzNzUzNTgy",
"organizations_url": "https://api.github.com/users/simonreise/orgs",
"received_events_url": "https://api.github.com/users/simonreise/received_events",
"repos_url": "https://api.github.com/users/simonreise/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simonreise/subscriptions",
"type": "User",
"url": "https://api.github.com/users/simonreise",
"user_view_type": "public"
}
|
[] |
closed
| false
| null |
[] | null |
[] | 2025-04-15T01:26:43
| 2025-04-23T11:55:55
| 2025-04-15T16:27:51
|
NONE
| null | null | null |
`Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including generator function itself. `BuilderConfig.create_config_id` function tries to hash all the args, and hashing a `generator` can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough.
Maybe we should pop generator from `config_kwargs_to_add_to_suffix` before hashing to avoid it.
There is a more detailed description of the problem this PR solves in #7513
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4",
"events_url": "https://api.github.com/users/simonreise/events{/privacy}",
"followers_url": "https://api.github.com/users/simonreise/followers",
"following_url": "https://api.github.com/users/simonreise/following{/other_user}",
"gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/simonreise",
"id": 43753582,
"login": "simonreise",
"node_id": "MDQ6VXNlcjQzNzUzNTgy",
"organizations_url": "https://api.github.com/users/simonreise/orgs",
"received_events_url": "https://api.github.com/users/simonreise/received_events",
"repos_url": "https://api.github.com/users/simonreise/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simonreise/subscriptions",
"type": "User",
"url": "https://api.github.com/users/simonreise",
"user_view_type": "public"
}
|
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7514/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7514/timeline
| null | null | 0
|
{
"diff_url": "https://github.com/huggingface/datasets/pull/7514.diff",
"html_url": "https://github.com/huggingface/datasets/pull/7514",
"merged_at": null,
"patch_url": "https://github.com/huggingface/datasets/pull/7514.patch",
"url": "https://api.github.com/repos/huggingface/datasets/pulls/7514"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7513
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7513/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7513/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7513/events
|
https://github.com/huggingface/datasets/issues/7513
| 2,994,678,437
|
I_kwDODunzps6yfyql
| 7,513
|
MemoryError while creating dataset from generator
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/43753582?v=4",
"events_url": "https://api.github.com/users/simonreise/events{/privacy}",
"followers_url": "https://api.github.com/users/simonreise/followers",
"following_url": "https://api.github.com/users/simonreise/following{/other_user}",
"gists_url": "https://api.github.com/users/simonreise/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/simonreise",
"id": 43753582,
"login": "simonreise",
"node_id": "MDQ6VXNlcjQzNzUzNTgy",
"organizations_url": "https://api.github.com/users/simonreise/orgs",
"received_events_url": "https://api.github.com/users/simonreise/received_events",
"repos_url": "https://api.github.com/users/simonreise/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/simonreise/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/simonreise/subscriptions",
"type": "User",
"url": "https://api.github.com/users/simonreise",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Upd: created a PR that can probably solve the problem: #7514",
"Hi ! We need to take the generator into account for the cache. The generator is hashed to make the dataset fingerprint used by the cache. This way you can reload the Dataset from the cache without regenerating in subsequent `from_generator` calls.\n\nMaybe instead of removing generator from the hasher input, we can let users pass their own Dataset fingerprint to `from_generator`, and if it's specified we don't need to hash anything",
"Upd: I successfully generated a dataset from my large geospatial data with `generator` excluded from hashing and saved it to disk without running into memory errors. So, it looks like there are no other bottlenecks in dataset generation in my case\n\nMaybe letting users pass their own fingerprint to skip hashing can be a great solution to that issue!",
"@lhoestq I tried to implement user-defined dataset fingerprint in #7533 . Am I doing it right?"
] | 2025-04-15T01:02:02
| 2025-04-23T19:37:08
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
# TL:DR
`Dataset.from_generator` function passes all of its arguments to `BuilderConfig.create_config_id`, including `generator` function itself. `BuilderConfig.create_config_id` function tries to hash all the args, which can take a large amount of time or even cause MemoryError if the dataset processed in a generator function is large enough.
Maybe we should pop `generator` from `config_kwargs_to_add_to_suffix` before hashing to avoid it.
# Full description
I have a pretty large spatial imagery dataset that is generated from two xbatcher.BatchGenerators via custom `dataset_generator` function that looks like this if simplified:
```
def dataset_generator():
for index in samples:
data_dict = {
"key": index,
"x": x_batches[index].data,
"y": y_batches[index].data,
}
yield data_dict
```
Then I use `datasets.Dataset.from_generator` to generate the dataset itself.
```
# Create dataset
ds = datasets.Dataset.from_generator(
dataset_generator,
features=feat,
cache_dir=(output / ".cache"),
)
```
It works nicely with pretty small data, but if the dataset is huge and barely fits in memory, it crashes with memory error:
<details>
<summary>Full stack trace</summary>
```
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\remote_sensing_processor\segmentation\semantic\tiles.py:248](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/remote_sensing_processor/segmentation/semantic/tiles.py#line=247), in generate_tiles(x, y, output, tile_size, shuffle, split, x_dtype, y_dtype, x_nodata, y_nodata)
245 yield data_dict
247 # Create dataset
--> 248 ds = datasets.Dataset.from_generator(
249 dataset_generator,
250 features=feat,
251 cache_dir=(output / ".cache"),
252 )
254 # Save dataset
255 ds.save_to_disk(output / name)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\arrow_dataset.py:1105](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/arrow_dataset.py#line=1104), in Dataset.from_generator(generator, features, cache_dir, keep_in_memory, gen_kwargs, num_proc, split, **kwargs)
1052 """Create a Dataset from a generator.
