Dataset Viewer
Auto-converted to Parquet Duplicate
url
stringlengths
56
57
repository_url
stringclasses
1 value
labels_url
stringlengths
70
71
comments_url
stringlengths
65
66
events_url
stringlengths
63
64
html_url
stringlengths
46
47
id
int64
1.88B
2.91B
node_id
stringlengths
18
18
number
int64
906
2.42k
title
stringlengths
3
380
user
dict
labels
listlengths
0
3
state
stringclasses
2 values
locked
bool
1 class
assignee
dict
assignees
listlengths
0
1
milestone
null
comments
int64
0
42
created_at
timestamp[s]
updated_at
timestamp[s]
closed_at
timestamp[s]
author_association
stringclasses
4 values
sub_issues_summary
dict
active_lock_reason
null
draft
bool
0 classes
pull_request
dict
body
stringlengths
4
45.9k
closed_by
dict
reactions
dict
timeline_url
stringlengths
65
66
performed_via_github_app
null
state_reason
stringclasses
3 values
is_pull_request
bool
1 class
https://api.github.com/repos/huggingface/peft/issues/2415
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2415/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2415/comments
https://api.github.com/repos/huggingface/peft/issues/2415/events
https://github.com/huggingface/peft/issues/2415
2,905,929,237
I_kwDOIf9iDM6tNPYV
2,415
size mismatch for lm_head when fintune QWEN2.5
{ "login": "minmie", "id": 40080081, "node_id": "MDQ6VXNlcjQwMDgwMDgx", "avatar_url": "https://avatars.githubusercontent.com/u/40080081?v=4", "gravatar_id": "", "url": "https://api.github.com/users/minmie", "html_url": "https://github.com/minmie", "followers_url": "https://api.github.com/users/minmie/followers", "following_url": "https://api.github.com/users/minmie/following{/other_user}", "gists_url": "https://api.github.com/users/minmie/gists{/gist_id}", "starred_url": "https://api.github.com/users/minmie/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/minmie/subscriptions", "organizations_url": "https://api.github.com/users/minmie/orgs", "repos_url": "https://api.github.com/users/minmie/repos", "events_url": "https://api.github.com/users/minmie/events{/privacy}", "received_events_url": "https://api.github.com/users/minmie/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
0
2025-03-10T02:45:29
2025-03-10T02:45:29
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info transformers version: 4.49.0 Platform: Linux-6.6.0-72.0.0.64.oe2403.x86_64-x86_64-with-glibc2.38 Python version: 3.10.16 Huggingface_hub version: 0.29.1 Safetensors version: 0.5.3 Accelerate version: 1.4.0 Accelerate config: not found DeepSpeed version: not installed PyTorch version (GPU?): 2.2.2+cu121 (True) Tensorflow version (GPU?): not installed (NA) Flax version (CPU?/GPU?/TPU?): not installed (NA) Jax version: not installed JaxLib version: not installed Using distributed or parallel set-up in script?: Using GPU in script?: GPU type: NVIDIA L4 ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction I load an adapter for Qwen/Qwen2.5-0.5B using the following code and an error occur: ```python import torch from peft import AutoPeftModelForCausalLM from transformers import AutoTokenizer, pipeline from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer peft_model_id = "/home/chenjq/pythonWork/nlp/Qwen2.5-0.5B-SFT-Capybara/checkpoint-31" # peft_model_id = args.output_dir tokenizer = AutoTokenizer.from_pretrained(peft_model_id) # Load Model with PEFT adapter model = AutoPeftModelForCausalLM.from_pretrained( peft_model_id, device_map="auto", torch_dtype=torch.float16 ) ``` Error info as follow: ```python Sliding Window Attention is enabled but not implemented for `sdpa`; unexpected results may be encountered. Traceback (most recent call last): File "/home/chenjq/.pycharm_helpers/pydev/pydevd.py", line 1500, in _exec pydev_imports.execfile(file, globals, locals) # execute the script File "/home/chenjq/.pycharm_helpers/pydev/_pydev_imps/_pydev_execfile.py", line 18, in execfile exec(compile(contents+"\n", file, 'exec'), glob, loc) File "/home/chenjq/pythonWork/nlp/test14.py", line 11, in <module> model = AutoPeftModelForCausalLM.from_pretrained( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/auto.py", line 130, in from_pretrained return cls._target_peft_class.from_pretrained( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/peft_model.py", line 581, in from_pretrained load_result = model.load_adapter( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/peft_model.py", line 1239, in load_adapter load_result = set_peft_model_state_dict( File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/peft/utils/save_and_load.py", line 451, in set_peft_model_state_dict load_result = model.load_state_dict(peft_model_state_dict, strict=False) File "/home/chenjq/miniconda3/envs/nlp/lib/python3.10/site-packages/torch/nn/modules/module.py", line 2153, in load_state_dict raise RuntimeError('Error(s) in loading state_dict for {}:\n\t{}'.format( RuntimeError: Error(s) in loading state_dict for PeftModelForCausalLM: size mismatch for base_model.model.lm_head.modules_to_save.default.weight: copying a param with shape torch.Size([151936, 896]) from checkpoint, the shape in current model is torch.Size([151665, 896]). Process finished with exit code 1 ``` However, if I use the following code to load model, everything just work fine: ```python from peft import PeftConfig, PeftModel from transformers import AutoModelForCausalLM, AutoTokenizer base_model_name ='/home/models/qwen/Qwen2.5-0.5B' adapter_model_name = "/home/chenjq/pythonWork/nlp/Qwen2.5-0.5B-SFT-Capybara/checkpoint-31" model = AutoModelForCausalLM.from_pretrained(base_model_name) model = PeftModel.from_pretrained(model, adapter_model_name) tokenizer = AutoTokenizer.from_pretrained(base_model_name) ``` Some info from [here ](https://github.com/huggingface/transformers/issues/36550#issuecomment-2708336059)that maybe help: Hi everyone! I did some research and found out that the error occurs because the len(tokenizer)(151665) and the embedding size (151936) of Qwen/Qwen2.5-0.5B do not match. _BaseAutoPeftModel.from_pretrained resizes the base model embeddings to match with the tokenizer ([here](https://github.com/huggingface/peft/blob/8edaae9460e4b76bce9431dc187402178ff7b689/src/peft/auto.py#L137)) and as a result, it is unable to load the saved weights. I think a possible solution might be to only resize base model embeddings if the tokenizer size differs from the base tokenizer size. What do you think? The adapter trained using the following code: ```python from datasets import load_dataset from trl import SFTConfig, SFTTrainer from peft import LoraConfig import os os.environ['CUDA_VISIBLE_DEVICES'] = '1' dataset = load_dataset("trl-lib/Capybara", split="train") dataset = dataset.select(range(500)) MODEL_ID = 'Qwen/Qwen2.5-0.5B' peft_config = LoraConfig( r=16, lora_alpha=32, lora_dropout=0.05, target_modules="all-linear", modules_to_save=["lm_head", "embed_token"], task_type="CAUSAL_LM", ) args = SFTConfig( output_dir="Qwen2.5-0.5B-SFT-Capybara", # directory to save and repository id num_train_epochs=1, # number of training epochs per_device_train_batch_size=4, # batch size per device during training gradient_accumulation_steps=4, # number of steps before performing a backward/update pass gradient_checkpointing=True, # use gradient checkpointing to save memory optim="adamw_torch_fused", # use fused adamw optimizer logging_steps=10, # log every 10 steps save_strategy="epoch", # save checkpoint every epoch bf16=True, # use bfloat16 precision tf32=True, # use tf32 precision learning_rate=2e-4, # learning rate, based on QLoRA paper max_grad_norm=0.3, # max gradient norm based on QLoRA paper warmup_ratio=0.03, # warmup ratio based on QLoRA paper lr_scheduler_type="constant", # use constant learning rate scheduler push_to_hub=False, # push model to hub # report_to="tensorboard", # report metrics to tensorboard ) trainer = SFTTrainer( MODEL_ID, train_dataset=dataset, args=args, peft_config=peft_config ) trainer.train() print('end') ``` ### Expected behavior Hope the model can predict normally.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2415/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2415/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2413
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2413/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2413/comments
https://api.github.com/repos/huggingface/peft/issues/2413/events
https://github.com/huggingface/peft/issues/2413
2,901,962,025
I_kwDOIf9iDM6s-G0p
2,413
`LoraConfig` multiple properties should be unified
{ "login": "Qubitium", "id": 417764, "node_id": "MDQ6VXNlcjQxNzc2NA==", "avatar_url": "https://avatars.githubusercontent.com/u/417764?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Qubitium", "html_url": "https://github.com/Qubitium", "followers_url": "https://api.github.com/users/Qubitium/followers", "following_url": "https://api.github.com/users/Qubitium/following{/other_user}", "gists_url": "https://api.github.com/users/Qubitium/gists{/gist_id}", "starred_url": "https://api.github.com/users/Qubitium/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Qubitium/subscriptions", "organizations_url": "https://api.github.com/users/Qubitium/orgs", "repos_url": "https://api.github.com/users/Qubitium/repos", "events_url": "https://api.github.com/users/Qubitium/events{/privacy}", "received_events_url": "https://api.github.com/users/Qubitium/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
9
2025-03-07T04:14:24
2025-03-10T14:59:51
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
@BenjaminBossan I am trying to add dynamic Lora support to both vLLM and SGLang as LoraConfig already supports this dynamic control via the following variables: - `rank_pattern`: regex matching of which different `r`/`rank` values are applied - `exclude_modules`: regex: which modules are not excluded from lora completedly - `alpha_pattern`: regex matching of `alpha` override. extactly the same as `rank_pattern` but different property. Nothing wrong with them individually but together, they become unncessary detached and has negative impact on code cost but also on dynamic control efficiency. GPTQModel uses a single `dynamic`: Diction[str, Dict[]] where the `str` is a regex with `+:` (positive prefix, optional), `-:` negative prefix (Optional). The dict value is the property override in string: value format. Example as applied to PEFT (Proposal): ``` # implicit +: prefix if not used # prefixs are stripped before the regex is performed "mlp\.down_proj": { "r": 128 } # implicit positive "+:mlp\.down_proj": { "r": 256 } # explicit positive "-:mlp\.gate_proj": {} # negative ``` This simple control allows 3 states. - Positive match == override any property values in base config (LoraConfig). - Negative match == skip this modele for Lora (no LoraConfig at all) - No match == There is no module matched so Base LoraConfig is used. This single control replaces all existing PEFT control with same functionally while allowing ALL properties to be dynamically overriden (if necessary) without any additional apis/LoraConfig vars. As it exists, you need to add code and logic to every LoraConfig property that participates in dynamic override/control. Basically I want Peft LoraConfig to the clean standard for vLLM and SGLang when it comes to dynamic control. Having a unified `dynamic` override system makes everyone's life so much easier and at the same time eliminate the issue that we have to write code each time a new LoraConfig property comes into pace. Let me know what you think. I am willing to spend time working on it. You can also reach me at qubitium@modelcloud.ai and on [X: qubitium](https://x.com/qubitium). I really would love to chat with you for like 15 minutes to ping-pong this idea with you. CC: @SunMarc @MekkCyber
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2413/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2413/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2412
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2412/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2412/comments
https://api.github.com/repos/huggingface/peft/issues/2412/events
https://github.com/huggingface/peft/issues/2412
2,901,275,403
I_kwDOIf9iDM6s7fML
2,412
Lora_B weight becomes 0 when using AuotModel
{ "login": "makcedward", "id": 36614806, "node_id": "MDQ6VXNlcjM2NjE0ODA2", "avatar_url": "https://avatars.githubusercontent.com/u/36614806?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makcedward", "html_url": "https://github.com/makcedward", "followers_url": "https://api.github.com/users/makcedward/followers", "following_url": "https://api.github.com/users/makcedward/following{/other_user}", "gists_url": "https://api.github.com/users/makcedward/gists{/gist_id}", "starred_url": "https://api.github.com/users/makcedward/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makcedward/subscriptions", "organizations_url": "https://api.github.com/users/makcedward/orgs", "repos_url": "https://api.github.com/users/makcedward/repos", "events_url": "https://api.github.com/users/makcedward/events{/privacy}", "received_events_url": "https://api.github.com/users/makcedward/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
0
2025-03-06T19:45:29
2025-03-06T19:45:29
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info transformers version: 4.49.0 peft version: 0.14.0 ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction ``` from transformers import AutoModel, AutoModelForCausalLM from peft import PeftModel base_model_id = "meta-llama/Llama-3.2-1B" adapter_id = "makcedward/Llama-3.2-1B-Instruct-LoRA-Adapter" auto_model = PeftModel.from_pretrained( AutoModel.from_pretrained( base_model_id, ), adapter_id ) auto_casual_model = PeftModel.from_pretrained( AutoModelForCausalLM.from_pretrained( base_model_id, ), adapter_id ) print("Auto Model") print(auto_model.base_model.model.layers[0].self_attn.q_proj.lora_A.default.weight) # tensor([[-0.0168, 0.0056, -0.0009, ..., 0.0149, -0.0161, -0.0064], print(auto_model.base_model.model.layers[0].self_attn.q_proj.lora_B.default.weight) # tensor([[0., 0., 0., ..., 0., 0., 0.], print("AutoModelForCausalLM") print(auto_casual_model.base_model.model.model.layers[0].self_attn.q_proj.lora_A.default.weight) # tensor([[ 1.5867e-02, 2.7307e-02, -1.8503e-02, ..., -1.2035e-02, print(auto_casual_model.base_model.model.model.layers[0].self_attn.q_proj.lora_B.default.weight) # tensor([[-7.1123e-04, -4.3834e-03, -1.7415e-03, ..., 4.3514e-03, ``` ### Expected behavior Able to load LoRA weights by using AutoModel
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2412/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2412/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2410
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2410/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2410/comments
https://api.github.com/repos/huggingface/peft/issues/2410/events
https://github.com/huggingface/peft/issues/2410
2,899,373,069
I_kwDOIf9iDM6s0OwN
2,410
running forward loop using get_peft_model disables requires_grad on output
{ "login": "Hamidreza3252", "id": 27887474, "node_id": "MDQ6VXNlcjI3ODg3NDc0", "avatar_url": "https://avatars.githubusercontent.com/u/27887474?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Hamidreza3252", "html_url": "https://github.com/Hamidreza3252", "followers_url": "https://api.github.com/users/Hamidreza3252/followers", "following_url": "https://api.github.com/users/Hamidreza3252/following{/other_user}", "gists_url": "https://api.github.com/users/Hamidreza3252/gists{/gist_id}", "starred_url": "https://api.github.com/users/Hamidreza3252/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Hamidreza3252/subscriptions", "organizations_url": "https://api.github.com/users/Hamidreza3252/orgs", "repos_url": "https://api.github.com/users/Hamidreza3252/repos", "events_url": "https://api.github.com/users/Hamidreza3252/events{/privacy}", "received_events_url": "https://api.github.com/users/Hamidreza3252/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-03-06T05:12:42
2025-03-06T15:35:13
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hi, I would like to report a recent issue I have been facing, but I am not sure if it is a bug or I am doing something wrong in the process. The steps to re-create the steps are easy. The issue happens when I try to convert **Qwen2-VL-2B-Instruct** model into a PEFT model using `get_peft_model` method. Simply load the model using the sample code in https://huggingface.co/Qwen/Qwen2-VL-2B-Instruct and try to convert it to a PEFT model using a typical **8bit** LoraConfig with just sample `target_modules=["q_proj", "v_proj"]`. Then simply run a forward call to the model using a dummy input, such as `input_ids = torch.zeros((4, 1247)).to(device)`. When I inspect the `requires_grad` of `logits` attribute of the output, it is False. Meaning that I cannot run backward based on that output. This issue has been puzzling me for a while. I would appreciate if you can help me with a solution or advice how to address it properly.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2410/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2410/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2407
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2407/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2407/comments
https://api.github.com/repos/huggingface/peft/issues/2407/events
https://github.com/huggingface/peft/issues/2407
2,895,061,583
I_kwDOIf9iDM6sjyJP
2,407
RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:3! (when checking argument for argument mat2 in method wrapper_CUDA_mm)
{ "login": "maxliang114514", "id": 196797831, "node_id": "U_kgDOC7rlhw", "avatar_url": "https://avatars.githubusercontent.com/u/196797831?v=4", "gravatar_id": "", "url": "https://api.github.com/users/maxliang114514", "html_url": "https://github.com/maxliang114514", "followers_url": "https://api.github.com/users/maxliang114514/followers", "following_url": "https://api.github.com/users/maxliang114514/following{/other_user}", "gists_url": "https://api.github.com/users/maxliang114514/gists{/gist_id}", "starred_url": "https://api.github.com/users/maxliang114514/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/maxliang114514/subscriptions", "organizations_url": "https://api.github.com/users/maxliang114514/orgs", "repos_url": "https://api.github.com/users/maxliang114514/repos", "events_url": "https://api.github.com/users/maxliang114514/events{/privacy}", "received_events_url": "https://api.github.com/users/maxliang114514/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
6
2025-03-04T18:09:43
2025-03-10T11:17:16
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
