File size: 9,966 Bytes
c58221a
a8aaa61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c1aaa1e
a8aaa61
 
c58221a
a8aaa61
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
---
license: apache-2.0
language:
  - ca
  - es
  - en
task_categories:
  - text-generation
tags:
  - query-parsing
  - structured-output
  - json-generation
  - multilingual
  - catalan
  - spanish
  - R&D
  - semantic-search
  - AINA
  - semantic-parsing
size_categories:
  - n<1K
---

# IMPULS Query Parsing Dataset

A multilingual dataset for training and evaluating query parsing models that convert natural language queries into structured JSON for R&D project semantic search.

## Dataset Description

This dataset was created as part of the **IMPULS project** (AINA Challenge 2024), a collaboration between [SIRIS Academic](https://sirisacademic.com/) and [Generalitat de Catalunya](https://web.gencat.cat/) to build a multilingual semantic search system for R&D ecosystems.

The dataset contains natural language queries in **Catalan, Spanish, and English** paired with their structured JSON representations, designed for training models to:
- Extract semantic search terms from natural language
- Identify structured filters (funding programme, year, location, organization type)
- Detect query language and intent

### Supported Tasks

- **Query Parsing / Semantic Parsing**: Convert natural language to structured JSON
- **Information Extraction**: Extract entities and filters from queries
- **Multilingual NLU**: Understanding queries across CA/ES/EN

## Dataset Structure

### Data Splits

| Split | Examples | Description |
|-------|----------|-------------|
| `train` | 682 | Synthetic, template-generated queries |
| `test` | 100 | Real queries from domain experts |

### Schema

Each example contains a structured JSON with the following fields:

```json
{
  "doc_type": "projects",
  "filters": {
    "programme": "Horizon 2020 | FEDER | SIFECAT | null",
    "funding_level": "string | null",
    "year": ">=2020 | 2015-2020 | null",
    "location": "Catalunya | Spain | null",
    "location_level": "region | province | country | null"
  },
  "organisations": [
    {
      "type": "university | research_center | hospital | company | null",
      "name": "UPC | CSIC | null",
      "location": "Barcelona | null",
      "location_level": "province | region | null"
    }
  ],
  "semantic_query": "intel·ligència artificial salut",
  "query_rewrite": "Human-readable interpretation of the query",
  "meta": {
    "id": "TRAIN_001",
    "source": "synthetic | expert",
    "lang": "CA | ES | EN",
    "original_query": "The original natural language query",
    "intent": "Discover | Quantify",
    "style": "Concise | Verbose | Technical",
    "components": ["Content", "Programme", "Year", "Location"],
    "resolvability": "Direct | Adapted | Partial",
    "notes": "Optional notes about interpretation"
  }
}
```

### Field Descriptions

| Field | Description |
|-------|-------------|
| `doc_type` | Document type to search (always "projects") |
| `filters.programme` | Funding programme (H2020, Horizon Europe, FEDER, SIFECAT, etc.) |
| `filters.year` | Year filter (single year, range, or comparison like ">=2020") |
| `filters.location` | Geographic filter |
| `filters.location_level` | Geographic granularity (country, region, province) |
| `organisations` | List of organization filters with type, name, and location |
| `semantic_query` | Core thematic content for vector search |
| `query_rewrite` | Human-readable interpretation |
| `meta.original_query` | The original natural language query |
| `meta.lang` | Query language (CA/ES/EN) |
| `meta.intent` | Query intent (Discover/Quantify) |
| `meta.resolvability` | How well the query maps to the schema |

## Dataset Statistics

### Language Distribution

| Language | Training | Test |
|----------|----------|------|
| Catalan (CA) | ~33% | ~33% |
| Spanish (ES) | ~33% | ~21% |
| English (EN) | ~33% | ~46% |

### Intent Distribution

| Intent | Count | Percentage |
|--------|-------|------------|
| Discover | 600 | 88.0% |
| Quantify | 82 | 12.0% |

### Resolvability Distribution

| Type | Count | Percentage | Description |
|------|-------|------------|-------------|
| Direct | 529 | 77.6% | Fully mappable to schema |
| Adapted | 15 | 2.2% | Requires interpretation |
| Partial | 138 | 20.2% | Cannot fully express (ranking, aggregation) |

### Component Distribution

| Component | Frequency |
|-----------|-----------|
| Thematic content | 92.8% |
| Organization type | 39.9% |
| Organization location | 17.7% |
| Programme (funding) | 17.6% |
| Time expressions | 10.7% |
| Project location | 10.4% |
| Year (specific) | 7.8% |
| Organization name | 7.3% |