1053
1054 Args:
(...) 1101 ```
1102 """
1103 from .io.generator import GeneratorDatasetInputStream
-> 1105 return GeneratorDatasetInputStream(
1106 generator=generator,
1107 features=features,
1108 cache_dir=cache_dir,
1109 keep_in_memory=keep_in_memory,
1110 gen_kwargs=gen_kwargs,
1111 num_proc=num_proc,
1112 split=split,
1113 **kwargs,
1114 ).read()
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\io\generator.py:29](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/io/generator.py#line=28), in GeneratorDatasetInputStream.__init__(self, generator, features, cache_dir, keep_in_memory, streaming, gen_kwargs, num_proc, split, **kwargs)
9 def __init__(
10 self,
11 generator: Callable,
(...) 19 **kwargs,
20 ):
21 super().__init__(
22 features=features,
23 cache_dir=cache_dir,
(...) 27 **kwargs,
28 )
---> 29 self.builder = Generator(
30 cache_dir=cache_dir,
31 features=features,
32 generator=generator,
33 gen_kwargs=gen_kwargs,
34 split=split,
35 **kwargs,
36 )
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:343](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=342), in DatasetBuilder.__init__(self, cache_dir, dataset_name, config_name, hash, base_path, info, features, token, repo_id, data_files, data_dir, storage_options, writer_batch_size, **config_kwargs)
341 config_kwargs["data_dir"] = data_dir
342 self.config_kwargs = config_kwargs
--> 343 self.config, self.config_id = self._create_builder_config(
344 config_name=config_name,
345 custom_features=features,
346 **config_kwargs,
347 )
349 # prepare info: DatasetInfo are a standardized dataclass across all datasets
350 # Prefill datasetinfo
351 if info is None:
352 # TODO FOR PACKAGED MODULES IT IMPORTS DATA FROM src/packaged_modules which doesn't make sense
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:604](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=603), in DatasetBuilder._create_builder_config(self, config_name, custom_features, **config_kwargs)
598 builder_config._resolve_data_files(
599 base_path=self.base_path,
600 download_config=DownloadConfig(token=self.token, storage_options=self.storage_options),
601 )
603 # compute the config id that is going to be used for caching
--> 604 config_id = builder_config.create_config_id(
605 config_kwargs,
606 custom_features=custom_features,
607 )
608 is_custom = (config_id not in self.builder_configs) and config_id != "default"
609 if is_custom:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\builder.py:187](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/builder.py#line=186), in BuilderConfig.create_config_id(self, config_kwargs, custom_features)
185 suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
186 else:
--> 187 suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
189 if custom_features is not None:
190 m = Hasher()
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\fingerprint.py:188](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/fingerprint.py#line=187), in Hasher.hash(cls, value)
186 @classmethod
187 def hash(cls, value: Any) -> str:
--> 188 return cls.hash_bytes(dumps(value))
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:109](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=108), in dumps(obj)
107 """Pickle an object to a string."""
108 file = BytesIO()
--> 109 dump(obj, file)
110 return file.getvalue()
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:103](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=102), in dump(obj, file)
101 def dump(obj, file):
102 """Pickle an object to a file."""
--> 103 Pickler(file, recurse=True).dump(obj)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:420](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=419), in Pickler.dump(self, obj)
418 def dump(self, obj): #NOTE: if settings change, need to update attributes
419 logger.trace_setup(self)
--> 420 StockPickler.dump(self, obj)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:484](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=483), in _Pickler.dump(self, obj)
482 if self.proto >= 4:
483 self.framer.start_framing()
--> 484 self.save(obj)
485 self.write(STOP)
486 self.framer.end_framing()
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj)
1214 if is_dill(pickler, child=False) and pickler._session:
1215 # we only care about session the first pass thru
1216 pickler._first_pass = False
-> 1217 StockPickler.save_dict(pickler, obj)
1218 logger.trace(pickler, "# D2")
1219 return
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj)
987 self.write(MARK + DICT)
989 self.memoize(obj)
--> 990 self._batch_setitems(obj.items())
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items)
80 from datasets.fingerprint import Hasher
82 items = sorted(items, key=lambda x: Hasher.hash(x[0]))
---> 83 dill.Pickler._batch_setitems(self, items)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items)
1012 for k, v in tmp:
1013 save(k)
-> 1014 save(v)
1015 write(SETITEMS)
1016 elif n:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1985](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1984), in save_function(pickler, obj)
1982 if state_dict:
1983 state = state, state_dict
-> 1985 _save_with_postproc(pickler, (_create_function, (
1986 obj.__code__, globs, obj.__name__, obj.__defaults__,
1987 closure
1988 ), state), obj=obj, postproc_list=postproc_list)
1990 # Lift closure cell update to earliest function (#458)
1991 if _postproc:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1117](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1116), in _save_with_postproc(pickler, reduction, is_pickler_dill, obj, postproc_list)
1115 continue
1116 else:
-> 1117 pickler.save_reduce(*reduction)
1118 # pop None created by calling preprocessing step off stack
1119 pickler.write(POP)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:690](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=689), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
688 else:
689 save(func)
--> 690 save(args)
691 write(REDUCE)
693 if obj is not None:
694 # If the object is already in the memo, this means it is
695 # recursive. In this case, throw away everything we put on the
696 # stack, and fetch the object back from the memo.
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj)
903 if n <= 3 and self.proto >= 2:
904 for element in obj:
--> 905 save(element)
906 # Subtle. Same as in the big comment below.
907 if id(obj) in memo:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id)
597 raise PicklingError("Tuple returned by %s must have "
598 "two to six elements" % reduce)
600 # Save the reduce() output and finally memoize the object
--> 601 self.save_reduce(obj=obj, *rv)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
713 if state is not None:
714 if state_setter is None:
--> 715 save(state)
716 write(BUILD)
717 else:
718 # If a state_setter is specified, call it instead of load_build
719 # to update obj's with its previous state.
720 # First, push state_setter and its tuple of expected arguments
721 # (obj, state) onto the stack.