**When I attempted to swap out the Lora configuration in Q-Lora(see qlora.py in _https://github.com/artidoro/qlora_) for Vera, I ran into the following error:** Traceback (most recent call last): File "qvera.py", line 859, in <module> train() File "qvera.py", line 821, in train train_result = trainer.train() File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 1539, in train return inner_training_loop( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 1809, in _inner_training_loop tr_loss_step = self.training_step(model, inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 2654, in training_step loss = self.compute_loss(model, inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/trainer.py", line 2679, in compute_loss outputs = model(**inputs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/peft_model.py", line 1644, in forward return self.base_model( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/tuners/tuners_utils.py", line 197, in forward return self.model.forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 806, in forward outputs = self.model( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 685, in forward layer_outputs = torch.utils.checkpoint.checkpoint( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 249, in checkpoint return CheckpointFunction.apply(function, preserve, *args) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/autograd/function.py", line 506, in apply return super().apply(*args, **kwargs) # type: ignore[misc] File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/utils/checkpoint.py", line 107, in forward outputs = run_function(*args) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 681, in custom_forward return module(*inputs, output_attentions, None) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 408, in forward hidden_states, self_attn_weights, present_key_value = self.self_attn( File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/accelerate/hooks.py", line 165, in new_forward output = old_forward(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/transformers/models/llama/modeling_llama.py", line 305, in forward query_states = self.q_proj(hidden_states) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/torch/nn/modules/module.py", line 1501, in _call_impl return forward_call(*args, **kwargs) File "/data/lnj/miniconda3/envs/qlora/lib/python3.8/site-packages/peft/tuners/vera/layer.py", line 287, in forward result = result + lambda_b * F.linear(lambda_d * F.linear(dropout(x), sliced_A), sliced_B) RuntimeError: Expected all tensors to be on the same device, but found at least two devices, cuda:0 and cuda:3! (when checking argument for argument mat2 in method wrapper_CUDA_mm) **However, with the original settings, everything was trainable. My GPU specs are as follows:** +-----------------------------------------------------------------------------------------+ | NVIDIA-SMI 550.135 Driver Version: 550.135 CUDA Version: 12.4 | |-----------------------------------------+------------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+========================+======================| | 0 NVIDIA GeForce RTX 2080 Ti Off | 00000000:02:00.0 Off | N/A | | 22% 19C P8 11W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 1 NVIDIA GeForce RTX 2080 Ti Off | 00000000:03:00.0 Off | N/A | | 22% 19C P8 21W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 2 NVIDIA GeForce RTX 2080 Ti Off | 00000000:82:00.0 Off | N/A | | 22% 20C P8 17W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ | 3 NVIDIA GeForce RTX 2080 Ti Off | 00000000:83:00.0 Off | N/A | | 22% 19C P8 8W / 250W | 1MiB / 11264MiB | 0% Default | | | | N/A | +-----------------------------------------+------------------------+----------------------+ **Is this an issue specific to Vera's unique characteristics? Given the scarcity of resources on Vera, I'd greatly appreciate any help with this problem, thank you!**
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2407/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2407/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2405
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2405/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2405/comments
https://api.github.com/repos/huggingface/peft/issues/2405/events
https://github.com/huggingface/peft/issues/2405
2,890,200,666
I_kwDOIf9iDM6sRPZa
2,405
SafetensorError when Merging LoRA Weights
{ "login": "Nothern-ai", "id": 143473220, "node_id": "U_kgDOCI06RA", "avatar_url": "https://avatars.githubusercontent.com/u/143473220?v=4", "gravatar_id": "", "url": "https://api.github.com/users/Nothern-ai", "html_url": "https://github.com/Nothern-ai", "followers_url": "https://api.github.com/users/Nothern-ai/followers", "following_url": "https://api.github.com/users/Nothern-ai/following{/other_user}", "gists_url": "https://api.github.com/users/Nothern-ai/gists{/gist_id}", "starred_url": "https://api.github.com/users/Nothern-ai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/Nothern-ai/subscriptions", "organizations_url": "https://api.github.com/users/Nothern-ai/orgs", "repos_url": "https://api.github.com/users/Nothern-ai/repos", "events_url": "https://api.github.com/users/Nothern-ai/events{/privacy}", "received_events_url": "https://api.github.com/users/Nothern-ai/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
1
2025-03-03T05:22:05
2025-03-03T10:11:44
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Original Working Environment: Python 3.8, transformers==4.46.0.dev0, safetensors==0.4.4, peft==0.12.0, trl==0.10.1 New Environment with Issue: transformers==4.45.2, safetensors==0.4.4, peft==0.12.0, trl==0.10.1 ### Who can help? _No response_ ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction When migrating from the original environment to a new machine with slightly different package versions, I encountered an error during the model merging process. My workflow involves: Saving LoRA weights Merging these weights with the base model The error occurs specifically during the loading of safetensors files after merging/ Reproduction Steps no need to train directly save LoRA weights (this step succeeds) Attempt to merge the saved weights with the original model The merge fails with the above error ``` # train_critic.py import os import time import shutil import argparse import torch import torch.distributed as dist from transformers import ( AutoTokenizer, AutoModelForCausalLM, GenerationConfig, BitsAndBytesConfig, ) from datasets import load_dataset from trl import DPOTrainer, DPOConfig from peft import LoraConfig, PeftModel import wandb from datetime import datetime def print_rank_0(message): if dist.get_rank() == 0: print(message) def main(): # ------------- Parse Arguments ------------- parser = argparse.ArgumentParser() parser.add_argument("--epoch", type=int, required=True, help="Current outer training iteration (which round)") parser.add_argument("--pref_dir", type=str, required=True, help="Folder for storing the preference dataset") parser.add_argument("--weights_dir", type=str, required=True, help="Folder for saving and loading weights") parser.add_argument("--train_epochs", type=int, default=1, help="Number of epochs to run in this DPO fine-tuning") parser.add_argument("--beta", type=float, default=0.2, help="Beta hyperparameter for DPO") parser.add_argument("--learning_rate", type=float, default=5e-6, help="Learning rate") parser.add_argument("--batch_size", type=int, default=1, help="Batch Size") args = parser.parse_args() # ------------- Distributed Initialization ------------- local_rank = int(os.environ.get("LOCAL_RANK", -1)) if local_rank >= 0: torch.cuda.set_device(local_rank) dist.init_process_group( backend='nccl', init_method='env://', world_size=int(os.environ.get("WORLD_SIZE", 1)), rank=int(os.environ.get("RANK", 0)) ) print_rank_0(f"CUDA_VISIBLE_DEVICES: {os.environ.get('CUDA_VISIBLE_DEVICES')}") print_rank_0(f"LOCAL_RANK: {os.environ.get('LOCAL_RANK')}") print_rank_0(f"WORLD_SIZE: {os.environ.get('WORLD_SIZE')}") # ------------- config ------------- epoch = args.epoch weights_dir = args.weights_dir pref_dir = args.pref_dir batch_size = args.batch_size base_model_path = "meta-llama/Llama-3.1-8B-Instruct" print("base_model_path:", base_model_path) data_path = os.path.join(pref_dir, f"critic_{epoch}.jsonl") output_model_path = os.path.join(weights_dir, f"critic_{epoch}") os.makedirs(output_model_path, exist_ok=True) print_rank_0(f"Loading base model from: {base_model_path}") model = AutoModelForCausalLM.from_pretrained( base_model_path, torch_dtype=torch.bfloat16, device_map={'': torch.cuda.current_device()} # device_map={'': torch.cuda.current_device()} if local_rank >= 0 else "auto", ) tokenizer = AutoTokenizer.from_pretrained(base_model_path, use_fast=False) model.generation_config = GenerationConfig( max_new_tokens=512, temperature=0.7, do_sample=True, ) # padding_side/pad_token tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.padding_side = 'right' tokenizer.pad_token = '[PAD]' model.config.pad_token_id = tokenizer.pad_token_id model.config.eos_token_id = tokenizer.eos_token_id with torch.no_grad(): model.resize_token_embeddings(len(tokenizer)) print_rank_0(f"Loading dataset from: {data_path}") dataset = load_dataset('json', data_files=data_path)['train'] def convert_format(example): messages = example['messages'] formatted = "<|begin_of_text|>" # system system_msg = messages[0] formatted += f"<|start_header_id|>system<|end_header_id|>\n\n{system_msg['content']}<|eot_id|>" # user user_msg = messages[1] formatted += f"<|start_header_id|>user<|end_header_id|>\n\n{user_msg['content']}<|eot_id|>" # assistant formatted += "<|start_header_id|>assistant<|end_header_id|>\n\n" chosen_response = example['chosen'] + tokenizer.eos_token rejected_response = example['rejected'] + tokenizer.eos_token return { "prompt": formatted, "chosen": chosen_response, "rejected": rejected_response } train_dataset = dataset.map( convert_format, remove_columns=dataset.column_names, load_from_cache_file=False ) base_lr = args.learning_rate scaled_lr = base_lr * dist.get_world_size() * batch_size warmup_steps = 100 dpo_config = DPOConfig( beta=args.beta, warmup_steps=warmup_steps, weight_decay=0.01, learning_rate=scaled_lr, rpo_alpha=1.0, # lr_scheduler_type="cosine", output_dir=output_model_path, num_train_epochs=args.train_epochs, per_device_train_batch_size=batch_size, fp16=False, bf16=True, logging_steps=10, save_strategy="no", save_total_limit=1, report_to="none", ddp_backend='nccl', remove_unused_columns=False, dataloader_drop_last=True, max_length=2048, max_prompt_length=2048, local_rank=local_rank, ) # LoRA peft_config = LoraConfig( r=256, lora_alpha=32, target_modules=["q_proj", "k_proj", "v_proj", "o_proj"], lora_dropout=0.0, bias="none", task_type="CAUSAL_LM", ) trainer = DPOTrainer( model=model, args=dpo_config, train_dataset=train_dataset, tokenizer=tokenizer, peft_config=peft_config, ) trainer.train() # ------------- merge LoRA ------------- if dist.get_rank() == 0: lora_weights_path = os.path.join(output_model_path, "lora_weights") trainer.model.save_pretrained(lora_weights_path) # print("lora weight saved") # trainer.model.save_pretrained(lora_weights_path, safe_serialization=False) print("lora weight saved") base_merged_model = AutoModelForCausalLM.from_pretrained( base_model_path, device_map=None, low_cpu_mem_usage=False, ) tokenizer.add_special_tokens({'pad_token': '[PAD]'}) tokenizer.pad_token = '[PAD]' base_merged_model.config.pad_token_id = tokenizer.pad_token_id base_merged_model.config.eos_token_id = tokenizer.eos_token_id with torch.no_grad(): base_merged_model.resize_token_embeddings(len(tokenizer)) peft_model = PeftModel.from_pretrained( base_merged_model, lora_weights_path, device_map=None, ) merged_model = peft_model.merge_and_unload() # save print_rank_0(f"Saving merged model to: {output_model_path}") merged_model.save_pretrained(output_model_path) print_rank_0("Model saved successfully") tokenizer.save_pretrained(output_model_path) # delete lora weights shutil.rmtree(lora_weights_path) dist.barrier(device_ids=[local_rank] if local_rank >= 0 else None) print_rank_0("DPO Training complete.") dist.destroy_process_group() if __name__ == "__main__": main() ``` When trying to skip saving the LoRA weights and directly merging them, the merge operation succeeds ``` peft_model = trainer.model merged_model = peft_model.merge_and_unload() print_rank_0(f"Saving merged model to: {output_model_path}") merged_model.save_pretrained(output_model_path) tokenizer.save_pretrained(output_model_path) print_rank_0("Merged model saved successfully") ``` However, attempting to AutoModelForCausalLM.from_pretrained the merged safetensors weights later results in the error2 ### Expected behavior error1(save lora weights and merge): > 100%|██████████| 1/1 [00:01<00:00, 1.91s/it] > 100%|██████████| 1/1 [00:01<00:00, 1.92s/it] > /home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/utils/save_and_load.py:232: UserWarning: Setting `save_embedding_layers` to `True` as the embedding layer has been resized during finetuning. > warnings.warn( > lora weight saved > > Loading checkpoint shards: 0%| | 0/4 [00:00<?, ?it/s] > Loading checkpoint shards: 25%|██▌ | 1/4 [00:00<00:02, 1.28it/s] > Loading checkpoint shards: 50%|█████ | 2/4 [00:01<00:01, 1.32it/s] > Loading checkpoint shards: 75%|███████▌ | 3/4 [00:02<00:00, 1.31it/s] > Loading checkpoint shards: 100%|██████████| 4/4 [00:02<00:00, 1.74it/s] > Loading checkpoint shards: 100%|██████████| 4/4 [00:02<00:00, 1.55it/s] > [rank0]: Traceback (most recent call last): > [rank0]: File "/users/w/ac/train/train_critic.py", line 249, in <module> > [rank0]: main() > [rank0]: File "/users/w/ac/train/train_critic.py", line 225, in main > [rank0]: peft_model = PeftModel.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/peft_model.py", line 545, in from_pretrained > [rank0]: model.load_adapter( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/peft_model.py", line 1113, in load_adapter > [rank0]: adapters_weights = load_peft_weights(model_id, device=torch_device, **hf_hub_download_kwargs) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/peft/utils/save_and_load.py", line 486, in load_peft_weights > [rank0]: adapters_weights = safe_load_file(filename, device=device) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/safetensors/torch.py", line 311, in load_file > [rank0]: with safe_open(filename, framework="pt", device=device) as f: > [rank0]: safetensors_rust.SafetensorError: Error while deserializing header: MetadataIncompleteBuffer > E0302 21:17:38.377842 2650981 site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 2651079) of binary: /home//miniconda3/envs/py39env/bin/python > Traceback (most recent call last): > File "/home//miniconda3/envs/py39env/bin/torchrun", line 8, in <module> > sys.exit(main()) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper > return f(*args, **kwargs) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 919, in main > run(args) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 910, in run > elastic_launch( > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ > return launch_agent(self._config, self._entrypoint, list(args)) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent > raise ChildFailedError( > torch.distributed.elastic.multiprocessing.errors.ChildFailedError: error2:(directly merge, and load the model after merge > CUDA_VISIBLE_DEVICES: 1 > LOCAL_RANK: 0 > WORLD_SIZE: 1 > base_model_path: /train/runs/301_wd/weights/_1 > Loading base model from: /train/runs/301_wd/weights/_1 > > Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s] > Loading checkpoint shards: 0%| | 0/7 [00:00<?, ?it/s] > [rank0]: Traceback (most recent call last): > [rank0]: File "/train/train_.py", line 216, in <module> > [rank0]: main() > [rank0]: File "/train/train_.py", line 91, in main > [rank0]: model = AutoModelForCausalLM.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/models/auto/auto_factory.py", line 564, in from_pretrained > [rank0]: return model_class.from_pretrained( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 4014, in from_pretrained > [rank0]: ) = cls._load_pretrained_model( > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 4482, in _load_pretrained_model > [rank0]: state_dict = load_state_dict(shard_file, is_quantized=is_quantized) > [rank0]: File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/transformers/modeling_utils.py", line 549, in load_state_dict > [rank0]: with safe_open(checkpoint_file, framework="pt") as f: > [rank0]: safetensors_rust.SafetensorError: Error while deserializing header: MetadataIncompleteBuffer > E0302 20:39:06.398025 2565872 site-packages/torch/distributed/elastic/multiprocessing/api.py:869] failed (exitcode: 1) local_rank: 0 (pid: 2566031) of binary: /home//miniconda3/envs/py39env/bin/python > Traceback (most recent call last): > File "/home//miniconda3/envs/py39env/bin/torchrun", line 8, in <module> > sys.exit(main()) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/elastic/multiprocessing/errors/__init__.py", line 355, in wrapper > return f(*args, **kwargs) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 919, in main > run(args) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/run.py", line 910, in run > elastic_launch( > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 138, in __call__ > return launch_agent(self._config, self._entrypoint, list(args)) > File "/home//miniconda3/envs/py39env/lib/python3.8/site-packages/torch/distributed/launcher/api.py", line 269, in launch_agent > raise ChildFailedError( > torch.distributed.elastic.multiprocessing.errors.ChildFailedError: > ============================================================
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2405/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2405/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2400
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2400/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2400/comments
https://api.github.com/repos/huggingface/peft/issues/2400/events
https://github.com/huggingface/peft/issues/2400
2,881,481,036
I_kwDOIf9iDM6rv-lM
2,400
processing_class and tokenizer arguments on SFTTrainer()
{ "login": "ErikKankaTrea", "id": 18656607, "node_id": "MDQ6VXNlcjE4NjU2NjA3", "avatar_url": "https://avatars.githubusercontent.com/u/18656607?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ErikKankaTrea", "html_url": "https://github.com/ErikKankaTrea", "followers_url": "https://api.github.com/users/ErikKankaTrea/followers", "following_url": "https://api.github.com/users/ErikKankaTrea/following{/other_user}", "gists_url": "https://api.github.com/users/ErikKankaTrea/gists{/gist_id}", "starred_url": "https://api.github.com/users/ErikKankaTrea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ErikKankaTrea/subscriptions", "organizations_url": "https://api.github.com/users/ErikKankaTrea/orgs", "repos_url": "https://api.github.com/users/ErikKankaTrea/repos", "events_url": "https://api.github.com/users/ErikKankaTrea/events{/privacy}", "received_events_url": "https://api.github.com/users/ErikKankaTrea/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-26T12:48:33
2025-02-27T03:39:02
2025-02-27T03:39:00
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hi!!! I got unexpected error from my side when running the example train.py with deepspeed [(link)](https://github.com/huggingface/peft/tree/main/examples/sft) Argument "**tokenizer**" should be now "**processing_class**". Could anyone please, let me know whether with the example provided (link above) changing the arguments names on SFTTrainer() for passing the tokenizer should be enough ? I am worried if I make that change switching arguments the example scripts will miss sense. Thanks in advance!
