|
|
import io |
|
|
import torch |
|
|
import numpy as np |
|
|
from datasets import load_dataset |
|
|
from torch.utils.data import Dataset, DataLoader |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def unpack_event_data(item, use_io=True): |
|
|
""" |
|
|
Decodes the custom binary format: |
|
|
Header (8 bytes) -> Shape (T, C, H, W) -> Body (Packed Bits) |
|
|
""" |
|
|
if use_io: |
|
|
with io.BytesIO(item['data']) as f: |
|
|
raw_data = np.load(f) |
|
|
else: |
|
|
raw_data = np.load(item) |
|
|
|
|
|
header_size = 4 * 2 |
|
|
shape_header = raw_data[:header_size].view(np.uint16) |
|
|
original_shape = tuple(shape_header) |
|
|
|
|
|
packed_body = raw_data[header_size:] |
|
|
unpacked = np.unpackbits(packed_body) |
|
|
|
|
|
num_elements = np.prod(original_shape) |
|
|
event_flat = unpacked[:num_elements] |
|
|
event_data = event_flat.reshape(original_shape).astype(np.float32).copy() |
|
|
|
|
|
return torch.from_numpy(event_data) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class I2E_Dataset(Dataset): |
|
|
def __init__(self, cache_dir, config_name, split='train', transform=None, target_transform=None): |
|
|
print(f"π Loading {config_name} [{split}] from Hugging Face...") |
|
|
self.ds = load_dataset('UESTC-BICS/I2E', config_name, split=split, cache_dir=cache_dir, keep_in_memory=False) |
|
|
self.transform = transform |
|
|
self.target_transform = target_transform |
|
|
|
|
|
def __len__(self): |
|
|
return len(self.ds) |
|
|
|
|
|
def __getitem__(self, idx): |
|
|
item = self.ds[idx] |
|
|
event = unpack_event_data(item) |
|
|
label = item['label'] |
|
|
if self.transform: |
|
|
event = self.transform(event) |
|
|
if self.target_transform: |
|
|
label = self.target_transform(label) |
|
|
return event, label |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
import os |
|
|
os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' |
|
|
|
|
|
DATASET_NAME = 'I2E-CIFAR10' |
|
|
MODEL_PATH = 'Your cache path here' |
|
|
|
|
|
train_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='train') |
|
|
val_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='validation') |
|
|
|
|
|
train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=32, persistent_workers=True) |
|
|
val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=32, persistent_workers=True) |
|
|
|
|
|
events, labels = next(iter(train_loader)) |
|
|
print(f"β
Loaded Batch Shape: {events.shape}") |
|
|
print(f"β
Labels: {labels}") |