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj)
1214 if is_dill(pickler, child=False) and pickler._session:
1215 # we only care about session the first pass thru
1216 pickler._first_pass = False
-> 1217 StockPickler.save_dict(pickler, obj)
1218 logger.trace(pickler, "# D2")
1219 return
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj)
987 self.write(MARK + DICT)
989 self.memoize(obj)
--> 990 self._batch_setitems(obj.items())
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items)
80 from datasets.fingerprint import Hasher
82 items = sorted(items, key=lambda x: Hasher.hash(x[0]))
---> 83 dill.Pickler._batch_setitems(self, items)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items)
1012 for k, v in tmp:
1013 save(k)
-> 1014 save(v)
1015 write(SETITEMS)
1016 elif n:
[... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)]
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id)
597 raise PicklingError("Tuple returned by %s must have "
598 "two to six elements" % reduce)
600 # Save the reduce() output and finally memoize the object
--> 601 self.save_reduce(obj=obj, *rv)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
713 if state is not None:
714 if state_setter is None:
--> 715 save(state)
716 write(BUILD)
717 else:
718 # If a state_setter is specified, call it instead of load_build
719 # to update obj's with its previous state.
720 # First, push state_setter and its tuple of expected arguments
721 # (obj, state) onto the stack.
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj)
903 if n <= 3 and self.proto >= 2:
904 for element in obj:
--> 905 save(element)
906 # Subtle. Same as in the big comment below.
907 if id(obj) in memo:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj)
1214 if is_dill(pickler, child=False) and pickler._session:
1215 # we only care about session the first pass thru
1216 pickler._first_pass = False
-> 1217 StockPickler.save_dict(pickler, obj)
1218 logger.trace(pickler, "# D2")
1219 return
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj)
987 self.write(MARK + DICT)
989 self.memoize(obj)
--> 990 self._batch_setitems(obj.items())
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items)
80 from datasets.fingerprint import Hasher
82 items = sorted(items, key=lambda x: Hasher.hash(x[0]))
---> 83 dill.Pickler._batch_setitems(self, items)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items)
1012 for k, v in tmp:
1013 save(k)
-> 1014 save(v)
1015 write(SETITEMS)
1016 elif n:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id)
597 raise PicklingError("Tuple returned by %s must have "
598 "two to six elements" % reduce)
600 # Save the reduce() output and finally memoize the object
--> 601 self.save_reduce(obj=obj, *rv)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
713 if state is not None:
714 if state_setter is None:
--> 715 save(state)
716 write(BUILD)
717 else:
718 # If a state_setter is specified, call it instead of load_build
719 # to update obj's with its previous state.
720 # First, push state_setter and its tuple of expected arguments
721 # (obj, state) onto the stack.
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:905](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=904), in _Pickler.save_tuple(self, obj)
903 if n <= 3 and self.proto >= 2:
904 for element in obj:
--> 905 save(element)
906 # Subtle. Same as in the big comment below.
907 if id(obj) in memo:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj)
1214 if is_dill(pickler, child=False) and pickler._session:
1215 # we only care about session the first pass thru
1216 pickler._first_pass = False
-> 1217 StockPickler.save_dict(pickler, obj)
1218 logger.trace(pickler, "# D2")
1219 return
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj)
987 self.write(MARK + DICT)
989 self.memoize(obj)
--> 990 self._batch_setitems(obj.items())
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items)
80 from datasets.fingerprint import Hasher
82 items = sorted(items, key=lambda x: Hasher.hash(x[0]))
---> 83 dill.Pickler._batch_setitems(self, items)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items)
1012 for k, v in tmp:
1013 save(k)
-> 1014 save(v)
1015 write(SETITEMS)
1016 elif n:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id)
597 raise PicklingError("Tuple returned by %s must have "
598 "two to six elements" % reduce)
600 # Save the reduce() output and finally memoize the object
--> 601 self.save_reduce(obj=obj, *rv)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:690](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=689), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
688 else:
689 save(func)
--> 690 save(args)
691 write(REDUCE)
693 if obj is not None:
694 # If the object is already in the memo, this means it is
695 # recursive. In this case, throw away everything we put on the
696 # stack, and fetch the object back from the memo.
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:920](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=919), in _Pickler.save_tuple(self, obj)
918 write(MARK)
919 for element in obj:
--> 920 save(element)
922 if id(obj) in memo:
923 # Subtle. d was not in memo when we entered save_tuple(), so
924 # the process of saving the tuple's elements must have saved
(...) 928 # could have been done in the "for element" loop instead, but
929 # recursive tuples are a rare thing.
930 get = self.get(memo[id(obj)][0])
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id)
597 raise PicklingError("Tuple returned by %s must have "
598 "two to six elements" % reduce)
600 # Save the reduce() output and finally memoize the object
--> 601 self.save_reduce(obj=obj, *rv)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
713 if state is not None:
714 if state_setter is None:
--> 715 save(state)
716 write(BUILD)
717 else:
718 # If a state_setter is specified, call it instead of load_build
719 # to update obj's with its previous state.
720 # First, push state_setter and its tuple of expected arguments
721 # (obj, state) onto the stack.
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj)
1214 if is_dill(pickler, child=False) and pickler._session:
1215 # we only care about session the first pass thru
1216 pickler._first_pass = False
-> 1217 StockPickler.save_dict(pickler, obj)
1218 logger.trace(pickler, "# D2")
1219 return
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj)
987 self.write(MARK + DICT)
989 self.memoize(obj)
--> 990 self._batch_setitems(obj.items())
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items)
80 from datasets.fingerprint import Hasher
82 items = sorted(items, key=lambda x: Hasher.hash(x[0]))
---> 83 dill.Pickler._batch_setitems(self, items)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items)
1012 for k, v in tmp:
1013 save(k)
-> 1014 save(v)
1015 write(SETITEMS)
1016 elif n:
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj)
1214 if is_dill(pickler, child=False) and pickler._session:
1215 # we only care about session the first pass thru
1216 pickler._first_pass = False
-> 1217 StockPickler.save_dict(pickler, obj)
1218 logger.trace(pickler, "# D2")
1219 return
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj)
987 self.write(MARK + DICT)
989 self.memoize(obj)
--> 990 self._batch_setitems(obj.items())
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items)
80 from datasets.fingerprint import Hasher
82 items = sorted(items, key=lambda x: Hasher.hash(x[0]))
---> 83 dill.Pickler._batch_setitems(self, items)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1019](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1018), in _Pickler._batch_setitems(self, items)
1017 k, v = tmp[0]
1018 save(k)
-> 1019 save(v)
1020 write(SETITEM)
1021 # else tmp is empty, and we're done
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id)
597 raise PicklingError("Tuple returned by %s must have "
598 "two to six elements" % reduce)
600 # Save the reduce() output and finally memoize the object
--> 601 self.save_reduce(obj=obj, *rv)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
713 if state is not None:
714 if state_setter is None:
--> 715 save(state)
716 write(BUILD)
717 else:
718 # If a state_setter is specified, call it instead of load_build
719 # to update obj's with its previous state.