{ "login": "ErikKankaTrea", "id": 18656607, "node_id": "MDQ6VXNlcjE4NjU2NjA3", "avatar_url": "https://avatars.githubusercontent.com/u/18656607?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ErikKankaTrea", "html_url": "https://github.com/ErikKankaTrea", "followers_url": "https://api.github.com/users/ErikKankaTrea/followers", "following_url": "https://api.github.com/users/ErikKankaTrea/following{/other_user}", "gists_url": "https://api.github.com/users/ErikKankaTrea/gists{/gist_id}", "starred_url": "https://api.github.com/users/ErikKankaTrea/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ErikKankaTrea/subscriptions", "organizations_url": "https://api.github.com/users/ErikKankaTrea/orgs", "repos_url": "https://api.github.com/users/ErikKankaTrea/repos", "events_url": "https://api.github.com/users/ErikKankaTrea/events{/privacy}", "received_events_url": "https://api.github.com/users/ErikKankaTrea/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2400/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2400/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2394
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2394/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2394/comments
https://api.github.com/repos/huggingface/peft/issues/2394/events
https://github.com/huggingface/peft/issues/2394
2,874,191,172
I_kwDOIf9iDM6rUK1E
2,394
TP + DP training error
{ "login": "iMountTai", "id": 35353688, "node_id": "MDQ6VXNlcjM1MzUzNjg4", "avatar_url": "https://avatars.githubusercontent.com/u/35353688?v=4", "gravatar_id": "", "url": "https://api.github.com/users/iMountTai", "html_url": "https://github.com/iMountTai", "followers_url": "https://api.github.com/users/iMountTai/followers", "following_url": "https://api.github.com/users/iMountTai/following{/other_user}", "gists_url": "https://api.github.com/users/iMountTai/gists{/gist_id}", "starred_url": "https://api.github.com/users/iMountTai/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/iMountTai/subscriptions", "organizations_url": "https://api.github.com/users/iMountTai/orgs", "repos_url": "https://api.github.com/users/iMountTai/repos", "events_url": "https://api.github.com/users/iMountTai/events{/privacy}", "received_events_url": "https://api.github.com/users/iMountTai/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
7
2025-02-24T08:30:53
2025-02-27T16:50:07
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info peft: 0.14.1.dev0 transformers: 4.50.dev0 accelerate: 1.4.0.dev0 python: 3.11 linux ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction After adding the LoRA module to the model, an error occurred: NotImplementederror: ColwiseParallel currently only support nn.linear and nn.embedding ### Expected behavior lora module training with TP
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2394/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2394/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2390
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2390/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2390/comments
https://api.github.com/repos/huggingface/peft/issues/2390/events
https://github.com/huggingface/peft/issues/2390
2,866,034,838
I_kwDOIf9iDM6q1DiW
2,390
Bug: Using 2 LoRA configs with `target_modules='all-linear'` leads to nested LoRA layers
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 4838806417, "node_id": "LA_kwDOIf9iDM8AAAABIGpTkQ", "url": "https://api.github.com/repos/huggingface/peft/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" }, { "id": 4838806434, "node_id": "LA_kwDOIf9iDM8AAAABIGpTog", "url": "https://api.github.com/repos/huggingface/peft/labels/good%20first%20issue", "name": "good first issue", "color": "7057ff", "default": true, "description": "Good for newcomers" } ]
closed
false
null
[]
null
0
2025-02-20T12:34:35
2025-03-04T16:16:16
2025-03-04T16:16:16
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info - ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python from transformers import AutoModelForCausalLM from peft import LoraConfig, get_peft_model model_id = "hf-internal-testing/tiny-random-OPTForCausalLM" model = AutoModelForCausalLM.from_pretrained(model_id) config0 = LoraConfig(target_modules="all-linear") config1 = LoraConfig(target_modules="all-linear") model = get_peft_model(model, config0)#, adapter_name="default") model.add_adapter("adapter1", config1) print(model.base_model.model.model.decoder.layers[0].self_attn.k_proj) ``` prints: ``` lora.Linear( (base_layer): lora.Linear( (base_layer): Linear(in_features=16, out_features=16, bias=True) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=16, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=16, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (lora_dropout): ModuleDict( (default): Identity() ) (lora_A): ModuleDict( (default): lora.Linear( (base_layer): Linear(in_features=16, out_features=8, bias=False) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=16, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=8, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (lora_B): ModuleDict( (default): lora.Linear( (base_layer): Linear(in_features=8, out_features=16, bias=False) (lora_dropout): ModuleDict( (adapter1): Identity() ) (lora_A): ModuleDict( (adapter1): Linear(in_features=8, out_features=8, bias=False) ) (lora_B): ModuleDict( (adapter1): Linear(in_features=8, out_features=16, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ``` ### Expected behavior Instead of getting nested LoRA layers, the linear layers belonging to a LoRA layer should not be targeted by `all-linear`.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2390/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2390/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2388
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2388/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2388/comments
https://api.github.com/repos/huggingface/peft/issues/2388/events
https://github.com/huggingface/peft/issues/2388
2,863,639,986
I_kwDOIf9iDM6qr62y
2,388
ValueError: Target module Qwen2_5_VisionTransformerPretrainedModel is not supported.
{ "login": "samuellimabraz", "id": 115582014, "node_id": "U_kgDOBuOkPg", "avatar_url": "https://avatars.githubusercontent.com/u/115582014?v=4", "gravatar_id": "", "url": "https://api.github.com/users/samuellimabraz", "html_url": "https://github.com/samuellimabraz", "followers_url": "https://api.github.com/users/samuellimabraz/followers", "following_url": "https://api.github.com/users/samuellimabraz/following{/other_user}", "gists_url": "https://api.github.com/users/samuellimabraz/gists{/gist_id}", "starred_url": "https://api.github.com/users/samuellimabraz/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/samuellimabraz/subscriptions", "organizations_url": "https://api.github.com/users/samuellimabraz/orgs", "repos_url": "https://api.github.com/users/samuellimabraz/repos", "events_url": "https://api.github.com/users/samuellimabraz/events{/privacy}", "received_events_url": "https://api.github.com/users/samuellimabraz/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-02-19T15:09:17
2025-03-06T16:30:36
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
## Context I'm finetuning the Qwen2.5-Vl model with swift for data extraction using LoRA. I'm not sure what is the correct way to save and upload the adapter and be able to recharge it correctly. In short, I followed these steps ```python # load model model, processor = get_model_tokenizer( 'Qwen/Qwen2.5-VL-3B-Instruct', torch_dtype=torch.bfloat16, use_hf=True, attn_impl="flash_attn", ) # get lora ... model = Swift.prepare_model(model, lora_config) # train config e run ... trainer = Seq2SeqTrainer( model=model, args=training_args, data_collator=template.data_collator, train_dataset=train_dataset, eval_dataset=val_dataset, template=template, callbacks= [ EarlyStoppingCallback( early_stopping_patience=6, early_stopping_threshold=0.001 ) ] ) stats = trainer.train() # push adapter model.push_to_hub(f"tech4humans/{model_name}", private=True) ``` debugging the peft model was loaded with the class `PeftModelForCausalLM`. ## Problem Then after I tried to recharge the adapter and I get an error with peft ```python from transformers import Qwen2_5_VLForConditionalGeneration model = Qwen2_5_VLForConditionalGeneration.from_pretrained("Qwen/Qwen2.5-VL-3B-Instruct", device_map="auto") model.load_adapter("tech4humans/Qwen2.5-VL-3B-Instruct-r4-tuned") ``` ```python /usr/local/lib/python3.10/dist-packages/peft/tuners/lora/model.py in _create_new_module(lora_config, adapter_name, target, **kwargs) 345 if new_module is None: 346 # no module could be matched --> 347 raise ValueError( 348 f"Target module {target} is not supported. Currently, only the following modules are supported: " 349 "`torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv1d`, `torch.nn.Conv2d`, `torch.nn.Conv3d`, ". ValueError: Target module Qwen2_5_VisionTransformerPretrainedModel( (patch_embed): Qwen2_5_VisionPatchEmbed( (proj): Conv3d(3, 1280, kernel_size=(2, 14, 14), stride=(2, 14, 14), bias=False) ) (rotary_pos_emb): Qwen2_5_VisionRotaryEmbedding() (blocks): ModuleList( (0-31): 32 x Qwen2_5_VLVisionBlock( (norm1): Qwen2RMSNorm((1280,), eps=1e-06) (norm2): Qwen2RMSNorm((1280,), eps=1e-06) (attn): Qwen2_5_VLVisionSdpaAttention( (qkv): Linear(in_features=1280, out_features=3840, bias=True) (proj): Linear(in_features=1280, out_features=1280, bias=True) ) (mlp): Qwen2_5_VLMLP( (gate_proj): Linear(in_features=1280, out_features=3420, bias=True) (up_proj): Linear(in_features=1280, out_features=3420, bias=True) (down_proj): Linear(in_features=3420, out_features=1280, bias=True) (act_fn): SiLU() ) ) ) (merger): Qwen2_5_VLPatchMerger( (ln_q): Qwen2RMSNorm((1280,), eps=1e-06) (mlp): Sequential( (0): Linear(in_features=5120, out_features=5120, bias=True) (1): GELU(approximate='none') (2): Linear(in_features=5120, out_features=2048, bias=True) ) ) ) is not supported. Currently, only the following modules are supported: `torch.nn.Linear`, `torch.nn.Embedding`, `torch.nn.Conv1d`, `torch.nn.Conv2d`, `torch.nn.Conv3d`, `transformers.pytorch_utils.Conv1D`, `torch.nn.MultiheadAttention.`. ``` ## Sytem info ``` transformers 4.50.0.dev0 peft 0.14.1.dev0 ms-swift 3.2.0.dev0 Python 3.10.12 CUDA Version: 12.6 ``` Am I missing something or doing something wrong? Any pointers would be appreciated. Thanks!
