Dataset Viewer
Auto-converted to Parquet Duplicate
type
stringlengths
1
129k
tactic
stringlengths
1
8.85k
removals
listlengths
0
38
name
stringlengths
1
85
kind
stringclasses
3 values
goal
stringlengths
7
91.3k
a \ a ⊔ a \ a = ⊥
rw [symmDiff, sup_idem, sdiff_self]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α ⊢ a ∆ a = ⊥
a \ a = ⊥
rw [symmDiff, sup_idem, sdiff_self]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a \ a ⊔ a \ a = ⊥ ⊢ a ∆ a = ⊥
⊥ = ⊥
rw [symmDiff, sup_idem, sdiff_self]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a \ a ⊔ a \ a = ⊥ rw₁ : a \ a = ⊥ ⊢ a ∆ a = ⊥
⊥ = ⊥
rw [symmDiff, sup_idem, sdiff_self]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a \ a ⊔ a \ a = ⊥ rw₁ : a \ a = ⊥ rw₂ : ⊥ = ⊥ ⊢ a ∆ a = ⊥
a \ ⊥ ⊔ ⊥ \ a = a
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α ⊢ a ∆ ⊥ = a
a ⊔ ⊥ \ a = a
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a \ ⊥ ⊔ ⊥ \ a = a ⊢ a ∆ ⊥ = a
a ⊔ ⊥ = a
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a \ ⊥ ⊔ ⊥ \ a = a rw₁ : a ⊔ ⊥ \ a = a ⊢ a ∆ ⊥ = a
a = a
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a \ ⊥ ⊔ ⊥ \ a = a rw₁ : a ⊔ ⊥ \ a = a rw₂ : a ⊔ ⊥ = a ⊢ a ∆ ⊥ = a
a = a
rw [symmDiff, sdiff_bot, bot_sdiff, sup_bot_eq]
[]
rw₄
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a \ ⊥ ⊔ ⊥ \ a = a rw₁ : a ⊔ ⊥ \ a = a rw₂ : a ⊔ ⊥ = a rw₃ : a = a ⊢ a ∆ ⊥ = a
a ∆ ⊥ = a
rw [symmDiff_comm, symmDiff_bot]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α ⊢ ⊥ ∆ a = a
a = a
rw [symmDiff_comm, symmDiff_bot]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a ∆ ⊥ = a ⊢ ⊥ ∆ a = a
a = a
rw [symmDiff_comm, symmDiff_bot]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a : α rw : a ∆ ⊥ = a rw₁ : a = a ⊢ ⊥ ∆ a = a
a \ b ⊔ b \ a = ⊥ ↔ a = b
simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
[]
simp_rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ∆ b = ⊥ ↔ a = b
a \ b = ⊥ ∧ b \ a = ⊥ ↔ a = b
simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
[]
simp_rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α simp_rw : a \ b ⊔ b \ a = ⊥ ↔ a = b ⊢ a ∆ b = ⊥ ↔ a = b
a ≤ b ∧ b ≤ a ↔ a = b
simp_rw [symmDiff, sup_eq_bot_iff, sdiff_eq_bot_iff, le_antisymm_iff]
[]
simp_rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α simp_rw : a \ b ⊔ b \ a = ⊥ ↔ a = b simp_rw₁ : a \ b = ⊥ ∧ b \ a = ⊥ ↔ a = b ⊢ a ∆ b = ⊥ ↔ a = b
a \ b ⊔ b \ a = b \ a
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : a ≤ b ⊢ a ∆ b = b \ a
⊥ ⊔ b \ a = b \ a
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : a ≤ b rw : a \ b ⊔ b \ a = b \ a ⊢ a ∆ b = b \ a
b \ a = b \ a
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : a ≤ b rw : a \ b ⊔ b \ a = b \ a rw₁ : ⊥ ⊔ b \ a = b \ a ⊢ a ∆ b = b \ a
b \ a = b \ a
rw [symmDiff, sdiff_eq_bot_iff.2 h, bot_sup_eq]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : a ≤ b rw : a \ b ⊔ b \ a = b \ a rw₁ : ⊥ ⊔ b \ a = b \ a rw₂ : b \ a = b \ a ⊢ a ∆ b = b \ a
a \ b ⊔ b \ a = a \ b
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : b ≤ a ⊢ a ∆ b = a \ b
a \ b ⊔ ⊥ = a \ b
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : b ≤ a rw : a \ b ⊔ b \ a = a \ b ⊢ a ∆ b = a \ b
a \ b = a \ b
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : b ≤ a rw : a \ b ⊔ b \ a = a \ b rw₁ : a \ b ⊔ ⊥ = a \ b ⊢ a ∆ b = a \ b