720 # First, push state_setter and its tuple of expected arguments
721 # (obj, state) onto the stack.
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj)
1214 if is_dill(pickler, child=False) and pickler._session:
1215 # we only care about session the first pass thru
1216 pickler._first_pass = False
-> 1217 StockPickler.save_dict(pickler, obj)
1218 logger.trace(pickler, "# D2")
1219 return
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj)
987 self.write(MARK + DICT)
989 self.memoize(obj)
--> 990 self._batch_setitems(obj.items())
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items)
80 from datasets.fingerprint import Hasher
82 items = sorted(items, key=lambda x: Hasher.hash(x[0]))
---> 83 dill.Pickler._batch_setitems(self, items)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items)
1012 for k, v in tmp:
1013 save(k)
-> 1014 save(v)
1015 write(SETITEMS)
1016 elif n:
[... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)]
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:1217](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=1216), in save_module_dict(pickler, obj)
1214 if is_dill(pickler, child=False) and pickler._session:
1215 # we only care about session the first pass thru
1216 pickler._first_pass = False
-> 1217 StockPickler.save_dict(pickler, obj)
1218 logger.trace(pickler, "# D2")
1219 return
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:990](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=989), in _Pickler.save_dict(self, obj)
987 self.write(MARK + DICT)
989 self.memoize(obj)
--> 990 self._batch_setitems(obj.items())
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:83](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=82), in Pickler._batch_setitems(self, items)
80 from datasets.fingerprint import Hasher
82 items = sorted(items, key=lambda x: Hasher.hash(x[0]))
---> 83 dill.Pickler._batch_setitems(self, items)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:1014](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=1013), in _Pickler._batch_setitems(self, items)
1012 for k, v in tmp:
1013 save(k)
-> 1014 save(v)
1015 write(SETITEMS)
1016 elif n:
[... skipping similar frames: Pickler.save at line 70 (1 times), Pickler.save at line 414 (1 times)]
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:601](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=600), in _Pickler.save(self, obj, save_persistent_id)
597 raise PicklingError("Tuple returned by %s must have "
598 "two to six elements" % reduce)
600 # Save the reduce() output and finally memoize the object
--> 601 self.save_reduce(obj=obj, *rv)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:715](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=714), in _Pickler.save_reduce(self, func, args, state, listitems, dictitems, state_setter, obj)
713 if state is not None:
714 if state_setter is None:
--> 715 save(state)
716 write(BUILD)
717 else:
718 # If a state_setter is specified, call it instead of load_build
719 # to update obj's with its previous state.
720 # First, push state_setter and its tuple of expected arguments
721 # (obj, state) onto the stack.
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:920](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=919), in _Pickler.save_tuple(self, obj)
918 write(MARK)
919 for element in obj:
--> 920 save(element)
922 if id(obj) in memo:
923 # Subtle. d was not in memo when we entered save_tuple(), so
924 # the process of saving the tuple's elements must have saved
(...) 928 # could have been done in the "for element" loop instead, but
929 # recursive tuples are a rare thing.
930 get = self.get(memo[id(obj)][0])
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\datasets\utils\_dill.py:70](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/datasets/utils/_dill.py#line=69), in Pickler.save(self, obj, save_persistent_id)
68 if obj_type is FunctionType:
69 obj = getattr(obj, "_torchdynamo_orig_callable", obj)
---> 70 dill.Pickler.save(self, obj, save_persistent_id=save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\site-packages\dill\_dill.py:414](file:///C:/ProgramData/miniforge3/envs/geo/Lib/site-packages/dill/_dill.py#line=413), in Pickler.save(self, obj, save_persistent_id)
412 msg = "Can't pickle %s: attribute lookup builtins.generator failed" % GeneratorType
413 raise PicklingError(msg)
--> 414 StockPickler.save(self, obj, save_persistent_id)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:558](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=557), in _Pickler.save(self, obj, save_persistent_id)
556 f = self.dispatch.get(t)
557 if f is not None:
--> 558 f(self, obj) # Call unbound method with explicit self
559 return
561 # Check private dispatch table if any, or else
562 # copyreg.dispatch_table
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:809](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=808), in _Pickler.save_bytes(self, obj)
806 self.save_reduce(codecs.encode,
807 (str(obj, 'latin1'), 'latin1'), obj=obj)
808 return
--> 809 self._save_bytes_no_memo(obj)
810 self.memoize(obj)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:797](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=796), in _Pickler._save_bytes_no_memo(self, obj)
795 self._write_large_bytes(BINBYTES8 + pack("<Q", n), obj)
796 elif n >= self.framer._FRAME_SIZE_TARGET:
--> 797 self._write_large_bytes(BINBYTES + pack("<I", n), obj)
798 else:
799 self.write(BINBYTES + pack("<I", n) + obj)
File [C:\ProgramData\miniforge3\envs\geo\Lib\pickle.py:254](file:///C:/ProgramData/miniforge3/envs/geo/Lib/pickle.py#line=253), in _Framer.write_large_bytes(self, header, payload)
247 # Perform direct write of the header and payload of the large binary
248 # object. Be careful not to concatenate the header and the payload
249 # prior to calling 'write' as we do not want to allocate a large
250 # temporary bytes object.
251 # We intentionally do not insert a protocol 4 frame opcode to make
252 # it possible to optimize file.read calls in the loader.
253 write(header)
--> 254 write(payload)
MemoryError:
```
</details>
Memory error is an expected type of error in such case, but when I started digging down, I found out that it occurs in a kinda unexpected place - in `create_config_id` function. It tries to hash `config_kwargs_to_add_to_suffix`, including generator function itself.
