UESTC-BICS commited on
Commit
6df6df0
·
verified ·
1 Parent(s): edfd5e0

Upload 2 files

Browse files
Files changed (2) hide show
  1. dataset_info.json +90 -0
  2. load_i2e_datasets.py +44 -19
dataset_info.json CHANGED
@@ -597,6 +597,51 @@
597
  "download_size": 1165568633,
598
  "dataset_size": 3076928106
599
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
600
  "I2E-ImageNet": {
601
  "features": [
602
  {
@@ -1632,6 +1677,51 @@
1632
  "download_size": 57961329620,
1633
  "dataset_size": 133825742994
1634
  },
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1635
  "I2E-Mini-ImageNet": {
1636
  "features": [
1637
  {
 
597
  "download_size": 1165568633,
598
  "dataset_size": 3076928106
599
  },
600
+ "I2E-FashionMNIST": {
601
+ "features": [
602
+ {
603
+ "name": "file_path",
604
+ "dtype": "string"
605
+ },
606
+ {
607
+ "name": "label",
608
+ "dtype": {
609
+ "class_label": {
610
+ "names": {
611
+ "0": "0",
612
+ "1": "1",
613
+ "2": "2",
614
+ "3": "3",
615
+ "4": "4",
616
+ "5": "5",
617
+ "6": "6",
618
+ "7": "7",
619
+ "8": "8",
620
+ "9": "9"
621
+ }
622
+ }
623
+ }
624
+ },
625
+ {
626
+ "name": "data",
627
+ "dtype": "binary"
628
+ }
629
+ ],
630
+ "splits": [
631
+ {
632
+ "name": "train",
633
+ "num_bytes": 132648890,
634
+ "num_examples": 60000
635
+ },
636
+ {
637
+ "name": "validation",
638
+ "num_bytes": 22098890,
639
+ "num_examples": 10000
640
+ }
641
+ ],
642
+ "download_size": 68196022,
643
+ "dataset_size": 154747780
644
+ },
645
  "I2E-ImageNet": {
646
  "features": [
647
  {
 
1677
  "download_size": 57961329620,
1678
  "dataset_size": 133825742994
1679
  },
1680
+ "I2E-MNIST": {
1681
+ "features": [
1682
+ {
1683
+ "name": "file_path",
1684
+ "dtype": "string"
1685
+ },
1686
+ {
1687
+ "name": "label",
1688
+ "dtype": {
1689
+ "class_label": {
1690
+ "names": {
1691
+ "0": "0",
1692
+ "1": "1",
1693
+ "2": "2",
1694
+ "3": "3",
1695
+ "4": "4",
1696
+ "5": "5",
1697
+ "6": "6",
1698
+ "7": "7",
1699
+ "8": "8",
1700
+ "9": "9"
1701
+ }
1702
+ }
1703
+ }
1704
+ },
1705
+ {
1706
+ "name": "data",
1707
+ "dtype": "binary"
1708
+ }
1709
+ ],
1710
+ "splits": [
1711
+ {
1712
+ "name": "train",
1713
+ "num_bytes": 132648890,
1714
+ "num_examples": 60000
1715
+ },
1716
+ {
1717
+ "name": "validation",
1718
+ "num_bytes": 22098890,
1719
+ "num_examples": 10000
1720
+ }
1721
+ ],
1722
+ "download_size": 60473109,
1723
+ "dataset_size": 154747780
1724
+ },
1725
  "I2E-Mini-ImageNet": {
1726
  "features": [
1727
  {
load_i2e_datasets.py CHANGED
@@ -2,35 +2,42 @@ import io
2
  import torch
3
  import numpy as np
4
  from datasets import load_dataset
5
- from torch.utils.data import Dataset
6
 
7
-
8
- # =================================================
9
- # Read and unpack function (Your proposed Refactor)
10
- # =================================================
11
  def unpack_event_data(item, use_io=True):
 
 
 
 
12
  if use_io:
13
  with io.BytesIO(item['data']) as f:
14
  raw_data = np.load(f)
15
  else:
16
  raw_data = np.load(item)
17
- header_size = 4 * 2 # Parse Header (First 4*2=8 bytes)
18
- shape_header = raw_data[:header_size].view(np.uint16) # Assume shape is 4D (T, C, H, W)
19
- original_shape = tuple(shape_header)
 
20
 
21
- packed_body = raw_data[header_size:] # Parse Body
22
- unpacked = np.unpackbits(packed_body) # Unpack bits to binary array
23
 