a \ b = a \ b
rw [symmDiff, sdiff_eq_bot_iff.2 h, sup_bot_eq]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : b ≤ a rw : a \ b ⊔ b \ a = a \ b rw₁ : a \ b ⊔ ⊥ = a \ b rw₂ : a \ b = a \ b ⊢ a ∆ b = a \ b
a \ b ⊔ b \ a ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c
simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
[]
simp_rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α ⊢ a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c
a \ b ≤ c ∧ b \ a ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c
simp_rw [symmDiff, sup_le_iff, sdiff_le_iff]
[]
simp_rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α simp_rw : a \ b ⊔ b \ a ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c ⊢ a ∆ b ≤ c ↔ a ≤ b ⊔ c ∧ b ≤ a ⊔ c
a \ b ⊔ b \ a = a ⊔ b
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : Disjoint a b ⊢ a ∆ b = a ⊔ b
a ⊔ b \ a = a ⊔ b
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : Disjoint a b rw : a \ b ⊔ b \ a = a ⊔ b ⊢ a ∆ b = a ⊔ b
a ⊔ b = a ⊔ b
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : Disjoint a b rw : a \ b ⊔ b \ a = a ⊔ b rw₁ : a ⊔ b \ a = a ⊔ b ⊢ a ∆ b = a ⊔ b
a ⊔ b = a ⊔ b
rw [symmDiff, h.sdiff_eq_left, h.sdiff_eq_right]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : Disjoint a b rw : a \ b ⊔ b \ a = a ⊔ b rw₁ : a ⊔ b \ a = a ⊔ b rw₂ : a ⊔ b = a ⊔ b ⊢ a ∆ b = a ⊔ b
(a \ b ⊔ b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α ⊢ a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
(a \ b) \ c ⊔ (b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α rw : (a \ b ⊔ b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊢ a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
a \ (b ⊔ c) ⊔ (b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α rw : (a \ b ⊔ b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) rw₁ : (a \ b) \ c ⊔ (b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊢ a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
a \ (b ⊔ c) ⊔ b \ (a ⊔ c) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α rw : (a \ b ⊔ b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) rw₁ : (a \ b) \ c ⊔ (b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) rw₂ : a \ (b ⊔ c) ⊔ (b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊢ a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
a \ (b ⊔ c) ⊔ b \ (a ⊔ c) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
rw [symmDiff, sup_sdiff_distrib, sdiff_sdiff_left, sdiff_sdiff_left]
[]
rw₄
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α rw : (a \ b ⊔ b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) rw₁ : (a \ b) \ c ⊔ (b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) rw₂ : a \ (b ⊔ c) ⊔ (b \ a) \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) rw₃ : a \ (b ⊔ c) ⊔ b \ (a ⊔ c) = a \ (b ⊔ c) ⊔ b \ (a ⊔ c) ⊢ a ∆ b \ c = a \ (b ⊔ c) ⊔ b \ (a ⊔ c)
a \ (b ⊔ a ⊓ b) ⊔ b \ (a ⊔ a ⊓ b) = a ∆ b
rw [symmDiff_sdiff]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ∆ b \ (a ⊓ b) = a ∆ b
a \ (b \ a) ⊔ b \ a = a ⊔ b
rw [symmDiff, sdiff_idem]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ∆ (b \ a) = a ⊔ b
b ∆ (a \ b) = a ⊔ b
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ (a \ b) ∆ b = a ⊔ b
b ⊔ a = a ⊔ b
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : b ∆ (a \ b) = a ⊔ b ⊢ (a \ b) ∆ b = a ⊔ b