I modified the `BuilderConfig.create_config_id` code like this to check which values are hashed and how much time it takes to hash them and ran it on a toy dataset:
```
print(config_kwargs_to_add_to_suffix)
start_time = time.time()
if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()):
suffix = ",".join(
str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items()
)
if len(suffix) > 32: # hash if too long
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
else:
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
end_time = time.time()
print(f"Execution time: {end_time - start_time:.4f} seconds")
print(suffix)
```
In my case the content of `config_kwargs_to_add_to_suffix` was like this:
```
{'features': {'key': Value(dtype='int64', id=None), 'x': Array3D(shape=(44, 128, 128), dtype='float32', id=None), 'y_class': Array2D(shape=(128, 128), dtype='int32', id=None)}, 'gen_kwargs': None, 'generator': <function generate_tiles.<locals>.dataset_generator at 0x00000139D10D7920>, 'split': NamedSplit('train')}
```
Also I noticed that hashing took a significant amount of time - 43.1482 seconds, while the overall function execution (with data loading, batching and saving dataset) took 2min 45s. The output of `create_config_id` is just a dataset id, so, it is inappropirately large amount of time.
But when I added `config_kwargs_to_add_to_suffix.pop("generator", None)`, the hashing took only 0.0060 seconds.
Maybe we shouldn't hash the generator function, as it can be really computationally and memory expensive.
### Steps to reproduce the bug
This is a simplified example of a workflow I used to generate dataset. But I think that you can use almost any workflow to reproduce that bug.
```
import pystac
import pystac_client
import planetary_computer
import numpy as np
import xarray as xr
import rioxarray as rxr
import dask
import xbatcher
import datasets
# Loading a dataset, in our case - single Landsat image
catalog = pystac_client.Client.open(
"https://planetarycomputer.microsoft.com/api/stac/v1",
modifier=planetary_computer.sign_inplace,
)
brazil = [-60.2, -3.31]
time_of_interest = "2021-06-01/2021-08-31"
search = catalog.search(collections=["landsat-c2-l2"], intersects={"type": "Point", "coordinates": brazil}, datetime=time_of_interest)
items = search.item_collection()
item = min(items, key=lambda item: pystac.extensions.eo.EOExtension.ext(item).cloud_cover)
# Getting x data
bands = []
for band in ["red", "green", "blue", "nir08", "coastal", "swir16", "swir22", "lwir11"]:
with rxr.open_rasterio(item.assets[band].href, chunks=True, lock=True) as raster:
raster = raster.to_dataset('band')
#print(raster)
raster = raster.rename({1: band})
bands.append(raster)
x = xr.merge(bands).squeeze().to_array("band").persist()
# Getting y data
with rxr.open_rasterio(item.assets['qa_pixel'].href, chunks=True, lock=True) as raster:
y = raster.squeeze().persist()
# Setting up batches generators
x_batches = xbatcher.BatchGenerator(ds=x, input_dims={"x": 256, "y": 256})
y_batches = xbatcher.BatchGenerator(ds=y, input_dims={"x": 256, "y": 256})
# Filtering samples that contain only nodata
samples = list(range(len(x_batches)))
samples_filtered = []
for i in samples:
if not np.array_equal(np.unique(x_batches[i]), np.array([0.])) and not np.array_equal(np.unique(y_batches[i]), np.array([0])):
samples_filtered.append(i)
samples = samples_filtered
np.random.shuffle(samples)
# Setting up features
feat = {
"key": datasets.Value(dtype="int64"),
"x": datasets.Array3D(dtype="float32", shape=(4, 256, 256)),
"y": datasets.Array2D(dtype="int32", shape=(256, 256))
}
feat = datasets.Features(feat)
# Setting up a generator
def dataset_generator():
for index in samples:
data_dict = {
"key": index,
"x": x_batches[index].data,
"y": y_batches[index].data,
}
yield data_dict
# Create dataset
ds = datasets.Dataset.from_generator(
dataset_generator,
features=feat,
cache_dir="temp/cache",
)
```
Please, try adding `config_kwargs_to_add_to_suffix.pop("generator", None)` to `BuilderConfig.create_config_id` and then measuring how much time it takes to run
```
if all(isinstance(v, (str, bool, int, float)) for v in config_kwargs_to_add_to_suffix.values()):
suffix = ",".join(
str(k) + "=" + urllib.parse.quote_plus(str(v)) for k, v in config_kwargs_to_add_to_suffix.items()
)
if len(suffix) > 32: # hash if too long
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
else:
suffix = Hasher.hash(config_kwargs_to_add_to_suffix)
```
code block with and without `config_kwargs_to_add_to_suffix.pop("generator", None)`
In my case the difference was 3.3828 seconds without popping generator function and 0.0010 seconds with popping.
### Expected behavior
Much faster hashing and no MemoryErrors
### Environment info
- `datasets` version: 3.5.0
- Platform: Windows-11-10.0.26100-SP0
- Python version: 3.12.9
- `huggingface_hub` version: 0.30.1
- PyArrow version: 17.0.0
- Pandas version: 2.2.2
- `fsspec` version: 2024.12.0
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7513/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7513/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7512
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7512/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7512/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7512/events
|
https://github.com/huggingface/datasets/issues/7512
| 2,994,043,544
|
I_kwDODunzps6ydXqY
| 7,512
|
.map() fails if function uses pyvista
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/11832922?v=4",
"events_url": "https://api.github.com/users/el-hult/events{/privacy}",
"followers_url": "https://api.github.com/users/el-hult/followers",
"following_url": "https://api.github.com/users/el-hult/following{/other_user}",
"gists_url": "https://api.github.com/users/el-hult/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/el-hult",
"id": 11832922,
"login": "el-hult",
"node_id": "MDQ6VXNlcjExODMyOTIy",
"organizations_url": "https://api.github.com/users/el-hult/orgs",
"received_events_url": "https://api.github.com/users/el-hult/received_events",
"repos_url": "https://api.github.com/users/el-hult/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/el-hult/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/el-hult/subscriptions",
"type": "User",
"url": "https://api.github.com/users/el-hult",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"I found a similar (?) issue in https://github.com/huggingface/datasets/issues/6435, where someone had issues with forks and CUDA. According to https://huggingface.co/docs/datasets/main/en/process#multiprocessing we should do \n\n```\nfrom multiprocess import set_start_method\nset_start_method(\"spawn\")\n```\n\nto avoid the fork. The updated code\n\n```python\nimport numpy as np\nimport pyvista as pv\nimport datasets\nimport multiprocess\n\ndata = [{\"coords\": np.random.rand(5, 3)} for _ in range(3)]\n\ndef render_point(example):\n plotter = pv.Plotter(off_screen=True)\n cloud = pv.PolyData(example[\"coords\"])\n plotter.add_mesh(cloud)\n img = plotter.screenshot(return_img=True)\n return {\"image\": img}\n\n\n# breaks if num_proc>1\nmultiprocess.set_start_method(\"spawn\")\nds = datasets.Dataset.from_list(data).map(render_point, num_proc=2)\n```\n\ninstead fails with `TypeError: fork_exec() takes exactly 23 arguments (21 given)` which also seems like a bug to me."