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2388/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2388/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2381
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2381/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2381/comments
https://api.github.com/repos/huggingface/peft/issues/2381/events
https://github.com/huggingface/peft/issues/2381
2,857,556,037
I_kwDOIf9iDM6qUthF
2,381
Bug when deleting adapters of a model with modules_to_save
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 4838806417, "node_id": "LA_kwDOIf9iDM8AAAABIGpTkQ", "url": "https://api.github.com/repos/huggingface/peft/labels/bug", "name": "bug", "color": "d73a4a", "default": true, "description": "Something isn't working" } ]
open
false
null
[]
null
0
2025-02-17T11:22:34
2025-02-20T12:35:13
null
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info All PEFT versions. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python from transformers import AutoModelForSequenceClassification from peft import LoraConfig, get_peft_model model_id = "facebook/opt-125m" config = LoraConfig(task_type="SEQ_CLS") model = AutoModelForSequenceClassification.from_pretrained(model_id) adapter_to_delete = "delete_me" model = get_peft_model(model, config) model.add_adapter(adapter_to_delete, config) # sanity check assert "delete_me" in model.base_model.model.score.modules_to_save model.delete_adapter(adapter_to_delete) assert "delete_me" not in model.base_model.model.score.modules_to_save ``` ### Expected behavior When adding, say, a LoRA adapter with `modules_to_save`, then deleting the adapter, the LoRA part is correctly removed but the `modules_to_save` part is not removed.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2381/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2381/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2379
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2379/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2379/comments
https://api.github.com/repos/huggingface/peft/issues/2379/events
https://github.com/huggingface/peft/issues/2379
2,854,940,754
I_kwDOIf9iDM6qKvBS
2,379
prompt_tuning_peft tutorial raises cache layer error
{ "login": "jakerobers", "id": 1840629, "node_id": "MDQ6VXNlcjE4NDA2Mjk=", "avatar_url": "https://avatars.githubusercontent.com/u/1840629?v=4", "gravatar_id": "", "url": "https://api.github.com/users/jakerobers", "html_url": "https://github.com/jakerobers", "followers_url": "https://api.github.com/users/jakerobers/followers", "following_url": "https://api.github.com/users/jakerobers/following{/other_user}", "gists_url": "https://api.github.com/users/jakerobers/gists{/gist_id}", "starred_url": "https://api.github.com/users/jakerobers/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/jakerobers/subscriptions", "organizations_url": "https://api.github.com/users/jakerobers/orgs", "repos_url": "https://api.github.com/users/jakerobers/repos", "events_url": "https://api.github.com/users/jakerobers/events{/privacy}", "received_events_url": "https://api.github.com/users/jakerobers/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
3
2025-02-15T00:10:11
2025-02-19T10:21:15
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Following the prompt tuning guide leads to an error when executing in a local environment: - https://huggingface.co/learn/cookbook/en/prompt_tuning_peft When executing, an exception is raised when calling `model.generate()` with the prompt-tuned model. Everything up to that point seems to be working as expected (i.e. the `peft_outputs_prompt` and `peft_outputs_sentences` directories containing the prompt-tunings have checkpoints). Having a look at the stacktrace, it looks like `model_kwargs["past_key_values"]` is being referenced in `peft/peft_model.py`. I'm curious if this is possibly related to https://github.com/huggingface/peft/issues/1962. ``` Traceback (most recent call last): File "/main.py", line 148, in <module> loaded_model_prompt_outputs = get_outputs(loaded_model_prompt, input_prompt) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "./main.py", line 17, in get_outputs outputs = model.generate( ^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/peft/peft_model.py", line 1140, in generate outputs = self.base_model.generate(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/torch/utils/_contextlib.py", line 116, in decorate_context return func(*args, **kwargs) ^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/transformers/generation/utils.py", line 2255, in generate result = self._sample( ^^^^^^^^^^^^^ File "lib/python3.11/site-packages/transformers/generation/utils.py", line 3247, in _sample model_inputs = self.prepare_inputs_for_generation(input_ids, **model_kwargs) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "lib/python3.11/site-packages/peft/peft_model.py", line 1169, in prepare_inputs_for_generation if model_kwargs["past_key_values"][0][0].shape[-2] >= model_kwargs["input_ids"].shape[1]: ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~^^^ File "lib/python3.11/site-packages/transformers/cache_utils.py", line 390, in __getitem__ raise KeyError(f"Cache only has {len(self)} layers, attempted to access layer with index {layer_idx}") KeyError: 'Cache only has 0 layers, attempted to access layer with index 0' ``` cc @BenjaminBossan since you have some context around how `past_key_values` [works with transformers](https://github.com/huggingface/peft/pull/2096/files) ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction This is the code provided in the article https://huggingface.co/learn/cookbook/en/prompt_tuning_peft, condensed into a single script. ``` #!/usr/bin/env python # TODO: https://huggingface.co/learn/cookbook/en/prompt_tuning_peft # TODO: https://huggingface.co/docs/peft/en/package_reference/prompt_tuning from transformers import AutoModelForCausalLM, AutoTokenizer model_name = "bigscience/bloomz-560m" # model_name="bigscience/bloom-1b1" NUM_VIRTUAL_TOKENS = 4 NUM_EPOCHS = 6 tokenizer = AutoTokenizer.from_pretrained(model_name) foundational_model = AutoModelForCausalLM.from_pretrained(model_name, trust_remote_code=True) def get_outputs(model, inputs, max_new_tokens=100): outputs = model.generate( input_ids=inputs["input_ids"], attention_mask=inputs["attention_mask"], max_new_tokens=max_new_tokens, # temperature=0.2, # top_p=0.95, # do_sample=True, repetition_penalty=1.5, # Avoid repetition. early_stopping=True, # The model can stop before reach the max_length eos_token_id=tokenizer.eos_token_id, ) return outputs input_prompt = tokenizer("I want you to act as a motivational coach. ", return_tensors="pt") foundational_outputs_prompt = get_outputs(foundational_model, input_prompt, max_new_tokens=50) print(tokenizer.batch_decode(foundational_outputs_prompt, skip_special_tokens=True)) import os from IPython.display import display # os.environ["TOKENIZERS_PARALLELISM"] = "false" from datasets import load_dataset dataset_prompt = "fka/awesome-chatgpt-prompts" # Create the Dataset to create prompts. # data_prompt = load_dataset(dataset_prompt) data_prompt = data_prompt.map(lambda samples: tokenizer(samples["prompt"]), batched=True) train_sample_prompt = data_prompt["train"].select(range(50)) display(train_sample_prompt) print(train_sample_prompt[:1]) dataset_sentences = load_dataset("Abirate/english_quotes") data_sentences = dataset_sentences.map(lambda samples: tokenizer(samples["quote"]), batched=True) train_sample_sentences = data_sentences["train"].select(range(25)) train_sample_sentences = train_sample_sentences.remove_columns(["author", "tags"]) display(train_sample_sentences) print(train_sample_sentences[:1]) from peft import get_peft_model, PromptTuningConfig, TaskType, PromptTuningInit generation_config = PromptTuningConfig( task_type=TaskType.CAUSAL_LM, # This type indicates the model will generate text. prompt_tuning_init=PromptTuningInit.RANDOM, # The added virtual tokens are initializad with random numbers num_virtual_tokens=NUM_VIRTUAL_TOKENS, # Number of virtual tokens to be added and trained. tokenizer_name_or_path=model_name, # The pre-trained model. ) peft_model_prompt = get_peft_model(foundational_model, generation_config) print(peft_model_prompt.print_trainable_parameters()) peft_model_sentences = get_peft_model(foundational_model, generation_config) print(peft_model_sentences.print_trainable_parameters()) from transformers import TrainingArguments def create_training_arguments(path, learning_rate=0.0035, epochs=6): training_args = TrainingArguments( output_dir=path, # Where the model predictions and checkpoints will be written use_cpu=True, # This is necessary for CPU clusters. auto_find_batch_size=True, # Find a suitable batch size that will fit into memory automatically learning_rate=learning_rate, # Higher learning rate than full Fine-Tuning num_train_epochs=epochs, ) return training_args import os working_dir = "./" # Is best to store the models in separate folders. # Create the name of the directories where to store the models. output_directory_prompt = os.path.join(working_dir, "peft_outputs_prompt") output_directory_sentences = os.path.join(working_dir, "peft_outputs_sentences") # Just creating the directoris if not exist. if not os.path.exists(working_dir): os.mkdir(working_dir) if not os.path.exists(output_directory_prompt): os.mkdir(output_directory_prompt) if not os.path.exists(output_directory_sentences): os.mkdir(output_directory_sentences) training_args_prompt = create_training_arguments(output_directory_prompt, 0.003, NUM_EPOCHS) training_args_sentences = create_training_arguments(output_directory_sentences, 0.003, NUM_EPOCHS) from transformers import Trainer, DataCollatorForLanguageModeling def create_trainer(model, training_args, train_dataset): trainer = Trainer( model=model, # We pass in the PEFT version of the foundation model, bloomz-560M args=training_args, # The args for the training. train_dataset=train_dataset, # The dataset used to tyrain the model. data_collator=DataCollatorForLanguageModeling( tokenizer, mlm=False ), # mlm=False indicates not to use masked language modeling ) return trainer trainer_prompt = create_trainer(peft_model_prompt, training_args_prompt, train_sample_prompt) trainer_prompt.train() trainer_sentences = create_trainer(peft_model_sentences, training_args_sentences, train_sample_sentences) trainer_sentences.train() trainer_prompt.model.save_pretrained(output_directory_prompt) trainer_sentences.model.save_pretrained(output_directory_sentences) from peft import PeftModel loaded_model_prompt = PeftModel.from_pretrained( foundational_model, output_directory_prompt, # device_map='auto', is_trainable=False, ) loaded_model_prompt_outputs = get_outputs(loaded_model_prompt, input_prompt) print(tokenizer.batch_decode(loaded_model_prompt_outputs, skip_special_tokens=True)) loaded_model_prompt.load_adapter(output_directory_sentences, adapter_name="quotes") loaded_model_prompt.set_adapter("quotes") loaded_model_sentences_outputs = get_outputs(loaded_model_prompt, input_sentences) print(tokenizer.batch_decode(loaded_model_sentences_outputs, skip_special_tokens=True)) # Notes: # - https://github.com/huggingface/peft/issues/1962 # - https://github.com/huggingface/peft/issues/869#issuecomment-2263322623 ``` ### Expected behavior The `loaded_model_prompt` should be able to execute `generate` and return a prompt-tuned response.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2379/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2379/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2377
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2377/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2377/comments
https://api.github.com/repos/huggingface/peft/issues/2377/events
https://github.com/huggingface/peft/issues/2377
2,853,540,672
I_kwDOIf9iDM6qFZNA
2,377
Contributing new model merging method to PEFT
{ "login": "SpeeeedLee", "id": 132431571, "node_id": "U_kgDOB-S-0w", "avatar_url": "https://avatars.githubusercontent.com/u/132431571?v=4", "gravatar_id": "", "url": "https://api.github.com/users/SpeeeedLee", "html_url": "https://github.com/SpeeeedLee", "followers_url": "https://api.github.com/users/SpeeeedLee/followers", "following_url": "https://api.github.com/users/SpeeeedLee/following{/other_user}", "gists_url": "https://api.github.com/users/SpeeeedLee/gists{/gist_id}", "starred_url": "https://api.github.com/users/SpeeeedLee/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/SpeeeedLee/subscriptions", "organizations_url": "https://api.github.com/users/SpeeeedLee/orgs", "repos_url": "https://api.github.com/users/SpeeeedLee/repos", "events_url": "https://api.github.com/users/SpeeeedLee/events{/privacy}", "received_events_url": "https://api.github.com/users/SpeeeedLee/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
1
2025-02-14T12:17:46
2025-02-14T15:57:51
null
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### Feature request Hi all, I noticed that several model merging methods, such as TIES and DARE, have been implemented in this library, as mentioned [here](https://github.com/huggingface/peft/blob/main/docs/source/developer_guides/model_merging.md). I was wondering if there is a way for me to contribute a recently accepted model merging method to this repo. I would really appreciate any guidance or suggestions on how to proceed. Thanks in advance! ### Motivation Enhance the diversity of model merging supported in this library. ### Your contribution I can submit a PR.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2377/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2377/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2368
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2368/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2368/comments
https://api.github.com/repos/huggingface/peft/issues/2368/events
https://github.com/huggingface/peft/issues/2368
2,838,153,330
I_kwDOIf9iDM6pKshy
2,368
[FSDP] After training embed_tokens in modules_to_save model has hallucinations
{ "login": "DmitryDiTy", "id": 90377536, "node_id": "MDQ6VXNlcjkwMzc3NTM2", "avatar_url": "https://avatars.githubusercontent.com/u/90377536?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DmitryDiTy", "html_url": "https://github.com/DmitryDiTy", "followers_url": "https://api.github.com/users/DmitryDiTy/followers", "following_url": "https://api.github.com/users/DmitryDiTy/following{/other_user}", "gists_url": "https://api.github.com/users/DmitryDiTy/gists{/gist_id}", "starred_url": "https://api.github.com/users/DmitryDiTy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DmitryDiTy/subscriptions", "organizations_url": "https://api.github.com/users/DmitryDiTy/orgs", "repos_url": "https://api.github.com/users/DmitryDiTy/repos", "events_url": "https://api.github.com/users/DmitryDiTy/events{/privacy}", "received_events_url": "https://api.github.com/users/DmitryDiTy/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
17
2025-02-07T13:23:07
2025-02-14T08:23:35
2025-02-14T08:21:23
