metadata
license: mit
task_categories:
- time-series-forecasting
- audio-classification
language:
- en
tags:
- rf-signals
- radio
- rtl-sdr
- signal-processing
- machine-learning
- telecommunications
- software-defined-radio
pretty_name: RTL-ML RF Signal Classification Dataset
size_categories:
- 100K<n<1M
RTL-ML Dataset
Dataset Summary
This dataset contains 240 validated RF signal samples captured using an RTL-SDR Blog V4 dongle. It's designed for training machine learning models to classify common RF signals.
Total Size: 1.9 GB
Samples: 240 (30 samples × 8 classes)
Format: NumPy arrays (.npy files)
Sample Rate: 1.024 MSPS
Sample Duration: 1 second per capture
Signal Classes
| Class | Frequency | Count | Description |
|---|---|---|---|
| ADS_B | 1090 MHz | 30 | Aircraft transponder signals |
| APRS | 144.39 MHz | 30 | Amateur radio position reporting |
| FM_broadcast | 88-108 MHz | 30 | Commercial FM radio stations |
| ISM_sensors | 433.92 MHz | 30 | Wireless sensors & remote controls |
| NOAA_APT | 137.5 MHz | 30 | Weather satellite imagery |
| NOAA_weather | 162.4 MHz | 30 | Weather radio broadcasts |
| noise | Various | 30 | Background RF noise baseline |
| pager | 931.9375 MHz | 30 | POCSAG pager transmissions |
Validation Metrics
- ISM Sensors: 20.6x burst ratio (strong on/off keying)
- NOAA Weather: 14.4 dB SNR (clear signal)
- Pager/APRS: 12.7 dB SNR (good quality)
- Model Accuracy: 87.5% on test set
Usage
from huggingface_hub import snapshot_download
import numpy as np
# Download entire dataset
dataset_path = snapshot_download(
repo_id="TrevTron/rtl-ml-dataset",
repo_type="dataset"
)
# Load a sample
sample = np.load(f"{dataset_path}/datasets_validated/ADS_B_0.npy")
print(f"Signal shape: {sample.shape}") # (1048576,) complex64
Dataset Structure
rtl-ml-dataset/
└── datasets_validated/
├── ADS_B_0.npy ... ADS_B_29.npy (30 files)
├── APRS_0.npy ... APRS_29.npy (30 files)
├── FM_broadcast_0.npy ... _29.npy (30 files)
├── ISM_sensors_0.npy ... _29.npy (30 files)
├── NOAA_APT_0.npy ... NOAA_APT_29.npy (30 files)
├── NOAA_weather_0.npy ... _29.npy (30 files)
├── noise_0.npy ... noise_29.npy (30 files)
└── pager_0.npy ... pager_29.npy (30 files)
Each .npy file contains:
- Shape: (1048576,) - 1 second @ 1.024 MSPS
- Dtype:
complex64(I/Q samples) - Size: ~8.4 MB per file
Hardware
- SDR: RTL-SDR Blog V4 ($39.95)
- Computer: Indiedroid Nova 16GB ($179.95)
- Antenna: Telescopic dipole (included)
Model Performance
When trained with Random Forest (100 trees):
- Overall Accuracy: 87.5%
- Perfect Classes: ADS-B, FM, ISM, NOAA APT, Weather, Pager (100%)
- Challenging: APRS ↔ Noise confusion (sparse packets)
Citation
@misc{rtl-ml-dataset,
author = {TrevTron},
title = {RTL-ML Dataset: Validated RF Signal Captures},
year = {2026},
publisher = {Hugging Face},
howpublished = {\url{https://huggingface.co/datasets/TrevTron/rtl-ml-dataset}}
}
License
MIT License - Free for commercial and non-commercial use.
Related
- Code: github.com/TrevTron/rtl-ml
- Blog: unland.dev (coming soon)
- Hardware Guide: Indiedroid Nova Setup
Contributions
Captured in Temecula, CA (Southern California) using:
- Clear line of sight to multiple signal sources
- Validated with spectral analysis and manual inspection
- All samples meet minimum SNR requirements (>10 dB for modulated signals)
For questions or improvements, see the GitHub repository.