] | 2025-04-14T19:43:02
| 2025-04-14T20:01:53
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Using PyVista inside a .map() produces a crash with `objc[78796]: +[NSResponder initialize] may have been in progress in another thread when fork() was called. We cannot safely call it or ignore it in the fork() child process. Crashing instead. Set a breakpoint on objc_initializeAfterForkError to debug.`
### Steps to reproduce the bug
Run
```python
import numpy as np
import pyvista as pv
import datasets
data = [{"coords": np.random.rand(5, 3)} for _ in range(3)]
def render_point(example):
plotter = pv.Plotter(off_screen=True)
cloud = pv.PolyData(example["coords"])
plotter.add_mesh(cloud)
img = plotter.screenshot(return_img=True)
return {"image": img}
# breaks if num_proc>1
ds = datasets.Dataset.from_list(data).map(render_point, num_proc=2)
```
### Expected behavior
It should work. Just like when I use a process pool to make it work.
```python
import numpy as np
import pyvista as pv
import multiprocessing
data = [{"coords": np.random.rand(5, 3)} for _ in range(3)]
def render_point(example):
plotter = pv.Plotter(off_screen=True)
cloud = pv.PolyData(example["coords"])
plotter.add_mesh(cloud)
img = plotter.screenshot(return_img=True)
return {"image": img}
if __name__ == "__main__":
with multiprocessing.Pool(processes=2) as pool:
results = pool.map(render_point, data)
print(results[0]["image"].shape)
```
### Environment info
- `datasets` version: 3.3.2
- Platform: macOS-15.3.2-arm64-arm-64bit
- Python version: 3.11.10
- `huggingface_hub` version: 0.28.1
- PyArrow version: 18.1.0
- Pandas version: 2.2.3
- `fsspec` version: 2024.10.0
And then I suppose pyvista info is good to have.
```python
import pyvista as pv
print(pv.Report())
```
gives
--------------------------------------------------------------------------------
Date: Mon Apr 14 21:42:08 2025 CEST
OS : Darwin (macOS 15.3.2)
CPU(s) : 10
Machine : arm64
Architecture : 64bit
RAM : 32.0 GiB
Environment : IPython
File system : apfs
GPU Vendor : Apple
GPU Renderer : Apple M1 Max
GPU Version : 4.1 Metal - 89.3
MathText Support : True
Python 3.11.10 (main, Oct 7 2024, 23:25:27) [Clang 18.1.8 ]
pyvista : 0.44.2
vtk : 9.4.0
numpy : 2.2.2
matplotlib : 3.10.0
scooby : 0.10.0
pooch : 1.8.2
pillow : 11.1.0
imageio : 2.36.1
PyQt5 : 5.15.11
IPython : 8.30.0
scipy : 1.14.1
tqdm : 4.67.1
jupyterlab : 4.3.5
nest_asyncio : 1.6.0
--------------------------------------------------------------------------------
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7512/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7512/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7510
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7510/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7510/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7510/events
|
https://github.com/huggingface/datasets/issues/7510
| 2,992,131,117
|
I_kwDODunzps6yWEwt
| 7,510
|
Incompatibile dill version (0.3.9) in datasets 2.18.0 - 3.5.0
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/98061329?v=4",
"events_url": "https://api.github.com/users/JGrel/events{/privacy}",
"followers_url": "https://api.github.com/users/JGrel/followers",
"following_url": "https://api.github.com/users/JGrel/following{/other_user}",
"gists_url": "https://api.github.com/users/JGrel/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/JGrel",
"id": 98061329,
"login": "JGrel",
"node_id": "U_kgDOBdhMEQ",
"organizations_url": "https://api.github.com/users/JGrel/orgs",
"received_events_url": "https://api.github.com/users/JGrel/received_events",
"repos_url": "https://api.github.com/users/JGrel/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/JGrel/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/JGrel/subscriptions",
"type": "User",
"url": "https://api.github.com/users/JGrel",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Hi ! We can bump `dill` to 0.3.9 if we make sure it's deterministic and doesn't break the caching mechanism in `datasets`.\n\nWould you be interested in opening a PR ? Then we can run the CI to see if it works",
"Hi!. Yeah I can do it. Should I make any changes besides dill versions?",
"There are probably some usage of internal functions from `dill` that we'll need to update in `datasets`\n\nIf you run `pytest tests/test_fingerprint.py` you should already have a good idea of what works and what doesn't.\nBut feel free to open a PR anyway, this way we can run the full CI and see the results\n",
"Hi, sorry for no response from my side. I will try to do it today.",
"Created pull request: [LINK](https://github.com/huggingface/datasets/pull/7535)\nTried to run tests by using command you have send and got few errors:\n\n"
] | 2025-04-14T07:22:44
| 2025-04-24T19:49:31
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Datasets 2.18.0 - 3.5.0 has a dependency on dill < 0.3.9. This causes errors with dill >= 0.3.9.
Could you please take a look into it and make it compatible?