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info ### Libs ``` absl-py==2.1.0 accelerate==1.3.0 aiohappyeyeballs==2.4.4 aiohttp==3.11.10 aiosignal==1.3.2 annotated-types==0.7.0 asttokens @ file:///home/conda/feedstock_root/build_artifacts/asttokens_1733250440834/work async-timeout==5.0.1 attrs==24.3.0 beartype==0.14.1 bert-score==0.3.13 better-abc==0.0.3 certifi==2024.12.14 charset-normalizer==3.4.0 circuitsvis @ git+https://github.com/callummcdougall/CircuitsVis.git@1e6129d08cae7af9242d9ab5d3ed322dd44b4dd3#subdirectory=python click==8.1.7 comm @ file:///home/conda/feedstock_root/build_artifacts/comm_1733502965406/work contourpy==1.3.1 cycler==0.12.1 datasets==3.2.0 debugpy @ file:///home/conda/feedstock_root/build_artifacts/debugpy_1734158947252/work decorator @ file:///home/conda/feedstock_root/build_artifacts/decorator_1733236420667/work dill==0.3.8 docker-pycreds==0.4.0 einops==0.8.0 evaluate==0.4.3 exceptiongroup @ file:///home/conda/feedstock_root/build_artifacts/exceptiongroup_1733208806608/work executing @ file:///home/conda/feedstock_root/build_artifacts/executing_1733569351617/work fancy-einsum==0.0.3 filelock==3.16.1 fonttools==4.55.6 frozenlist==1.5.0 fsspec==2024.9.0 gitdb==4.0.11 GitPython==3.1.43 huggingface-hub==0.27.0 idna==3.10 importlib-metadata==5.2.0 ipykernel @ file:///home/conda/feedstock_root/build_artifacts/ipykernel_1719845459717/work ipython @ file:///home/conda/feedstock_root/build_artifacts/ipython_1732896932739/work ipywidgets==8.1.5 jaxtyping==0.2.36 jedi @ file:///home/conda/feedstock_root/build_artifacts/jedi_1733300866624/work Jinja2==3.1.4 joblib==1.4.2 jupyter_client @ file:///home/conda/feedstock_root/build_artifacts/jupyter_client_1733440914442/work jupyter_core @ file:///home/conda/feedstock_root/build_artifacts/jupyter_core_1727163409502/work jupyterlab_widgets==3.0.13 kiwisolver==1.4.8 markdown-it-py==3.0.0 MarkupSafe==3.0.2 matplotlib==3.10.0 matplotlib-inline @ file:///home/conda/feedstock_root/build_artifacts/matplotlib-inline_1733416936468/work mdurl==0.1.2 mpmath==1.3.0 multidict==6.1.0 multiprocess==0.70.16 nest_asyncio @ file:///home/conda/feedstock_root/build_artifacts/nest-asyncio_1733325553580/work networkx==3.4.2 nltk==3.9.1 numpy==1.26.4 nvidia-cublas-cu12==12.4.5.8 nvidia-cuda-cupti-cu12==12.4.127 nvidia-cuda-nvrtc-cu12==12.4.127 nvidia-cuda-runtime-cu12==12.4.127 nvidia-cudnn-cu12==9.1.0.70 nvidia-cufft-cu12==11.2.1.3 nvidia-curand-cu12==10.3.5.147 nvidia-cusolver-cu12==11.6.1.9 nvidia-cusparse-cu12==12.3.1.170 nvidia-nccl-cu12==2.21.5 nvidia-nvjitlink-cu12==12.4.127 nvidia-nvtx-cu12==12.4.127 packaging @ file:///home/conda/feedstock_root/build_artifacts/packaging_1733203243479/work pandas==2.2.3 parso @ file:///home/conda/feedstock_root/build_artifacts/parso_1733271261340/work peft==0.14.0 pexpect @ file:///home/conda/feedstock_root/build_artifacts/pexpect_1733301927746/work pickleshare @ file:///home/conda/feedstock_root/build_artifacts/pickleshare_1733327343728/work pillow==11.1.0 platformdirs @ file:///home/conda/feedstock_root/build_artifacts/platformdirs_1733232627818/work prompt_toolkit @ file:///home/conda/feedstock_root/build_artifacts/prompt-toolkit_1733302527033/work propcache==0.2.1 protobuf==5.29.1 psutil @ file:///home/conda/feedstock_root/build_artifacts/psutil_1729847040822/work ptyprocess @ file:///home/conda/feedstock_root/build_artifacts/ptyprocess_1733302279685/work/dist/ptyprocess-0.7.0-py2.py3-none-any.whl#sha256=92c32ff62b5fd8cf325bec5ab90d7be3d2a8ca8c8a3813ff487a8d2002630d1f pure_eval @ file:///home/conda/feedstock_root/build_artifacts/pure_eval_1733569405015/work pyarrow==18.1.0 pydantic==2.10.3 pydantic_core==2.27.1 Pygments @ file:///home/conda/feedstock_root/build_artifacts/pygments_1733221634316/work pyparsing==3.2.1 python-dateutil @ file:///home/conda/feedstock_root/build_artifacts/python-dateutil_1733215673016/work pytz==2024.2 PyYAML==6.0.2 pyzmq @ file:///home/conda/feedstock_root/build_artifacts/pyzmq_1728642224099/work regex==2024.11.6 requests==2.32.3 rich==13.9.4 rouge_score==0.1.2 safetensors==0.4.5 scikit-learn==1.6.1 scipy==1.15.1 sentence-transformers==3.3.1 sentencepiece==0.2.0 sentry-sdk==2.19.2 setproctitle==1.3.4 six @ file:///home/conda/feedstock_root/build_artifacts/six_1733380938961/work smmap==5.0.1 stack_data @ file:///home/conda/feedstock_root/build_artifacts/stack_data_1733569443808/work sympy==1.13.1 threadpoolctl==3.5.0 tokenizers==0.21.0 torch==2.5.1 tornado @ file:///home/conda/feedstock_root/build_artifacts/tornado_1732615898999/work tqdm==4.67.1 traitlets @ file:///home/conda/feedstock_root/build_artifacts/traitlets_1733367359838/work transformer-lens==2.10.0 transformers==4.48.2 triton==3.1.0 trl==0.14.0 typeguard==4.4.1 typing_extensions @ file:///home/conda/feedstock_root/build_artifacts/typing_extensions_1733188668063/work tzdata==2024.2 urllib3==2.2.3 wandb==0.19.1 wcwidth @ file:///home/conda/feedstock_root/build_artifacts/wcwidth_1733231326287/work widgetsnbextension==4.0.13 xxhash==3.5.0 yarl==1.18.3 zipp @ file:///home/conda/feedstock_root/build_artifacts/zipp_1732827521216/work ``` ### Cuda ``` nvcc: NVIDIA (R) Cuda compiler driver Copyright (c) 2005-2022 NVIDIA Corporation Built on Wed_Sep_21_10:33:58_PDT_2022 Cuda compilation tools, release 11.8, V11.8.89 Build cuda_11.8.r11.8/compiler.31833905_0 ``` ``` +---------------------------------------------------------------------------------------+ | NVIDIA-SMI 545.23.08 Driver Version: 545.23.08 CUDA Version: 12.3 | |-----------------------------------------+----------------------+----------------------+ | GPU Name Persistence-M | Bus-Id Disp.A | Volatile Uncorr. ECC | | Fan Temp Perf Pwr:Usage/Cap | Memory-Usage | GPU-Util Compute M. | | | | MIG M. | |=========================================+======================+======================| | 0 NVIDIA RTX 6000 Ada Gene... Off | 00000000:01:00.0 Off | Off | | 30% 40C P8 27W / 300W | 43531MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 1 NVIDIA RTX 6000 Ada Gene... Off | 00000000:25:00.0 Off | Off | | 30% 34C P8 23W / 300W | 3021MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 2 NVIDIA RTX 6000 Ada Gene... Off | 00000000:41:00.0 Off | Off | | 30% 37C P8 29W / 300W | 6MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 3 NVIDIA RTX 6000 Ada Gene... Off | 00000000:61:00.0 Off | Off | | 30% 40C P8 30W / 300W | 10881MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 4 NVIDIA RTX 6000 Ada Gene... Off | 00000000:81:00.0 Off | Off | | 30% 34C P8 24W / 300W | 1319MiB / 49140MiB | 0% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 5 NVIDIA RTX 6000 Ada Gene... Off | 00000000:A1:00.0 Off | Off | | 40% 59C P2 71W / 300W | 5763MiB / 49140MiB | 6% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ | 6 NVIDIA RTX 6000 Ada Gene... Off | 00000000:C1:00.0 Off | Off | | 30% 47C P2 91W / 300W | 43307MiB / 49140MiB | 74% Default | | | | N/A | +-----------------------------------------+----------------------+----------------------+ +---------------------------------------------------------------------------------------+ | Processes: | | GPU GI CI PID Type Process name GPU Memory | | ID ID Usage | |=======================================================================================| +---------------------------------------------------------------------------------------+ ``` ### Who can help? @benjaminbossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction ## Context I do my model training for text generation just for CompletionOnlyLM with my own dataset (long dialogues with system/user/assistant remarks). I added to my model and tokenizer new tokens using: ```python tokenizer.add_tokens( [ AddedToken("<|start_thinking|>", normalized=False, special=False), AddedToken("<|end_thinking|>", normalized=False, special=False), AddedToken("<tool_response>", normalized=False, special=False), AddedToken("</tool_response>", normalized=False, special=False), AddedToken("<|start_response|>", normalized=False, special=False), AddedToken("<|end_response|>", normalized=False, special=False), ] ) model.resize_token_embeddings(len(tokenizer)) ``` and I have saved it before training. After that I just wanted training my extend model with PEFT + TRL + FSDP. Model that I used like base: ``` Qwen2ForCausalLM( (model): Qwen2Model( (embed_tokens): Embedding(151671, 3584) (layers): ModuleList( (0-27): 28 x Qwen2DecoderLayer( (self_attn): Qwen2Attention( (q_proj): Linear(in_features=3584, out_features=3584, bias=True) (k_proj): Linear(in_features=3584, out_features=512, bias=True) (v_proj): Linear(in_features=3584, out_features=512, bias=True) (o_proj): Linear(in_features=3584, out_features=3584, bias=False) ) (mlp): Qwen2MLP( (gate_proj): Linear(in_features=3584, out_features=18944, bias=False) (up_proj): Linear(in_features=3584, out_features=18944, bias=False) (down_proj): Linear(in_features=18944, out_features=3584, bias=False) (act_fn): SiLU() ) (input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) (post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) ) ) (norm): Qwen2RMSNorm((3584,), eps=1e-06) (rotary_emb): Qwen2RotaryEmbedding() ) (lm_head): Linear(in_features=3584, out_features=151671, bias=False) ) ``` ## Code ### Accelerate config ```yaml compute_environment: LOCAL_MACHINE debug: false distributed_type: FSDP downcast_bf16: 'no' fsdp_config: fsdp_auto_wrap_policy: TRANSFORMER_BASED_WRAP fsdp_backward_prefetch: BACKWARD_PRE fsdp_cpu_ram_efficient_loading: true fsdp_forward_prefetch: false fsdp_offload_params: false fsdp_sharding_strategy: FULL_SHARD fsdp_state_dict_type: SHARDED_STATE_DICT fsdp_sync_module_states: true fsdp_use_orig_params: true machine_rank: 0 main_training_function: main mixed_precision: 'no' num_machines: 1 num_processes: 4 rdzv_backend: static same_network: true tpu_env: [] tpu_use_cluster: false tpu_use_sudo: false use_cpu: false ``` ### Training script ```python import warnings warnings.filterwarnings("ignore") import os os.environ['CUDA_VISIBLE_DEVICES'] = '0, 1, 2, 3' os.environ['TOKENIZERS_PARALLELISM'] = 'true' import wandb import numpy as np import torch import json from typing import List, Optional, Union, Any, Literal from datasets import load_dataset, Dataset import evaluate from transformers import ( AutoTokenizer, AutoModelForCausalLM, EarlyStoppingCallback, DataCollatorForLanguageModeling, AddedToken, ) from peft import ( LoraConfig, get_peft_model, TaskType, PeftModelForCausalLM ) from trl import ( SFTConfig, SFTTrainer, DataCollatorForCompletionOnlyLM ) from special_utils import DataCollatorForMultiCompletionOnlyLM, CustomLossTrainer ################################## # Enviroments and configurations # ################################## CHECKPOINT_PATH = None DATA_CACHE_DIR = "/home/raid/datasets/" MODEL_CACHE_DIR = "/home/raid/hf_cache/" MODEL_PATH = "/home/raid/models/extended_qwen" METRICS_CACHE = "/home/raid/metrics_cache" MAX_PROMPT_LENGTH = 5000 LR = 1e-5 STEP_SIZE = 10 BATCH_SIZE = 2 GA_SIZE = 4 TRAIN_EPOCHS = 1 REPORT_TO = ['none', 'wandb'][0] LORA_R = 48 LORA_ALPHA = 96 TARGET_MODULES = [ "self_attn.q_proj", "self_attn.k_proj", "self_attn.v_proj", "self_attn.o_proj", "mlp.gate_proj", "mlp.up_proj", "mlp.down_proj", ] MODULES_TO_SAVE = [ "embed_tokens", "lm_head" ] REVISION_NAME = f"TEST_qwen-tp-({LR})LR-({BATCH_SIZE})BATCH_SIZE-({GA_SIZE})GA_SIZE-({TRAIN_EPOCHS})TRAIN_EPOCHS-({LORA_R})LORA_R-({LORA_ALPHA})LORA_ALPHA" LOGS_PATH = f"/home/raid/models/{REVISION_NAME}/logs" print(REVISION_NAME) def main(): ##################### # Model & Tokenizer # ##################### model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, # cache_dir=MODEL_CACHE_DIR, torch_dtype=torch.bfloat16, use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, # cache_dir=MODEL_CACHE_DIR, ) tokenizer.padding_side = 'right' ### FREEZING ### for param in model.parameters(): param.requires_grad = False print(tokenizer.added_tokens_decoder) ########### # Dataset # ########### dataset = load_dataset( "my/dataset", "train", cache_dir=DATA_CACHE_DIR ) def prepare_texts(example): example['text'] = tokenizer.apply_chat_template( conversation=json.loads(example['conversation']), tools=json.loads(example['tools']), tokenize=False ) return example dataset = dataset.map(prepare_texts) dataset_vvalid = Dataset.from_dict(dataset['train'][:100]) # For tests print(dataset) ######## # PEFT # ######## lora_config = LoraConfig( task_type=TaskType.CAUSAL_LM, r=LORA_R, lora_alpha=LORA_ALPHA, target_modules=TARGET_MODULES, modules_to_save=MODULES_TO_SAVE, lora_dropout=0.1, bias="none", ) ################## # Trainer & Args # ################## bertscore = evaluate.load( "bertscore", cache_dir=METRICS_CACHE ) rouge = evaluate.load( "rouge", cache_dir=METRICS_CACHE ) def preprocess_logits_for_metrics(logits, labels): pred_ids = torch.argmax(logits, dim=-1) return pred_ids, labels def compute_metrics(eval_pred): pred_ids = torch.tensor(eval_pred.predictions[0]) label_ids = torch.tensor(eval_pred.label_ids) preds = tokenizer.batch_decode(torch.where(label_ids == -100, tokenizer.eos_token_id, pred_ids), skip_special_tokens=True) labels = tokenizer.batch_decode(torch.where(label_ids == -100, tokenizer.eos_token_id, label_ids), skip_special_tokens=True) if not os.path.exists(LOGS_PATH): os.makedirs(LOGS_PATH, exist_ok=True) with open(LOGS_PATH + "/data", "w") as f: f.write(json.dumps([preds, labels])) print("PREDS:", preds[0], "###") print("LABELS:", labels[0], "###") bertscore_results = bertscore.compute( predictions=preds, references=labels, lang='en' ) rouge_results = rouge.compute( predictions=preds, references=labels, ) return { "bert_score_f1": np.mean(bertscore_results['f1']), "bert_score_recall": np.mean(bertscore_results['recall']), "bert_score_precision": np.mean(bertscore_results['precision']), "rouge1": rouge_results['rouge1'], 'rouge2': rouge_results['rouge2'], 'rougeL': rouge_results['rougeL'], } data_collator = DataCollatorForMultiCompletionOnlyLM( tokenizer=tokenizer, response_template="<|im_start|>assistant\n", end_response_template="<|im_end|>", mlm=False ) special_token_ids = [151665, 151666, 151667, 151668, 151669, 151670] special_token_weight = 1.2 training_args = SFTConfig( ## SFT Arguments ## max_seq_length=MAX_PROMPT_LENGTH, ## Standard Arguments ## do_train=True, do_eval=True, output_dir=f"/home/raid/checkpoints/{REVISION_NAME}", overwrite_output_dir=True, eval_strategy="steps", eval_steps=STEP_SIZE, torch_empty_cache_steps=STEP_SIZE, num_train_epochs=TRAIN_EPOCHS, per_device_train_batch_size=BATCH_SIZE, per_device_eval_batch_size=BATCH_SIZE, gradient_accumulation_steps=GA_SIZE, optim="adamw_torch", save_steps=STEP_SIZE, save_total_limit=4, logging_steps=STEP_SIZE, learning_rate=LR, lr_scheduler_type="cosine", bf16=True, gradient_checkpointing=True, gradient_checkpointing_kwargs = {"use_reentrant": True}, load_best_model_at_end=True, metric_for_best_model="eval_rougeL", greater_is_better=True, report_to=REPORT_TO, run_name=REVISION_NAME, resume_from_checkpoint=True if CHECKPOINT_PATH else False, ) trainer = CustomLossTrainer( model=model, args=training_args, peft_config=lora_config, train_dataset=dataset_vvalid,#dataset['train'], eval_dataset=dataset_vvalid,#dataset['valid'], processing_class=tokenizer, data_collator=data_collator, compute_metrics=compute_metrics, preprocess_logits_for_metrics=preprocess_logits_for_metrics, callbacks=[EarlyStoppingCallback(early_stopping_patience=100)], special_token_ids=special_token_ids, special_token_weight=special_token_weight, ) print("MODEL DTYPE: ", trainer.model.dtype) # handle PEFT+FSDP case trainer.model.print_trainable_parameters() if getattr(trainer.accelerator.state, "fsdp_plugin", None): from peft.utils.other import fsdp_auto_wrap_policy fsdp_plugin = trainer.accelerator.state.fsdp_plugin fsdp_plugin.auto_wrap_policy = fsdp_auto_wrap_policy(trainer.model) # Training if CHECKPOINT_PATH is not None: trainer.train(resume_from_checkpoint=CHECKPOINT_PATH) else: trainer.train() if trainer.is_fsdp_enabled: trainer.accelerator.state.fsdp_plugin.set_state_dict_type("FULL_STATE_DICT") trainer.save_model(f"/home/raid/models/{REVISION_NAME}/adapter") if __name__ == "__main__": main() ``` ### Custom Collator & Trainer (special_utils.py) ```python import torch from transformers import DataCollatorForLanguageModeling from typing import List, Optional, Union, Any, Literal from trl import SFTTrainer import numpy as np # Adding weights to new tokens class CustomLossTrainer(SFTTrainer): def __init__(self, *args, special_token_ids, special_token_weight=1.2, **kwargs): super().__init__(*args, **kwargs) self.special_token_ids = special_token_ids self.special_token_weight = special_token_weight self.weights = None def _init_weights(self, model): self.weights = torch.ones(model.config.vocab_size, device=model.device) for token_id in self.special_token_ids: self.weights[token_id] = self.special_token_weight self.cross_entropy = torch.nn.CrossEntropyLoss(weight=self.weights) def compute_loss(self, model, inputs, return_outputs=False, **kwargs): if self.weights is None: self._init_weights(model) labels = inputs.pop("labels").to(model.device) outputs = model(**inputs) logits = outputs.get("logits").to(model.device) loss = self.cross_entropy(logits.view(-1, logits.size(-1)), labels.view(-1)) if return_outputs: return loss, outputs return loss # For Completion with many different instruction templates class DataCollatorForMultiCompletionOnlyLM(DataCollatorForLanguageModeling): def __init__( self, response_template: Union[str, list[int]], end_response_template: Union[str, list[int]], instruction_template: Optional[Union[str, list[int]]] = None, *args, mlm: bool = False, ignore_index: int = -100, padding_free: bool = False, **kwargs, ): super().