## Examples

### Example 1: Catalan Query (Discover)

**Original query:** `"Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat"`

```json
{
  "doc_type": "projects",
  "filters": {
    "programme": null,
    "funding_level": null,
    "year": null,
    "location": null,
    "location_level": null
  },
  "organisations": [
    {
      "type": "university",
      "name": "UPC",
      "location": null,
      "location_level": null
    }
  ],
  "semantic_query": "ciberseguretat",
  "query_rewrite": "Llista de projectes de la UPC sobre ciberseguretat",
  "meta": {
    "id": "TRAIN_488",
    "source": "synthetic",
    "lang": "CA",
    "original_query": "Projectes on la UPC és coordinadora en l'àmbit de la ciberseguretat",
    "intent": "Discover",
    "style": "Concise",
    "components": ["Scope", "Organisation Name", "Content", "Role Qualifier"],
    "resolvability": "Partial",
    "notes": "No es pot filtrar pel rol de 'coordinadora'"
  }
}
```

### Example 2: Spanish Query with Filters

**Original query:** `"proyectos de inteligencia artificial financiados por H2020 desde 2019"`

```json
{
  "doc_type": "projects",
  "filters": {
    "programme": "Horizon 2020",
    "funding_level": null,
    "year": ">=2019",
    "location": null,
    "location_level": null
  },
  "organisations": [],
  "semantic_query": "inteligencia artificial",
  "query_rewrite": "Proyectos sobre inteligencia artificial del programa H2020 desde 2019",
  "meta": {
    "lang": "ES",
    "intent": "Discover",
    "resolvability": "Direct"
  }
}
```

### Example 3: English Quantify Query

**Original query:** `"how many universities participated in quantum computing projects?"`

```json
{
  "doc_type": "projects",
  "filters": {
    "programme": null,
    "funding_level": null,
    "year": null,
    "location": null,
    "location_level": null
  },
  "organisations": [
    {
      "type": "university",
      "name": null,
      "location": null,
      "location_level": null
    }
  ],
  "semantic_query": "quantum computing",
  "query_rewrite": "Count of universities participating in quantum computing projects",
  "meta": {
    "lang": "EN",
    "intent": "Quantify",
    "resolvability": "Partial",
    "notes": "Aggregation (count) cannot be expressed in schema"
  }
}
```

## Usage

### Loading the Dataset

```python
from datasets import load_dataset

dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")

# Access splits
train_data = dataset["train"]
test_data = dataset["test"]

# Example
print(train_data[0]["meta"]["original_query"])
print(train_data[0]["semantic_query"])
```

### For Training with Transformers

```python
from datasets import load_dataset

dataset = load_dataset("SIRIS-Lab/impuls-query-parsing")

def format_for_training(example):
    # Format as instruction-following
    return {
        "instruction": "Convert this query to structured JSON for R&D project search.",
        "input": example["meta"]["original_query"],
        "output": json.dumps(example, ensure_ascii=False, indent=2)
    }

formatted = dataset.map(format_for_training)
```

## Data Collection

### Training Data
The training set was **synthetically generated** using:
- Controlled vocabularies (funding programmes, organization names, locations)
- Thematic keywords extracted from real R&D project titles and abstracts
- Domain-specific templates mirroring realistic user queries
- Balanced language distribution across Catalan, Spanish, and English

### Test Data
The test set contains **real queries from domain experts**:
- Collected from researchers and R&I policy analysts
- Elicited through structured questionnaires asking for typical information needs
- Manually annotated with gold-standard JSON structures

## Intended Use

This dataset is designed for:
- Training query parsing models for R&D project search systems
- Evaluating multilingual NLU capabilities for Catalan, Spanish, and English
- Benchmarking structured output generation from natural language
- Research on semantic parsing for specialized domains

## Limitations

- **Domain-specific**: Focused on R&D project search; may not generalize to other domains
- **Schema constraints**: Some query types (ranking, complex aggregations) cannot be fully represented
- **Synthetic training data**: Training examples are template-generated, which may limit diversity
- **Language balance**: Test set has more English queries than training distribution

## Citation

```bibtex
@misc{impuls-query-parsing-2024,
  author = {SIRIS Academic},
  title = {IMPULS Query Parsing Dataset: Multilingual Queries for R&D Semantic Search},
  year = {2024},
  publisher = {Hugging Face},
  howpublished = {\url{https://huggingface.co/datasets/SIRIS-Lab/impuls-query-parsing}}
}
```

## Acknowledgments

- **[Barcelona Supercomputing Center (BSC)](https://www.bsc.es/)** - AINA project infrastructure
- **[Generalitat de Catalunya](https://web.gencat.cat/)** - Funding and RIS3-MCAT platform
- **[AINA Project](https://projecteaina.cat/)** - AINA Challenge 2024 framework

## License

Apache 2.0

## Links

- **Query Parser Model**: [SIRIS-Lab/impuls-salamandra-7b-query-parser](https://huggingface.co/SIRIS-Lab/impuls-salamandra-7b-query-parser)
- **Project Repository**: [github.com/sirisacademic/aina-impulse](https://github.com/sirisacademic/aina-impulse)
- **SIRIS Academic**: [sirisacademic.com](https://sirisacademic.com/)