### Steps to reproduce the bug
1. Install setuptools >= 2.18.0
2. Install dill >=0.3.9
3. Run pip check
4. Output:
ERROR: pip's dependency resolver does not currently take into account all the packages that are installed. This behaviour is the source of the following dependency conflicts.
datasets 2.18.0 requires dill<0.3.9,>=0.3.0, but you have dill 0.3.9 which is incompatible.
### Expected behavior
Pip install both libraries without any errors
### Environment info
Datasets version: 2.18 - 3.5
Python: 3.11
| null |
{
"+1": 2,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 2,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7510/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7510/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7509
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7509/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7509/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7509/events
|
https://github.com/huggingface/datasets/issues/7509
| 2,991,484,542
|
I_kwDODunzps6yTm5-
| 7,509
|
Dataset uses excessive memory when loading files
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/36810152?v=4",
"events_url": "https://api.github.com/users/avishaiElmakies/events{/privacy}",
"followers_url": "https://api.github.com/users/avishaiElmakies/followers",
"following_url": "https://api.github.com/users/avishaiElmakies/following{/other_user}",
"gists_url": "https://api.github.com/users/avishaiElmakies/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/avishaiElmakies",
"id": 36810152,
"login": "avishaiElmakies",
"node_id": "MDQ6VXNlcjM2ODEwMTUy",
"organizations_url": "https://api.github.com/users/avishaiElmakies/orgs",
"received_events_url": "https://api.github.com/users/avishaiElmakies/received_events",
"repos_url": "https://api.github.com/users/avishaiElmakies/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/avishaiElmakies/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/avishaiElmakies/subscriptions",
"type": "User",
"url": "https://api.github.com/users/avishaiElmakies",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"small update: I converted the jsons to parquet and it now works well with 32 proc and the same node. \nI still think this needs to be understood, since json is a very popular and easy-to-use format. ",
"Hi ! The JSON loader loads full files in memory, unless they are JSON Lines. In this case it iterates on the JSON Lines in a memory efficient manner.\n\nI know there is an `ijson` package that works similarly but for general JSON files, maybe it can help and remove the need to load full JSON files in memory",
"Hi, i understand that json files are probably loaded into memory to read them but aren't they released when we write all the file content into arrow or something? ",
"Yes correct, the JSON data is only in memory during the conversion to Arrow. Then, the data is memory mapped from you disk",
"so the json files are all loaded into memory before converting to arrow? or do they convert 1 json at a time and then they are realeased?\nI don't understand how 200GB worth of jsons fill a 378GB node's memory.",
"Each process converts one JSON file at at time, So the total memory usage is num_proc * json_file_size * overhead, where overhead can be around 2 or 3 for the conversion.\n\nSo it's indeed surprising that you run out of memory. Is the dataset available somewhere ? or a subset maybe ?",
"This is a tokenized dataset I created for training a speech-language model with a few features (so it is not private but not easily available). I can send/upload a shard or two and you can copy them however many times you want so you can debug. this should give you something comparable to what I have, but will be easier than creating it yourself. so if you want that, let me know :)",
"Maybe you can measure the memory usage when loading 1 file with num_proc=1 ? This should already be helpful.\n\nMemory usage for tokenized data can be bigger than just text, for example the tokens type can be inferred as int64 and the lists offsets are int32",
"OK, I will try to do this in the near future. I am a little swamped at the moment. do you have a preferred tool?\n\nalso My data is just list of ints, there is no offsets",
"> so the json files are all loaded into memory before converting to arrow? or do they convert 1 json at a time and then they are realeased? I don't understand how 200GB worth of jsons fill a 378GB node's memory.\n\nHello! Is your query solved? I have the same confusion and would like to ask you for advice",
"no, the issue is still present. I converted the json files to parquet, but json seems to have a problem.\n\nUnfortunately i didn't have the time to try and profile the memory usage for 1 file. So if you want to do that, it will be great! "
] | 2025-04-13T21:09:49
| 2025-04-26T15:33:13
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
Hi
I am having an issue when loading a dataset.
I have about 200 json files each about 1GB (total about 215GB). each row has a few features which are a list of ints.
I am trying to load the dataset using `load_dataset`.
The dataset is about 1.5M samples
I use `num_proc=32` and a node with 378GB of memory.
About a third of the way there I get an OOM.
I also saw an old bug with a similar issue, which says to set `writer_batch_size`. I tried to lower it to 10, but it still crashed.
I also tried to lower the `num_proc` to 16 and even 8, but still the same issue.
### Steps to reproduce the bug
`dataset = load_dataset("json", data_dir=data_config.train_path, num_proc=data_config.num_proc, writer_batch_size=50)["train"]`
### Expected behavior
Loading a dataset with more than 100GB to spare should not cause an OOM error.
maybe i am missing something but I would love some help.
### Environment info
- `datasets` version: 3.5.0
- Platform: Linux-6.6.20-aufs-1-x86_64-with-glibc2.36
- Python version: 3.11.2
- `huggingface_hub` version: 0.29.1
- PyArrow version: 19.0.1
- Pandas version: 2.2.3
- `fsspec` version: 2024.9.0
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7509/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7509/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7508
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7508/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7508/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7508/events
|
https://github.com/huggingface/datasets/issues/7508
| 2,986,612,934
|
I_kwDODunzps6yBBjG
| 7,508
|
Iterating over Image feature columns is extremely slow
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/11831521?v=4",
"events_url": "https://api.github.com/users/sohamparikh/events{/privacy}",
"followers_url": "https://api.github.com/users/sohamparikh/followers",
"following_url": "https://api.github.com/users/sohamparikh/following{/other_user}",
"gists_url": "https://api.github.com/users/sohamparikh/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/sohamparikh",
"id": 11831521,
"login": "sohamparikh",
"node_id": "MDQ6VXNlcjExODMxNTIx",
"organizations_url": "https://api.github.com/users/sohamparikh/orgs",
"received_events_url": "https://api.github.com/users/sohamparikh/received_events",
"repos_url": "https://api.github.com/users/sohamparikh/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/sohamparikh/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/sohamparikh/subscriptions",
"type": "User",
"url": "https://api.github.com/users/sohamparikh",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Hi ! Could it be because the `Image()` type in dataset does `image = Image.open(image_path)` and also `image.load()` which actually loads the image data in memory ? This is needed to avoid too many open files issues, see https://github.com/huggingface/datasets/issues/3985",
"Yes, that seems to be it. For my purposes, I've cast the column to `Image(decode=False)`, and only load the images when necessary, which is much much faster"
] | 2025-04-10T19:00:54
| 2025-04-15T17:57:08
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
We are trying to load datasets where the image column stores `PIL.PngImagePlugin.PngImageFile` images. However, iterating over these datasets is extremely slow.