__init__(*args, mlm=mlm, **kwargs) self.instruction_template = instruction_template if isinstance(instruction_template, str): # The user provides a string, must tokenize self.instruction_token_ids = self.tokenizer.encode(self.instruction_template, add_special_tokens=False) else: # The user already provides the token ids self.instruction_token_ids = instruction_template self.response_template = response_template if isinstance(response_template, str): # The user provides a string, must tokenize self.response_token_ids = self.tokenizer.encode(self.response_template, add_special_tokens=False) else: # The user already provides the token ids self.response_token_ids = response_template self.end_response_template = end_response_template if isinstance(end_response_template, str): # The user provides a string, must tokenize self.end_response_token_ids = self.tokenizer.encode(self.end_response_template, add_special_tokens=False) else: # The user already provides the token ids self.end_response_token_ids = end_response_template if not self.mlm and self.instruction_template and self.tokenizer.pad_token_id == self.tokenizer.eos_token_id: warnings.warn( "The pad_token_id and eos_token_id values of this tokenizer are identical. " "If you are planning for multi-turn training, " "it can result in the model continuously generating questions and answers without eos token. " "To avoid this, set the pad_token_id to a different value.", UserWarning, ) self.ignore_index = ignore_index self.padding_free = padding_free def torch_call(self, examples: list[Union[list[int], Any, dict[str, Any]]]) -> dict[str, Any]: batch = super().torch_call(examples) for i in range(len(examples)): batch["labels"][i] = torch.where(batch["labels"][i] == 0, 999999, batch["labels"][i]) response_token_ids_start_ids = [] for idx in np.where(batch["labels"][i] == self.response_token_ids[0])[0]: # `response_token_ids` is `'### Response:\n'`, here we are just making sure that the token IDs match if ( self.response_token_ids == batch["labels"][i][idx : idx + len(self.response_token_ids)].tolist() ): response_token_ids_start_ids.append(idx) if len(response_token_ids_start_ids) == 0: warnings.warn( f"Could not find response key `{self.response_template}` in the following instance: " f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss " "calculation. Note, if this happens often, consider increasing the `max_seq_length`.", UserWarning, ) batch["labels"][i, :] = self.ignore_index else: response_token_ids_end_ids = [response_token_ids_start_idx + len(self.response_token_ids) for response_token_ids_start_idx in response_token_ids_start_ids] end_response_token_ids_idxs = [] for idx in np.where(batch["labels"][i] == self.end_response_token_ids[0])[0]: # `response_token_ids` is `'### Response:\n'`, here we are just making sure that the token IDs match if ( self.end_response_token_ids == batch["labels"][i][idx : idx + len(self.end_response_token_ids)].tolist() ): end_response_token_ids_idxs.append(idx) if len(end_response_token_ids_idxs) == 0: warnings.warn( f"Could not find end response key `{self.response_template}` in the following instance: " f"{self.tokenizer.decode(batch['input_ids'][i])}. This instance will be ignored in loss " "calculation. Note, if this happens often, consider increasing the `max_seq_length`.", UserWarning, ) batch["labels"][i, :] = self.ignore_index assistant_end_idxs = [] for assistant_start_idx in response_token_ids_end_ids: for assistant_end_idx in end_response_token_ids_idxs: if assistant_start_idx < assistant_end_idx: assistant_end_idxs.append(assistant_end_idx) break assert len(response_token_ids_end_ids) == len(assistant_end_idxs), "Error, need count assistant replics == count after assistant end suffixes" mask = torch.ones_like(batch['labels'][i, :]) * -1 mask = torch.where(batch['labels'][i, :] == self.ignore_index, 1, mask) for start_id, end_id in zip(response_token_ids_end_ids, assistant_end_idxs): mask[start_id : end_id + 1] = 1 labels = mask * batch['labels'][i, :] batch['labels'][i, :] = torch.where(labels < 0, self.ignore_index, labels) batch["labels"][i] = torch.where(batch["labels"][i] == 999999, 0, batch["labels"][i]) if self.padding_free: # remove padding, `attention_mask` and add `position_ids` attn_mask = batch.pop("attention_mask") batch["input_ids"] = batch["input_ids"][attn_mask.bool()].unsqueeze(0) batch["position_ids"] = attn_mask.cumsum(1)[attn_mask.bool()].unsqueeze(0) - 1 batch["labels"] = batch["labels"][attn_mask.bool()].unsqueeze(0) batch["labels"][batch["position_ids"] == 0] = self.ignore_index # Calculate cumulative sequence lengths for queries and keys to prevent graph breaks during further computations. flattened_position_ids = batch["position_ids"].flatten() indices_q = torch.arange( flattened_position_ids.size(0), device=flattened_position_ids.device, dtype=torch.int32 ) batch["cu_seq_lens_q"] = torch.cat( ( indices_q[flattened_position_ids == 0], torch.tensor( flattened_position_ids.size(), device=flattened_position_ids.device, dtype=torch.int32 ), ) ) batch["cu_seq_lens_k"] = batch["cu_seq_lens_q"] # Determine maximum sequence lengths to prevent graph breaks during further computations. batch["max_length_k"] = flattened_position_ids.max().item() + 1 batch["max_length_q"] = batch["max_length_k"] return batch ``` ## During training To be as sure as possible that this error is not in the learning process, I additionally save the validation examples to a separate file and log the metrics. Metrics from wandb: ![Image](https://github.com/user-attachments/assets/0999005e-926e-4035-829f-96165fa085ef) I tracked the direct text saved for validation, everything was fine. ## After training After training process I have tried load model to check autoregressive inference: ```python import torch from transformers import AutoModelForCausalLM, AutoTokenizer MODEL_CACHE_DIR = "/home/raid/hf_cache" DATA_CACHE_DIR = "/home/raid/datasets" MODEL_PATH = "/home/raid/models/extended_qwen" lora_path = "/home/raid/models/tool-plannings/qwen-tp-(1e-05)LR-(2)BATCH_SIZE-(4)GA_SIZE-(6)TRAIN_EPOCHS-(48)LORA_R-(96)LORA_ALPHA/adapter" model = AutoModelForCausalLM.from_pretrained( MODEL_PATH, torch_dtype=torch.bfloat16, use_cache=False, ) tokenizer = AutoTokenizer.from_pretrained( MODEL_PATH, ) from peft import PeftModelForCausalLM model = PeftModelForCausalLM.from_pretrained( model, lora_path # This contains adapter_model.safetensors, adapter_config.json, etc. ) model ``` ``` PeftModelForCausalLM( (base_model): LoraModel( (model): Qwen2ForCausalLM( (model): Qwen2Model( (embed_tokens): ModulesToSaveWrapper( (original_module): Embedding(151671, 3584) (modules_to_save): ModuleDict( (default): Embedding(151671, 3584) ) ) (layers): ModuleList( (0-27): 28 x Qwen2DecoderLayer( (self_attn): Qwen2Attention( (q_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=3584, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (k_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=512, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=512, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (v_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=512, bias=True) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=512, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (o_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=3584, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) ) (mlp): Qwen2MLP( (gate_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=18944, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=18944, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (up_proj): lora.Linear( (base_layer): Linear(in_features=3584, out_features=18944, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=3584, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=18944, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (down_proj): lora.Linear( (base_layer): Linear(in_features=18944, out_features=3584, bias=False) (lora_dropout): ModuleDict( (default): Dropout(p=0.1, inplace=False) ) (lora_A): ModuleDict( (default): Linear(in_features=18944, out_features=48, bias=False) ) (lora_B): ModuleDict( (default): Linear(in_features=48, out_features=3584, bias=False) ) (lora_embedding_A): ParameterDict() (lora_embedding_B): ParameterDict() (lora_magnitude_vector): ModuleDict() ) (act_fn): SiLU() ) (input_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) (post_attention_layernorm): Qwen2RMSNorm((3584,), eps=1e-06) ) ) (norm): Qwen2RMSNorm((3584,), eps=1e-06) (rotary_emb): Qwen2RotaryEmbedding() ) (lm_head): ModulesToSaveWrapper( (original_module): Linear(in_features=3584, out_features=151671, bias=False) (modules_to_save): ModuleDict( (default): Linear(in_features=3584, out_features=151671, bias=False) ) ) ) ) ) ``` And during inference I had something like that: ```python outputs = model.generate( **inputs_tokens, max_new_tokens=20, )[0] print(tokenizer.decode(outputs, skip_special_tokens=False)) ``` ``` ...ngle stepA journey of a thousand miles'.<|im_end|> <|im_start|>assistant # here start new tokens write write write write write write write write write write write write write write write write write write write... ``` ## Problem I thought there was a mistake in saving the adapter and instead of saving the adapter, I tried to merge model and adapter immediately after the end of the training in script like that: ```python merged_model = trainer.model.merge_and_unload(safe_merge=True) merged_model.save_pretrained(f"/home/raid/models/{REVISION_NAME}") ``` and I have occured the error: ``` MODEL DTYPE: torch.bfloat16 trainable params: 1,107,362,816 || all params: 8,720,162,304 || trainable%: 12.6989 {'train_runtime': 79.4632, 'train_samples_per_second': 1.258, 'train_steps_per_second': 0.038, 'train_loss': 108.3709716796875, 'epoch': 0.92} 100%|██████████████████████████████████████████████████████████████| 3/3 [01:19<00:00, 26.51s/it] [rank2]: Traceback (most recent call last): [rank2]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank2]: main() [rank2]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank2]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank2]: return self._unload_and_optionally_merge( [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank2]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank2]: delta_weight = self.get_delta_weight(active_adapter) [rank2]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank2]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank2]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank1]: Traceback (most recent call last): [rank1]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank1]: main() [rank1]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank1]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank1]: return self._unload_and_optionally_merge( [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank1]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank1]: delta_weight = self.get_delta_weight(active_adapter) [rank1]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank1]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank1]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank0]: Traceback (most recent call last): [rank0]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank0]: main() [rank0]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank0]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank0]: return self._unload_and_optionally_merge( [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank0]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank0]: delta_weight = self.get_delta_weight(active_adapter) [rank0]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank0]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank0]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively [rank3]: Traceback (most recent call last): [rank3]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 268, in <module> [rank3]: main() [rank3]: File "/home/raid/dtishencko/git/function-calling/notebooks/train/train/train.py", line 264, in main [rank3]: merged_model = trainer.model.merge_and_unload(safe_merge=True) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 892, in merge_and_unload [rank3]: return self._unload_and_optionally_merge( [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/model.py", line 514, in _unload_and_optionally_merge [rank3]: target.merge(safe_merge=safe_merge, adapter_names=adapter_names) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 477, in merge [rank3]: delta_weight = self.get_delta_weight(active_adapter) [rank3]: File "/home/raid/dtishencko/miniconda3/miniconda3/envs/DS/lib/python3.10/site-packages/peft/tuners/lora/layer.py", line 585, in get_delta_weight [rank3]: output_tensor = transpose(weight_B @ weight_A, self.fan_in_fan_out) * self.scaling[adapter] [rank3]: RuntimeError: inconsistent tensor size, expected tensor [1024] and src [7168] to have the same number of elements, but got 1024 and 7168 elements respectively ``` Besides, I tried load adapter manually by safetensors script smth like that: ```python from safetensors import safe_open lora_state_dict = {} with safe_open(lora_path, framework="pt", device="cpu") as f: for key in f.keys(): new_key = key.replace("lora_A.", "lora_A.default.").replace("lora_B.", "lora_B.default.") new_key = new_key.replace("embed_tokens.weight", "embed_tokens.original_module.weight") new_key = new_key.replace("lm_head.weight", "lm_head.modules_to_save.default.weight") lora_state_dict[new_key] = f.get_tensor(key) m, u = model.load_state_dict(lora_state_dict, strict=False) ``` I was able to upload the adapter in my model, but I was still getting catastrophical hallucinations like: ``` ...<|im_start|>assistant # generated spaces ``` I assume that the error lies in the adapter merge and may be floating bf16 fp16 or something. P.S. BTW I tried to train model with fp16 and I had same problem ### Expected behavior Expected behavior of generation after merging adapter with my model
{ "login": "DmitryDiTy", "id": 90377536, "node_id": "MDQ6VXNlcjkwMzc3NTM2", "avatar_url": "https://avatars.githubusercontent.com/u/90377536?v=4", "gravatar_id": "", "url": "https://api.github.com/users/DmitryDiTy", "html_url": "https://github.com/DmitryDiTy", "followers_url": "https://api.github.com/users/DmitryDiTy/followers", "following_url": "https://api.github.com/users/DmitryDiTy/following{/other_user}", "gists_url": "https://api.github.com/users/DmitryDiTy/gists{/gist_id}", "starred_url": "https://api.github.com/users/DmitryDiTy/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/DmitryDiTy/subscriptions", "organizations_url": "https://api.github.com/users/DmitryDiTy/orgs", "repos_url": "https://api.github.com/users/DmitryDiTy/repos", "events_url": "https://api.github.com/users/DmitryDiTy/events{/privacy}", "received_events_url": "https://api.github.com/users/DmitryDiTy/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2368/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2368/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2367
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2367/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2367/comments
https://api.github.com/repos/huggingface/peft/issues/2367/events
https://github.com/huggingface/peft/issues/2367
2,838,045,820
I_kwDOIf9iDM6pKSR8
2,367
Some weights of MistralForSequenceClassification were not initialized from the model checkpoint at mistralai/Mistral-7B-Instruct-v0.3 and are newly initialized: ['score.weight']
{ "login": "amritansh6", "id": 46628209, "node_id": "MDQ6VXNlcjQ2NjI4MjA5", "avatar_url": "https://avatars.githubusercontent.com/u/46628209?v=4", "gravatar_id": "", "url": "https://api.github.com/users/amritansh6", "html_url": "https://github.com/amritansh6", "followers_url": "https://api.github.com/users/amritansh6/followers", "following_url": "https://api.github.com/users/amritansh6/following{/other_user}", "gists_url": "https://api.github.com/users/amritansh6/gists{/gist_id}", "starred_url": "https://api.github.com/users/amritansh6/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/amritansh6/subscriptions", "organizations_url": "https://api.github.com/users/amritansh6/orgs", "repos_url": "https://api.github.com/users/amritansh6/repos", "events_url": "https://api.github.com/users/amritansh6/events{/privacy}", "received_events_url": "https://api.github.com/users/amritansh6/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2025-02-07T12:29:22
2025-02-10T11:01:57
2025-02-10T11:01:55
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info I have been trying to fine tune mistral 7b v0.3 for a downstream task using lora and I get the following warning while running inference. ```python base_model = AutoModelForSequenceClassification.from_pretrained( model_id, use_auth_token="hf_***", num_labels=2, problem_type="single_label_classification" ) base_model.config.pad_token_id = tokenizer.pad_token_id lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], bias="none", task_type="SEQ_CLS", modules_to_save=["score"] ) model_with_lora = get_peft_model(base_model, lora_config) model_with_lora.print_trainable_parameters() training_args = TrainingArguments( output_dir="./results_4", evaluation_strategy="epoch", save_strategy="steps", save_steps=0.1, logging_dir="./logs", learning_rate=5e-5, per_device_train_batch_size=2, num_train_epochs=2, weight_decay=0.01, report_to="wandb", save_total_limit=2, logging_steps=10, ) trainer = Trainer( model=model_with_lora, args=training_args, train_dataset=hf_dataset, eval_dataset=hf_eval_dataset, tokenizer=tokenizer, compute_metrics=None, ) ``` This is my training script and while loading for inference I get the warning as, Some weights of MistralForSequenceClassification were not initialized from the model checkpoint at mistralai/Mistral-7B-Instruct-v0.3 and are newly initialized: ['score.weight'] Can someone check this. ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ```python base_model = AutoModelForSequenceClassification.from_pretrained( model_id, use_auth_token="hf_***", num_labels=2, problem_type="single_label_classification" ) base_model.config.pad_token_id = tokenizer.pad_token_id lora_config = LoraConfig( r=8, lora_alpha=32, target_modules=["q_proj", "v_proj"], bias="none", task_type="SEQ_CLS", modules_to_save=["score"] ) model_with_lora = get_peft_model(base_model, lora_config) model_with_lora.print_trainable_parameters() training_args = TrainingArguments( output_dir="./results_4", evaluation_strategy="epoch", save_strategy="steps", save_steps=0.1, logging_dir="./logs", learning_rate=5e-5, per_device_train_batch_size=2, num_train_epochs=2, weight_decay=0.01, report_to="wandb", save_total_limit=2, logging_steps=10, ) trainer = Trainer( model=model_with_lora, args=training_args, train_dataset=hf_dataset, eval_dataset=hf_eval_dataset, tokenizer=tokenizer, compute_metrics=None, ) ``` ### Expected behavior Ideally this warning should not come.