24
- num_elements = np.prod(original_shape) # Extract valid bits (Handle padding)
25
  event_flat = unpacked[:num_elements]
 
26
 
27
- event_data = event_flat.reshape(original_shape).astype(np.float32).copy() # Reshape and convert to Float Tensor
28
  return torch.from_numpy(event_data)
29
 
30
-
 
 
31
  class I2E_Dataset(Dataset):
32
- def __init__(self, cache_dir, load_datasets, split='train', transform=None, target_transform=None):
33
- self.ds = load_dataset('UESTC-BICS/I2E', load_datasets, split=split, cache_dir=cache_dir)
 
34
  self.transform = transform
35
  self.target_transform = target_transform
36
 
@@ -39,12 +46,30 @@ class I2E_Dataset(Dataset):
39
 
40
  def __getitem__(self, idx):
41
  item = self.ds[idx]
42
- event = unpack_event_data(item) # Returns [T, C, H, W] Tensor
43
  label = item['label']
44
-
45
  if self.transform:
46
  event = self.transform(event)
47
  if self.target_transform:
48
  label = self.target_transform(label)
49
-
50
- return event, label
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2
  import torch
3
  import numpy as np
4
  from datasets import load_dataset
5
+ from torch.utils.data import Dataset, DataLoader
6
 
7
+ # ==================================================================
8
+ # 1. Core Decoding Function (Handles the binary packing)
9
+ # ==================================================================
 
10
  def unpack_event_data(item, use_io=True):
11
+ """
12
+ Decodes the custom binary format:
13
+ Header (8 bytes) -> Shape (T, C, H, W) -> Body (Packed Bits)
14
+ """
15
  if use_io:
16
  with io.BytesIO(item['data']) as f:
17
  raw_data = np.load(f)
18
  else:
19
  raw_data = np.load(item)
20
+
21
+ header_size = 4 * 2 # Parse Header (First 8 bytes for 4 uint16 shape values)
22
+ shape_header = raw_data[:header_size].view(np.uint16)
23
+ original_shape = tuple(shape_header) # Returns (T, C, H, W)
24
 
25
+ packed_body = raw_data[header_size:] # Parse Body & Bit-unpacking
26
+ unpacked = np.unpackbits(packed_body)
27
 
28
+ num_elements = np.prod(original_shape) # Extract valid bits (Handle padding)
29
  event_flat = unpacked[:num_elements]
30
+ event_data = event_flat.reshape(original_shape).astype(np.float32).copy()
31
 
 
32
  return torch.from_numpy(event_data)
33
 
34
+ # ==================================================================
35
+ # 2. Dataset Wrapper
36
+ # ==================================================================
37
  class I2E_Dataset(Dataset):
38
+ def __init__(self, cache_dir, config_name, split='train', transform=None, target_transform=None):
39
+ print(f"🚀 Loading {config_name} [{split}] from Hugging Face...")
40
+ self.ds = load_dataset('UESTC-BICS/I2E', config_name, split=split, cache_dir=cache_dir, keep_in_memory=False)
41
  self.transform = transform
42
  self.target_transform = target_transform
43
 
 
46
 
47
  def __getitem__(self, idx):
48
  item = self.ds[idx]
49
+ event = unpack_event_data(item)
50
  label = item['label']
 
51
  if self.transform:
52
  event = self.transform(event)
53
  if self.target_transform:
54
  label = self.target_transform(label)
55
+ return event, label
56
+
57
+ # ==================================================================
58
+ # 3. Run Example
59
+ # ==================================================================
60
+ if __name__ == "__main__":
61
+ import os
62
+ os.environ['HF_ENDPOINT'] = 'https://hf-mirror.com' # Use HF mirror server in some regions
63
+
64
+ DATASET_NAME = 'I2E-CIFAR10' # Choose your config: 'I2E-CIFAR10', 'I2E-ImageNet', etc.
65
+ MODEL_PATH = 'Your cache path here' # e.g., './hf_datasets_cache/'
66
+
67
+ train_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='train')
68
+ val_dataset = I2E_Dataset(MODEL_PATH, DATASET_NAME, split='validation')
69
+
70
+ train_loader = DataLoader(train_dataset, batch_size=32, shuffle=True, num_workers=32, persistent_workers=True)
71
+ val_loader = DataLoader(val_dataset, batch_size=32, shuffle=False, num_workers=32, persistent_workers=True)
72
+
73
+ events, labels = next(iter(train_loader))
74
+ print(f"✅ Loaded Batch Shape: {events.shape}") # Expect: [32, T, 2, H, W]
75
+ print(f"✅ Labels: {labels}")