What I have found:
1. It is the presence of the image column that causes the slowdown. Removing the column from the dataset results in blazingly fast (as expected) times
2. It is ~2x faster to iterate when the column contains a single image as opposed to a list of images i.e., the feature is a Sequence of Image objects. We often need multiple images per sample, so we need to work with a list of images
3. It is ~17x faster to store paths to PNG files and load them using `PIL.Image.open`, as opposed to iterating over a `Dataset` with an Image column, and ~30x faster compared to `Sequence` of `Image`s. See a simple script below with an openly available dataset.
It would be great to understand the standard practices for storing and loading multimodal datasets (image + text).
https://huggingface.co/docs/datasets/en/image_load seems a bit underdeveloped? (e.g., `dataset.decode` only works with `IterableDataset`, but it's not clear from the doc)
Thanks!
```python
from datasets import load_dataset, load_from_disk
from PIL import Image
from pathlib import Path
ds = load_dataset("getomni-ai/ocr-benchmark")
for idx, sample in enumerate(ds["test"]):
image = sample["image"]
image.save(f"/tmp/ds_files/images/image_{idx}.png")
ds.save_to_disk("/tmp/ds_columns")
# Remove the 'image' column
ds["test"] = ds["test"].remove_columns(["image"])
# Create image paths for each sample
image_paths = [f"images/image_{idx}.png" for idx in range(len(ds["test"]))]
# Add the 'image_path' column to the dataset
ds["test"] = ds["test"].add_column("image_path", image_paths)
# Save the updated dataset
ds.save_to_disk("/tmp/ds_files")
files_path = Path("/tmp/ds_files")
column_path = Path("/tmp/ds_columns")
# load and benchmark
ds_file = load_from_disk(files_path)
ds_column = load_from_disk(column_path)
import time
images_files = []
start = time.time()
for idx in range(len(ds_file["test"])):
image_path = files_path / ds_file["test"][idx]["image_path"]
image = Image.open(image_path)
images_files.append(image)
end = time.time()
print(f"Time taken to load images from files: {end - start} seconds")
# Time taken to load images from files: 1.2364635467529297 seconds
images_column = []
start = time.time()
for idx in range(len(ds_column["test"])):
images_column.append(ds_column["test"][idx]["image"])
end = time.time()
print(f"Time taken to load images from columns: {end - start} seconds")
# Time taken to load images from columns: 20.49347186088562 seconds
```
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7508/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7508/timeline
| null | null | null | null |
https://api.github.com/repos/huggingface/datasets/issues/7507
|
https://api.github.com/repos/huggingface/datasets
|
https://api.github.com/repos/huggingface/datasets/issues/7507/labels{/name}
|
https://api.github.com/repos/huggingface/datasets/issues/7507/comments
|
https://api.github.com/repos/huggingface/datasets/issues/7507/events
|
https://github.com/huggingface/datasets/issues/7507
| 2,984,309,806
|
I_kwDODunzps6x4PQu
| 7,507
|
Front-end statistical data quantity deviation
|
{
"avatar_url": "https://avatars.githubusercontent.com/u/88258534?v=4",
"events_url": "https://api.github.com/users/rangehow/events{/privacy}",
"followers_url": "https://api.github.com/users/rangehow/followers",
"following_url": "https://api.github.com/users/rangehow/following{/other_user}",
"gists_url": "https://api.github.com/users/rangehow/gists{/gist_id}",
"gravatar_id": "",
"html_url": "https://github.com/rangehow",
"id": 88258534,
"login": "rangehow",
"node_id": "MDQ6VXNlcjg4MjU4NTM0",
"organizations_url": "https://api.github.com/users/rangehow/orgs",
"received_events_url": "https://api.github.com/users/rangehow/received_events",
"repos_url": "https://api.github.com/users/rangehow/repos",
"site_admin": false,
"starred_url": "https://api.github.com/users/rangehow/starred{/owner}{/repo}",
"subscriptions_url": "https://api.github.com/users/rangehow/subscriptions",
"type": "User",
"url": "https://api.github.com/users/rangehow",
"user_view_type": "public"
}
|
[] |
open
| false
| null |
[] | null |
[
"Hi ! the format of this dataset is not supported by the Dataset Viewer. It looks like this dataset was saved using `save_to_disk()` which is meant for local storage / easy reload without compression, not for sharing online."
] | 2025-04-10T02:51:38
| 2025-04-15T12:54:51
| null |
NONE
| null | null |
{
"completed": 0,
"percent_completed": 0,
"total": 0
}
|
### Describe the bug
While browsing the dataset at https://huggingface.co/datasets/NeuML/wikipedia-20250123, I noticed that a dataset with nearly 7M entries was estimated to be only 4M in size—almost half the actual amount. According to the post-download loading and the dataset_info (https://huggingface.co/datasets/NeuML/wikipedia-20250123/blob/main/train/dataset_info.json), the true data volume is indeed close to 7M. This significant discrepancy could mislead users when sorting datasets by row count. Why not directly retrieve this information from dataset_info?
Not sure if this is the right place to report this bug, but leaving it here for the team's awareness.
| null |
{
"+1": 0,
"-1": 0,
"confused": 0,
"eyes": 0,
"heart": 0,
"hooray": 0,
"laugh": 0,
"rocket": 0,
"total_count": 0,
"url": "https://api.github.com/repos/huggingface/datasets/issues/7507/reactions"
}
|
https://api.github.com/repos/huggingface/datasets/issues/7507/timeline
| null | null | null | null |
End of preview. Expand
in Data Studio
README.md exists but content is empty.
- Downloads last month
- 9