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2367/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2367/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2364
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2364/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2364/comments
https://api.github.com/repos/huggingface/peft/issues/2364/events
https://github.com/huggingface/peft/issues/2364
2,835,746,171
I_kwDOIf9iDM6pBg17
2,364
docs: broken links to boft
{ "login": "makelinux", "id": 2335185, "node_id": "MDQ6VXNlcjIzMzUxODU=", "avatar_url": "https://avatars.githubusercontent.com/u/2335185?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makelinux", "html_url": "https://github.com/makelinux", "followers_url": "https://api.github.com/users/makelinux/followers", "following_url": "https://api.github.com/users/makelinux/following{/other_user}", "gists_url": "https://api.github.com/users/makelinux/gists{/gist_id}", "starred_url": "https://api.github.com/users/makelinux/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makelinux/subscriptions", "organizations_url": "https://api.github.com/users/makelinux/orgs", "repos_url": "https://api.github.com/users/makelinux/repos", "events_url": "https://api.github.com/users/makelinux/events{/privacy}", "received_events_url": "https://api.github.com/users/makelinux/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-06T14:48:16
2025-02-07T10:14:44
2025-02-07T10:14:44
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info on page: https://huggingface.co/docs/peft/v0.14.0/en/conceptual_guides/oft ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction on page: https://huggingface.co/docs/peft/v0.14.0/en/conceptual_guides/oft Snippet: Take a look at the following step-by-step guides on how to finetune a model with BOFT: [Dreambooth finetuning with BOFT](https://huggingface.co/docs/peft/v0.14.0/en/task_guides/boft_dreambooth) [Controllable generation finetuning with BOFT (ControlNet)](https://huggingface.co/docs/peft/v0.14.0/en/task_guides/boft_controlnet) ### Expected behavior perhaps the links should lead to https://github.com/huggingface/peft/blob/main/examples/boft_dreambooth/boft_dreambooth.md https://github.com/huggingface/peft/blob/main/examples/boft_controlnet/boft_controlnet.md
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2364/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2364/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2362
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2362/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2362/comments
https://api.github.com/repos/huggingface/peft/issues/2362/events
https://github.com/huggingface/peft/issues/2362
2,833,885,059
I_kwDOIf9iDM6o6aeD
2,362
Import error
{ "login": "ikamensh", "id": 23004004, "node_id": "MDQ6VXNlcjIzMDA0MDA0", "avatar_url": "https://avatars.githubusercontent.com/u/23004004?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ikamensh", "html_url": "https://github.com/ikamensh", "followers_url": "https://api.github.com/users/ikamensh/followers", "following_url": "https://api.github.com/users/ikamensh/following{/other_user}", "gists_url": "https://api.github.com/users/ikamensh/gists{/gist_id}", "starred_url": "https://api.github.com/users/ikamensh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ikamensh/subscriptions", "organizations_url": "https://api.github.com/users/ikamensh/orgs", "repos_url": "https://api.github.com/users/ikamensh/repos", "events_url": "https://api.github.com/users/ikamensh/events{/privacy}", "received_events_url": "https://api.github.com/users/ikamensh/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
1
2025-02-05T20:19:35
2025-02-05T20:38:50
2025-02-05T20:38:23
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Successfully installed accelerate-1.3.0 aiohappyeyeballs-2.4.4 aiohttp-3.11.11 aiosignal-1.3.2 bitsandbytes-0.45.1 datasets-3.2.0 dill-0.3.8 frozenlist-1.5.0 huggingface_hub-0.28.1 multidict-6.1.0 multiprocess-0.70.16 pandas-2.2.3 peft-0.14.0 propcache-0.2.1 pyarrow-19.0.0 pytz-2025.1 regex-2024.11.6 safetensors-0.5.2 tokenizers-0.13.3 tqdm-4.67.1 transformers-4.30.2 tzdata-2025.1 xxhash-3.5.0 yarl-1.18.3 root@77c297c83b18:/workspace# python qlora.py Traceback (most recent call last): File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1086, in _get_module return importlib.import_module("." + module_name, self.__name__) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ [...] File "/usr/local/lib/python3.11/dist-packages/transformers/trainer.py", line 212, in <module> from peft import PeftModel File "/usr/local/lib/python3.11/dist-packages/peft/__init__.py", line 22, in <module> from .auto import ( File "/usr/local/lib/python3.11/dist-packages/peft/auto.py", line 32, in <module> from .mapping import MODEL_TYPE_TO_PEFT_MODEL_MAPPING File "/usr/local/lib/python3.11/dist-packages/peft/mapping.py", line 25, in <module> from .mixed_model import PeftMixedModel File "/usr/local/lib/python3.11/dist-packages/peft/mixed_model.py", line 29, in <module> from .peft_model import PeftModel File "/usr/local/lib/python3.11/dist-packages/peft/peft_model.py", line 37, in <module> from transformers import Cache, DynamicCache, EncoderDecoderCache, PreTrainedModel ImportError: cannot import name 'Cache' from 'transformers' (/usr/local/lib/python3.11/dist-packages/transformers/__init__.py) The above exception was the direct cause of the following exception: Traceback (most recent call last): File "/workspace/qlora.py", line 17, in <module> from transformers import ( File "<frozen importlib._bootstrap>", line 1229, in _handle_fromlist File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1076, in __getattr__ module = self._get_module(self._class_to_module[name]) ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ File "/usr/local/lib/python3.11/dist-packages/transformers/utils/import_utils.py", line 1088, in _get_module raise RuntimeError( RuntimeError: Failed to import transformers.trainer because of the following error (look up to see its traceback): cannot import name 'Cache' from 'transformers' (/usr/local/lib/python3.11/dist-packages/transformers/__init__.py) ### Who can help? _No response_ ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction `pip install peft-0.14.0 transformers-4.30.2` on linux + py3.11 run following: ```python from transformers import ( LlamaForCausalLM, LlamaTokenizer, Trainer, TrainingArguments, DataCollatorForLanguageModeling, ) ``` ### Expected behavior imports work (or crash outside peft)
{ "login": "ikamensh", "id": 23004004, "node_id": "MDQ6VXNlcjIzMDA0MDA0", "avatar_url": "https://avatars.githubusercontent.com/u/23004004?v=4", "gravatar_id": "", "url": "https://api.github.com/users/ikamensh", "html_url": "https://github.com/ikamensh", "followers_url": "https://api.github.com/users/ikamensh/followers", "following_url": "https://api.github.com/users/ikamensh/following{/other_user}", "gists_url": "https://api.github.com/users/ikamensh/gists{/gist_id}", "starred_url": "https://api.github.com/users/ikamensh/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/ikamensh/subscriptions", "organizations_url": "https://api.github.com/users/ikamensh/orgs", "repos_url": "https://api.github.com/users/ikamensh/repos", "events_url": "https://api.github.com/users/ikamensh/events{/privacy}", "received_events_url": "https://api.github.com/users/ikamensh/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2362/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2362/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2359
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2359/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2359/comments
https://api.github.com/repos/huggingface/peft/issues/2359/events
https://github.com/huggingface/peft/issues/2359
2,829,346,186
I_kwDOIf9iDM6opGWK
2,359
Inconsistent documentation
{ "login": "makelinux", "id": 2335185, "node_id": "MDQ6VXNlcjIzMzUxODU=", "avatar_url": "https://avatars.githubusercontent.com/u/2335185?v=4", "gravatar_id": "", "url": "https://api.github.com/users/makelinux", "html_url": "https://github.com/makelinux", "followers_url": "https://api.github.com/users/makelinux/followers", "following_url": "https://api.github.com/users/makelinux/following{/other_user}", "gists_url": "https://api.github.com/users/makelinux/gists{/gist_id}", "starred_url": "https://api.github.com/users/makelinux/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/makelinux/subscriptions", "organizations_url": "https://api.github.com/users/makelinux/orgs", "repos_url": "https://api.github.com/users/makelinux/repos", "events_url": "https://api.github.com/users/makelinux/events{/privacy}", "received_events_url": "https://api.github.com/users/makelinux/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
open
false
null
[]
null
5
2025-02-04T07:25:29
2025-03-06T15:03:57
null
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Content of https://huggingface.co/docs/peft/index is not synchronised with ToC. "How-to guides" is already "PEFT method guides". "PEFT method guides" are under directory `task_guides`. ![Image](https://github.com/user-attachments/assets/28cd2e3d-6ff7-4065-9c76-b5862ce09e6b) ### Expected behavior Consistent documentation. Clear unambiguous names. Links match titles and the content.
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2359/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2359/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2355
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2355/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2355/comments
https://api.github.com/repos/huggingface/peft/issues/2355/events
https://github.com/huggingface/peft/issues/2355
2,823,704,539
I_kwDOIf9iDM6oTk_b
2,355
dataclass config handling
{ "login": "moghadas76", "id": 23231913, "node_id": "MDQ6VXNlcjIzMjMxOTEz", "avatar_url": "https://avatars.githubusercontent.com/u/23231913?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moghadas76", "html_url": "https://github.com/moghadas76", "followers_url": "https://api.github.com/users/moghadas76/followers", "following_url": "https://api.github.com/users/moghadas76/following{/other_user}", "gists_url": "https://api.github.com/users/moghadas76/gists{/gist_id}", "starred_url": "https://api.github.com/users/moghadas76/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moghadas76/subscriptions", "organizations_url": "https://api.github.com/users/moghadas76/orgs", "repos_url": "https://api.github.com/users/moghadas76/repos", "events_url": "https://api.github.com/users/moghadas76/events{/privacy}", "received_events_url": "https://api.github.com/users/moghadas76/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-31T14:48:29
2025-03-10T15:04:18
2025-03-10T15:04:18
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Collecting environment information... PyTorch version: N/A Is debug build: N/A CUDA used to build PyTorch: N/A ROCM used to build PyTorch: N/A OS: Ubuntu 22.04.4 LTS (x86_64) GCC version: (Ubuntu 11.4.0-1ubuntu1~22.04) 11.4.0 Clang version: Could not collect CMake version: version 3.22.1 Libc version: glibc-2.35 Python version: 3.12.4 | packaged by Anaconda, Inc. | (main, Jun 18 2024, 15:12:24) [GCC 11.2.0] (64-bit runtime) Python platform: Linux-6.8.0-52-generic-x86_64-with-glibc2.35 Is CUDA available: N/A CUDA runtime version: 11.5.119 CUDA_MODULE_LOADING set to: N/A GPU models and configuration: GPU 0: NVIDIA GeForce RTX 4090 GPU 1: NVIDIA GeForce RTX 4090 Nvidia driver version: 555.42.02 cuDNN version: Could not collect HIP runtime version: N/A MIOpen runtime version: N/A Is XNNPACK available: N/A CPU: Architecture: x86_64 CPU op-mode(s): 32-bit, 64-bit Address sizes: 39 bits physical, 48 bits virtual Byte Order: Little Endian CPU(s): 32 On-line CPU(s) list: 0-31 Vendor ID: GenuineIntel Model name: 13th Gen Intel(R) Core(TM) i9-13900F CPU family: 6 Model: 183 Thread(s) per core: 2 Core(s) per socket: 24 Socket(s): 1 Stepping: 1 CPU max MHz: 5600.0000 CPU min MHz: 800.0000 BogoMIPS: 3993.60 Flags: fpu vme de pse tsc msr pae mce cx8 apic sep mtrr pge mca cmov pat pse36 clflush dts acpi mmx fxsr sse sse2 ss ht tm pbe syscall nx pdpe1gb rdtscp lm constant_tsc art arch_perfmon pebs bts rep_good nopl xtopology nonstop_tsc cpuid aperfmperf tsc_known_freq pni pclmulqdq dtes64 monitor ds_cpl vmx est tm2 ssse3 sdbg fma cx16 xtpr pdcm pcid sse4_1 sse4_2 x2apic movbe popcnt tsc_deadline_timer aes xsave avx f16c rdrand lahf_lm abm 3dnowprefetch cpuid_fault epb ssbd ibrs ibpb stibp ibrs_enhanced tpr_shadow flexpriority ept vpid ept_ad fsgsbase tsc_adjust bmi1 avx2 smep bmi2 erms invpcid rdseed adx smap clflushopt clwb intel_pt sha_ni xsaveopt xsavec xgetbv1 xsaves split_lock_detect user_shstk avx_vnni dtherm ida arat pln pts hwp hwp_notify hwp_act_window hwp_epp hwp_pkg_req hfi vnmi umip pku ospke waitpkg gfni vaes vpclmulqdq rdpid movdiri movdir64b fsrm md_clear serialize arch_lbr ibt flush_l1d arch_capabilities Virtualization: VT-x L1d cache: 896 KiB (24 instances) L1i cache: 1.3 MiB (24 instances) L2 cache: 32 MiB (12 instances) L3 cache: 36 MiB (1 instance) NUMA node(s): 1 NUMA node0 CPU(s): 0-31 Vulnerability Gather data sampling: Not affected Vulnerability Itlb multihit: Not affected Vulnerability L1tf: Not affected Vulnerability Mds: Not affected Vulnerability Meltdown: Not affected Vulnerability Mmio stale data: Not affected Vulnerability Reg file data sampling: Mitigation; Clear Register File Vulnerability Retbleed: Not affected Vulnerability Spec rstack overflow: Not affected Vulnerability Spec store bypass: Mitigation; Speculative Store Bypass disabled via prctl Vulnerability Spectre v1: Mitigation; usercopy/swapgs barriers and __user pointer sanitization Vulnerability Spectre v2: Mitigation; Enhanced / Automatic IBRS; IBPB conditional; RSB filling; PBRSB-eIBRS SW sequence; BHI BHI_DIS_S Vulnerability Srbds: Not affected Vulnerability Tsx async abort: Not affected Versions of relevant libraries: [pip3] numpy==2.1.0 [pip3] torchtune==0.5.0 [conda] blas 1.0 mkl [conda] cuda-cudart 12.1.105 0 nvidia [conda] cuda-cupti 12.1.105 0 nvidia [conda] cuda-libraries 12.1.0 0 nvidia [conda] cuda-nvrtc 12.1.105 0 nvidia [conda] cuda-nvtx 12.1.105 0 nvidia [conda] cuda-opencl 12.3.52 0 nvidia [conda] cuda-runtime 12.1.0 0 nvidia [conda] easy-torch 1.3.2 pypi_0 pypi [conda] ffmpeg 4.3 hf484d3e_0 pytorch [conda] libcublas 12.1.0.26 0 nvidia [conda] libcufft 11.0.2.4 0 nvidia [conda] libcurand 10.3.4.52 0 nvidia [conda] libcusolver 11.4.4.55 0 nvidia [conda] libcusparse 12.0.2.55 0 nvidia [conda] libjpeg-turbo 2.0.0 h9bf148f_0 pytorch [conda] libnvjitlink 12.1.105 0 nvidia [conda] mkl 2023.1.0 h213fc3f_46343 [conda] mkl-service 2.4.0 py311h5eee18b_1 [conda] mkl_fft 1.3.8 py311h5eee18b_0 [conda] mkl_random 1.2.4 py311hdb19cb5_0 [conda] numpy 1.24.4 pypi_0 pypi [conda] nvidia-cublas-cu12 12.1.3.1 pypi_0 pypi [conda] nvidia-cuda-cupti-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-nvrtc-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cuda-runtime-cu12 12.1.105 pypi_0 pypi [conda] nvidia-cudnn-cu12 8.9.2.26 pypi_0 pypi [conda] nvidia-cufft-cu12 11.0.2.54 pypi_0 pypi [conda] nvidia-curand-cu12 10.3.2.106 pypi_0 pypi [conda] nvidia-cusolver-cu12 11.4.5.107 pypi_0 pypi [conda] nvidia-cusparse-cu12 12.1.0.106 pypi_0 pypi [conda] nvidia-nccl-cu12 2.20.5 pypi_0 pypi [conda] nvidia-nvjitlink-cu12 12.4.127 pypi_0 pypi [conda] nvidia-nvtx-cu12 12.1.105 pypi_0 pypi [conda] pytorch-cuda 12.1 ha16c6d3_5 pytorch [conda] pytorch-forecasting 1.2.0 pypi_0 pypi [conda] pytorch-lightning 2.2.0 pypi_0 pypi [conda] pytorch-mutex 1.0 cuda pytorch [conda] torch 2.3.0 pypi_0 pypi [conda] torch-cluster 1.6.3+pt23cu121 pypi_0 pypi [conda] torch-geometric 2.4.0 pypi_0 pypi [conda] torch-scatter 2.1.2+pt23cu121 pypi_0 pypi [conda] torch-sparse 0.6.18+pt23cu121 pypi_0 pypi [conda] torch-spline-conv 1.2.2+pt23cu121 pypi_0 pypi [conda] torch-summary 1.4.5 pypi_0 pypi [conda] torchaudio 2.3.0 pypi_0 pypi [conda] torchinfo 1.8.0 pypi_0 pypi [conda] torchmetrics 1.3.0.post0 pypi_0 pypi [conda] torchsummary 1.5.1 pypi_0 pypi [conda] torchtune 0.5.0 pypi_0 pypi [conda] torchvision 0.18.0 pypi_0 pypi [conda] triton 2.3.0 pypi_0 pypi ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction See PR ### Expected behavior See PR
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2355/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2355/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2354
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2354/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2354/comments
https://api.github.com/repos/huggingface/peft/issues/2354/events
https://github.com/huggingface/peft/issues/2354
2,823,156,387
I_kwDOIf9iDM6oRfKj
2,354
Commented PeftConfig
{ "login": "moghadas76", "id": 23231913, "node_id": "MDQ6VXNlcjIzMjMxOTEz", "avatar_url": "https://avatars.githubusercontent.com/u/23231913?v=4", "gravatar_id": "", "url": "https://api.github.com/users/moghadas76", "html_url": "https://github.com/moghadas76", "followers_url": "https://api.github.com/users/moghadas76/followers", "following_url": "https://api.github.com/users/moghadas76/following{/other_user}", "gists_url": "https://api.github.com/users/moghadas76/gists{/gist_id}", "starred_url": "https://api.github.com/users/moghadas76/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/moghadas76/subscriptions", "organizations_url": "https://api.github.com/users/moghadas76/orgs", "repos_url": "https://api.github.com/users/moghadas76/repos", "events_url": "https://api.github.com/users/moghadas76/events{/privacy}", "received_events_url": "https://api.github.com/users/moghadas76/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-31T11:33:50
2025-03-10T15:04:20
2025-03-10T15:04:20
CONTRIBUTOR
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info # from .config import PeftConfig, PeftType, PromptLearningConfig, TaskType @ ./peft/utils/__init__.py Why? ### Who can help? _No response_ ### Information - [x] The official example scripts - [ ] My own modified scripts ### Tasks - [x] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction from peft.utils import PeftConfig ### Expected behavior accessing to PeftConfig!