a ⊔ b = a ⊔ b
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : b ∆ (a \ b) = a ⊔ b rw₁ : b ⊔ a = a ⊔ b ⊢ (a \ b) ∆ b = a ⊔ b
a ⊔ b = a ⊔ b
rw [symmDiff_comm, symmDiff_sdiff_eq_sup, sup_comm]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : b ∆ (a \ b) = a ⊔ b rw₁ : b ⊔ a = a ⊔ b rw₂ : a ⊔ b = a ⊔ b ⊢ (a \ b) ∆ b = a ⊔ b
a ⊔ b ≤ a ∆ b ⊔ a ⊓ b
refine le_antisymm (sup_le symmDiff_le_sup inf_le_sup) ?_
[]
refine
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ∆ b ⊔ a ⊓ b = a ⊔ b
a ⊔ b ≤ (a \ b ⊔ b \ a ⊔ a) ⊓ (a \ b ⊔ b \ a ⊔ b)
rw [sup_inf_left, symmDiff]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ⊔ b ≤ a ∆ b ⊔ a ⊓ b
a ≤ a \ b ⊔ b \ a ⊔ b
refine sup_le (le_inf le_sup_right ?_) (le_inf ?_ le_sup_right)
[]
refine_1
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ⊔ b ≤ (a \ b ⊔ b \ a ⊔ a) ⊓ (a \ b ⊔ b \ a ⊔ b)
b ≤ a \ b ⊔ b \ a ⊔ a
refine sup_le (le_inf le_sup_right ?_) (le_inf ?_ le_sup_right)
[]
refine_2
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α refine_1 : a ≤ a \ b ⊔ b \ a ⊔ b ⊢ a ⊔ b ≤ (a \ b ⊔ b \ a ⊔ a) ⊓ (a \ b ⊔ b \ a ⊔ b)
a ≤ a \ b ⊔ b ⊔ b \ a
rw [sup_right_comm]
[]
refine_1
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ≤ a \ b ⊔ b \ a ⊔ b
b ≤ a \ b ⊔ (b \ a ⊔ a)
rw [sup_assoc]
[]
refine_2
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ b ≤ a \ b ⊔ b \ a ⊔ a
a ∆ b ⊔ a ⊓ b = a ⊔ b
rw [sup_comm, symmDiff_sup_inf]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ⊓ b ⊔ a ∆ b = a ⊔ b
a ⊔ b = a ⊔ b
rw [sup_comm, symmDiff_sup_inf]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : a ∆ b ⊔ a ⊓ b = a ⊔ b ⊢ a ⊓ b ⊔ a ∆ b = a ⊔ b
a ⊔ b = a ⊔ b
rw [sup_comm, symmDiff_sup_inf]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : a ∆ b ⊔ a ⊓ b = a ⊔ b rw₁ : a ⊔ b = a ⊔ b ⊢ a ⊓ b ⊔ a ∆ b = a ⊔ b
(a ∆ b \ (a ⊓ b)) ∆ (a ⊓ b) = a ⊔ b
rw [← symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ∆ b ∆ (a ⊓ b) = a ⊔ b
a ∆ b ⊔ a ⊓ b = a ⊔ b
rw [← symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : (a ∆ b \ (a ⊓ b)) ∆ (a ⊓ b) = a ⊔ b ⊢ a ∆ b ∆ (a ⊓ b) = a ⊔ b
a ⊔ b = a ⊔ b
rw [← symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : (a ∆ b \ (a ⊓ b)) ∆ (a ⊓ b) = a ⊔ b rw₁ : a ∆ b ⊔ a ⊓ b = a ⊔ b ⊢ a ∆ b ∆ (a ⊓ b) = a ⊔ b
a ⊔ b = a ⊔ b
rw [← symmDiff_sdiff_inf a, sdiff_symmDiff_eq_sup, symmDiff_sup_inf]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : (a ∆ b \ (a ⊓ b)) ∆ (a ⊓ b) = a ⊔ b rw₁ : a ∆ b ⊔ a ⊓ b = a ⊔ b rw₂ : a ⊔ b = a ⊔ b ⊢ a ∆ b ∆ (a ⊓ b) = a ⊔ b
a ∆ b ∆ (a ⊓ b) = a ⊔ b
rw [symmDiff_comm, symmDiff_symmDiff_inf]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ (a ⊓ b) ∆ (a ∆ b) = a ⊔ b
a ⊔ b = a ⊔ b
rw [symmDiff_comm, symmDiff_symmDiff_inf]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : a ∆ b ∆ (a ⊓ b) = a ⊔ b ⊢ (a ⊓ b) ∆ (a ∆ b) = a ⊔ b
a ⊔ b = a ⊔ b
rw [symmDiff_comm, symmDiff_symmDiff_inf]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α rw : a ∆ b ∆ (a ⊓ b) = a ⊔ b rw₁ : a ⊔ b = a ⊔ b ⊢ (a ⊓ b) ∆ (a ∆ b) = a ⊔ b
a \ b ⊔ b \ c ⊔ (c \ b ⊔ b \ a) = a ∆ b ⊔ b ∆ c
refine (sup_le_sup (sdiff_triangle a b c) <| sdiff_triangle _ b _).trans_eq ?_
[]
refine
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α ⊢ a ∆ c ≤ a ∆ b ⊔ b ∆ c
a \ b ⊔ b \ c ⊔ (b \ a ⊔ c \ b) = a ∆ b ⊔ b ∆ c