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2354/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2354/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2348
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2348/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2348/comments
https://api.github.com/repos/huggingface/peft/issues/2348/events
https://github.com/huggingface/peft/issues/2348
2,811,752,952
I_kwDOIf9iDM6nl_H4
2,348
Incorrect Magnitude Calculation for DoRA Linear Layers (Violates DoRA Paper Methodology)
{ "login": "arcteryox", "id": 195980235, "node_id": "U_kgDOC65ryw", "avatar_url": "https://avatars.githubusercontent.com/u/195980235?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arcteryox", "html_url": "https://github.com/arcteryox", "followers_url": "https://api.github.com/users/arcteryox/followers", "following_url": "https://api.github.com/users/arcteryox/following{/other_user}", "gists_url": "https://api.github.com/users/arcteryox/gists{/gist_id}", "starred_url": "https://api.github.com/users/arcteryox/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arcteryox/subscriptions", "organizations_url": "https://api.github.com/users/arcteryox/orgs", "repos_url": "https://api.github.com/users/arcteryox/repos", "events_url": "https://api.github.com/users/arcteryox/events{/privacy}", "received_events_url": "https://api.github.com/users/arcteryox/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
5
2025-01-26T19:43:50
2025-01-30T18:56:52
2025-01-30T18:41:26
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### **Description** The current `DoraLinearLayer` incorrectly computes weight magnitude norms **per input channel** instead of **per output channel**, violating the methodology outlined in the [DoRA paper (Section 3.1)](https://arxiv.org/abs/2402.09353). This leads to degraded performance for linear layers (e.g., in LLMs). --- ### **Issue Details** #### **Affected Code**: `peft/tuners/lora/dora.py` → `DoraLinearLayer.get_weight_norm` ```python def get_weight_norm(self, weight, lora_weight, scaling): weight = transpose(weight, self.fan_in_fan_out) # ❌ Transposes to [in_features, out_features] weight = weight + scaling * lora_weight weight_norm = torch.linalg.norm(weight, dim=1) # Norm over input channels (dim=1) return weight_norm ``` #### **Problem**: - For a linear layer with weight shape `[out_features, in_features]`, transposing to `[in_features, out_features]` causes `dim=1` to represent **input channels**, not output channels. - This contradicts the DoRA paper’s requirement to compute magnitude **per output channel** (rows of the weight matrix). --- ### **Steps to Reproduce** 1. Initialize a DoRA-linear layer: ```python base_layer = nn.Linear(10, 5) # out_features=5, in_features=10 dora_layer = DoraLinearLayer(fan_in_fan_out=False) ``` 2. Check weight norm dimensions: ```python weight = base_layer.weight # Shape [5, 10] lora_weight = torch.randn(5, 10) # Simulate LoRA delta norm = dora_layer.get_weight_norm(weight, lora_weight, scaling=1.0) print(norm.shape) # Outputs [10] (input channels) instead of [5] (output channels) ``` --- ### **Expected vs Actual Behavior** | Expected (Per Paper) | Actual (Current Code) | |-----------------------|-----------------------| | Norms computed over **output channels** (`out_features`). | Norms computed over **input channels** (`in_features`). | --- ### **Proposed Fix** Remove the transpose and compute norms over `dim=1` directly: ```python def get_weight_norm(self, weight, lora_weight, scaling): # Remove transpose - work directly with [out_features, in_features] weight = weight + scaling * lora_weight weight_norm = torch.linalg.norm(weight, dim=1) # ✅ Norm over output channels (dim=1) return weight_norm ``` #### **Impact of Fix**: - Aligns with DoRA paper’s methodology for linear layers. - Convolutional layers (e.g., `DoraConv2dLayer`) are unaffected and already correct. --- ### **Additional Context** 1. **Paper Reference**: - Section 3.1 defines magnitude as the L2 norm of **rows** (output channels) for linear layers. - Example: For weight matrix `W ∈ ℝ^{d×k}`, magnitude `m_j = ||W_j||_2` (row-wise norm). 2. **Why This Matters**: - Magnitude scaling is critical for DoRA’s ability to decouple direction and magnitude updates. - Incorrect scaling invalidates the method’s theoretical guarantees and reduces performance (e.g., on LLM fine-tuning tasks). --- ### **Verification** After applying the fix: ```python print(norm.shape) # Now outputs [5] (correct for out_features=5) ``` ### Who can help? _No response_ ### Information - [ ] The official example scripts - [ ] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [ ] My own task or dataset (give details below) ### Reproduction ### **Steps to Reproduce** 1. Initialize a DoRA-linear layer: ```python base_layer = nn.Linear(10, 5) # out_features=5, in_features=10 dora_layer = DoraLinearLayer(fan_in_fan_out=False) ``` 2. Check weight norm dimensions: ```python weight = base_layer.weight # Shape [5, 10] lora_weight = torch.randn(5, 10) # Simulate LoRA delta norm = dora_layer.get_weight_norm(weight, lora_weight, scaling=1.0) print(norm.shape) # Outputs [10] (input channels) instead of [5] (output channels) ``` ### Expected behavior ### **Expected vs Actual Behavior** | Expected (Per Paper) | Actual (Current Code) | |-----------------------|-----------------------| | Norms computed over **output channels** (`out_features`). | Norms computed over **input channels** (`in_features`). |
{ "login": "arcteryox", "id": 195980235, "node_id": "U_kgDOC65ryw", "avatar_url": "https://avatars.githubusercontent.com/u/195980235?v=4", "gravatar_id": "", "url": "https://api.github.com/users/arcteryox", "html_url": "https://github.com/arcteryox", "followers_url": "https://api.github.com/users/arcteryox/followers", "following_url": "https://api.github.com/users/arcteryox/following{/other_user}", "gists_url": "https://api.github.com/users/arcteryox/gists{/gist_id}", "starred_url": "https://api.github.com/users/arcteryox/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/arcteryox/subscriptions", "organizations_url": "https://api.github.com/users/arcteryox/orgs", "repos_url": "https://api.github.com/users/arcteryox/repos", "events_url": "https://api.github.com/users/arcteryox/events{/privacy}", "received_events_url": "https://api.github.com/users/arcteryox/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2348/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2348/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2344
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2344/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2344/comments
https://api.github.com/repos/huggingface/peft/issues/2344/events
https://github.com/huggingface/peft/issues/2344
2,807,348,808
I_kwDOIf9iDM6nVL5I
2,344
FSDP2 and peft
{ "login": "psinger", "id": 1677826, "node_id": "MDQ6VXNlcjE2Nzc4MjY=", "avatar_url": "https://avatars.githubusercontent.com/u/1677826?v=4", "gravatar_id": "", "url": "https://api.github.com/users/psinger", "html_url": "https://github.com/psinger", "followers_url": "https://api.github.com/users/psinger/followers", "following_url": "https://api.github.com/users/psinger/following{/other_user}", "gists_url": "https://api.github.com/users/psinger/gists{/gist_id}", "starred_url": "https://api.github.com/users/psinger/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/psinger/subscriptions", "organizations_url": "https://api.github.com/users/psinger/orgs", "repos_url": "https://api.github.com/users/psinger/repos", "events_url": "https://api.github.com/users/psinger/events{/privacy}", "received_events_url": "https://api.github.com/users/psinger/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
6
2025-01-23T16:20:47
2025-03-03T15:04:06
2025-03-03T15:04:06
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
Hey, sorry if this is the wrong place. Feel free to move it to discussion. I am trying to get peft working with fsdp2 and am wondering if someone else attempted that already? The issue is that Im always getting errors along the lines of: `RuntimeError: aten.mm.default: got mixed torch.Tensor and DTensor, need to convert all torch.Tensor to DTensor before calling distributed operators!` Happy for any pointers.
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2344/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2344/timeline
null
completed
false
https://api.github.com/repos/huggingface/peft/issues/2342
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2342/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2342/comments
https://api.github.com/repos/huggingface/peft/issues/2342/events
https://github.com/huggingface/peft/issues/2342
2,806,843,497
I_kwDOIf9iDM6nTQhp
2,342
CI: Add gptqmodel to the CI
{ "login": "BenjaminBossan", "id": 6229650, "node_id": "MDQ6VXNlcjYyMjk2NTA=", "avatar_url": "https://avatars.githubusercontent.com/u/6229650?v=4", "gravatar_id": "", "url": "https://api.github.com/users/BenjaminBossan", "html_url": "https://github.com/BenjaminBossan", "followers_url": "https://api.github.com/users/BenjaminBossan/followers", "following_url": "https://api.github.com/users/BenjaminBossan/following{/other_user}", "gists_url": "https://api.github.com/users/BenjaminBossan/gists{/gist_id}", "starred_url": "https://api.github.com/users/BenjaminBossan/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/BenjaminBossan/subscriptions", "organizations_url": "https://api.github.com/users/BenjaminBossan/orgs", "repos_url": "https://api.github.com/users/BenjaminBossan/repos", "events_url": "https://api.github.com/users/BenjaminBossan/events{/privacy}", "received_events_url": "https://api.github.com/users/BenjaminBossan/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[ { "id": 5192585063, "node_id": "LA_kwDOIf9iDM8AAAABNYCPZw", "url": "https://api.github.com/repos/huggingface/peft/labels/wip", "name": "wip", "color": "fbca04", "default": false, "description": "" } ]
open
false
null
[]
null
4
2025-01-23T12:57:29
2025-02-28T10:35:25
null
MEMBER
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
This issue is to track the TODO from [this comment](https://github.com/huggingface/peft/pull/2247#pullrequestreview-2569656574). Once optimum 1.24.0 and transformers 4.49.0 are released, we should enable gptqmodel in the CI (and remove auto-gptq).
null
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2342/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2342/timeline
null
null
false
https://api.github.com/repos/huggingface/peft/issues/2339
https://api.github.com/repos/huggingface/peft
https://api.github.com/repos/huggingface/peft/issues/2339/labels{/name}
https://api.github.com/repos/huggingface/peft/issues/2339/comments
https://api.github.com/repos/huggingface/peft/issues/2339/events
https://github.com/huggingface/peft/issues/2339
2,802,697,166
I_kwDOIf9iDM6nDcPO
2,339
Peft version upgrade from 0.4.0 to 0.14.0 results in "No module named \u0027peft.utils.config\u0027" error
{ "login": "incchar", "id": 184541983, "node_id": "U_kgDOCv_jHw", "avatar_url": "https://avatars.githubusercontent.com/u/184541983?v=4", "gravatar_id": "", "url": "https://api.github.com/users/incchar", "html_url": "https://github.com/incchar", "followers_url": "https://api.github.com/users/incchar/followers", "following_url": "https://api.github.com/users/incchar/following{/other_user}", "gists_url": "https://api.github.com/users/incchar/gists{/gist_id}", "starred_url": "https://api.github.com/users/incchar/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/incchar/subscriptions", "organizations_url": "https://api.github.com/users/incchar/orgs", "repos_url": "https://api.github.com/users/incchar/repos", "events_url": "https://api.github.com/users/incchar/events{/privacy}", "received_events_url": "https://api.github.com/users/incchar/received_events", "type": "User", "user_view_type": "public", "site_admin": false }
[]
closed
false
null
[]
null
2
2025-01-21T20:00:07
2025-03-02T15:03:46
2025-03-02T15:03:46
NONE
{ "total": 0, "completed": 0, "percent_completed": 0 }
null
null
null
### System Info Hello, I'm migrating my sagemaker endpoint from the `huggingface-pytorch-inference:2.1.0-transformers4.37.0-gpu-py310-cu118-ubuntu20.04` image (which is being deprecated) to the `huggingface-pytorch-inference:2.3.0-transformers4.46.1-gpu-py311-cu121-ubuntu20.04-v1.0` image, which is supported. This new version does not support the 0.4.0 version of peft, so we have upgraded to 1.14.0 and upgraded to a compatible diffusers version. The sagemaker endpoint deploys correctly with these new versions, but once it's run, we receive the following error: `No module named \u0027peft.utils.config\u0027` I dug around and found that there' no usage of peft.utils.config in our inference code. The only usage I could find is here, in the peft code itself: https://github.com/huggingface/peft/blob/main/src/peft/config.py. However, in this code, It looks like utils.config does not exist at all. Here's what I'm currently using: diffusers==0.32.2 peft==0.14.0 Is the peft library somehow breaking itself by looking for a peft.utils.config that doesn't exist? Have I missed a step that would create the utils.config file? Or is there another hidden dependency using peft.utils.config? ### Who can help? @BenjaminBossan @sayakpaul ### Information - [ ] The official example scripts - [x] My own modified scripts ### Tasks - [ ] An officially supported task in the `examples` folder - [x] My own task or dataset (give details below) ### Reproduction Create a sagemaker endpoint using the new `huggingface-pytorch-inference:2.3.0-transformers4.46.1-gpu-py311-cu121-ubuntu20.04-v1.0` huggingface DLC image. Use a requirements.txt that looks like the following: diffusers==0.32.2 peft==0.14.0 Observe that all requests to the sagemaker endpoint respond with 500 errors. ### Expected behavior The Sagemaker endpoint should continue to process requests as it did before the version upgrade (using peft 0.4.0)
{ "login": "github-actions[bot]", "id": 41898282, "node_id": "MDM6Qm90NDE4OTgyODI=", "avatar_url": "https://avatars.githubusercontent.com/in/15368?v=4", "gravatar_id": "", "url": "https://api.github.com/users/github-actions%5Bbot%5D", "html_url": "https://github.com/apps/github-actions", "followers_url": "https://api.github.com/users/github-actions%5Bbot%5D/followers", "following_url": "https://api.github.com/users/github-actions%5Bbot%5D/following{/other_user}", "gists_url": "https://api.github.com/users/github-actions%5Bbot%5D/gists{/gist_id}", "starred_url": "https://api.github.com/users/github-actions%5Bbot%5D/starred{/owner}{/repo}", "subscriptions_url": "https://api.github.com/users/github-actions%5Bbot%5D/subscriptions", "organizations_url": "https://api.github.com/users/github-actions%5Bbot%5D/orgs", "repos_url": "https://api.github.com/users/github-actions%5Bbot%5D/repos", "events_url": "https://api.github.com/users/github-actions%5Bbot%5D/events{/privacy}", "received_events_url": "https://api.github.com/users/github-actions%5Bbot%5D/received_events", "type": "Bot", "user_view_type": "public", "site_admin": false }
{ "url": "https://api.github.com/repos/huggingface/peft/issues/2339/reactions", "total_count": 0, "+1": 0, "-1": 0, "laugh": 0, "hooray": 0, "confused": 0, "heart": 0, "rocket": 0, "eyes": 0 }
https://api.github.com/repos/huggingface/peft/issues/2339/timeline
null
completed
false
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
13