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α ⊢ a \ b ⊔ b \ c ⊔ (c \ b ⊔ b \ a) = a ∆ b ⊔ b ∆ c
a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a ∆ b ⊔ b ∆ c
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α rw : a \ b ⊔ b \ c ⊔ (b \ a ⊔ c \ b) = a ∆ b ⊔ b ∆ c ⊢ a \ b ⊔ b \ c ⊔ (c \ b ⊔ b \ a) = a ∆ b ⊔ b ∆ c
a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a \ b ⊔ b \ a ⊔ b ∆ c
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α rw : a \ b ⊔ b \ c ⊔ (b \ a ⊔ c \ b) = a ∆ b ⊔ b ∆ c rw₁ : a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a ∆ b ⊔ b ∆ c ⊢ a \ b ⊔ b \ c ⊔ (c \ b ⊔ b \ a) = a ∆ b ⊔ b ∆ c
a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b)
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α rw : a \ b ⊔ b \ c ⊔ (b \ a ⊔ c \ b) = a ∆ b ⊔ b ∆ c rw₁ : a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a ∆ b ⊔ b ∆ c rw₂ : a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a \ b ⊔ b \ a ⊔ b ∆ c ⊢ a \ b ⊔ b \ c ⊔ (c \ b ⊔ b \ a) = a ∆ b ⊔ b ∆ c
a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b)
rw [sup_comm (c \ b), sup_sup_sup_comm, symmDiff, symmDiff]
[]
rw₄
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b c : α rw : a \ b ⊔ b \ c ⊔ (b \ a ⊔ c \ b) = a ∆ b ⊔ b ∆ c rw₁ : a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a ∆ b ⊔ b ∆ c rw₂ : a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a \ b ⊔ b \ a ⊔ b ∆ c rw₃ : a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) = a \ b ⊔ b \ a ⊔ (b \ c ⊔ c \ b) ⊢ a \ b ⊔ b \ c ⊔ (c \ b ⊔ b \ a) = a ∆ b ⊔ b ∆ c
a = a ∆ ⊥
convert symmDiff_triangle a b ⊥
[]
h
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a ≤ a ∆ b ⊔ b
b = b ∆ ⊥
convert symmDiff_triangle a b ⊥
[]
h₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : a = a ∆ ⊥ ⊢ a ≤ a ∆ b ⊔ b
a = a
rw [symmDiff_bot]
[]
h
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ a = a ∆ ⊥
a = a
rw [symmDiff_bot]
[]
h₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : a = a ⊢ a = a ∆ ⊥
b = b
rw [symmDiff_bot]
[]
h
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α ⊢ b = b ∆ ⊥
b = b
rw [symmDiff_bot]
[]
h₁
goal
α : Type u_2 inst✝ : GeneralizedCoheytingAlgebra α a b : α h : b = b ⊢ b = b ∆ ⊥
(a ⇨ a) ⊓ (a ⇨ a) = ⊤
rw [bihimp, inf_idem, himp_self]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α ⊢ a ⇔ a = ⊤
a ⇨ a = ⊤
rw [bihimp, inf_idem, himp_self]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : (a ⇨ a) ⊓ (a ⇨ a) = ⊤ ⊢ a ⇔ a = ⊤
⊤ = ⊤
rw [bihimp, inf_idem, himp_self]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : (a ⇨ a) ⊓ (a ⇨ a) = ⊤ rw₁ : a ⇨ a = ⊤ ⊢ a ⇔ a = ⊤
⊤ = ⊤
rw [bihimp, inf_idem, himp_self]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : (a ⇨ a) ⊓ (a ⇨ a) = ⊤ rw₁ : a ⇨ a = ⊤ rw₂ : ⊤ = ⊤ ⊢ a ⇔ a = ⊤
(⊤ ⇨ a) ⊓ (a ⇨ ⊤) = a
rw [bihimp, himp_top, top_himp, inf_top_eq]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α ⊢ a ⇔ ⊤ = a
(⊤ ⇨ a) ⊓ ⊤ = a
rw [bihimp, himp_top, top_himp, inf_top_eq]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : (⊤ ⇨ a) ⊓ (a ⇨ ⊤) = a ⊢ a ⇔ ⊤ = a
a ⊓ ⊤ = a
rw [bihimp, himp_top, top_himp, inf_top_eq]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : (⊤ ⇨ a) ⊓ (a ⇨ ⊤) = a rw₁ : (⊤ ⇨ a) ⊓ ⊤ = a ⊢ a ⇔ ⊤ = a
a = a
rw [bihimp, himp_top, top_himp, inf_top_eq]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : (⊤ ⇨ a) ⊓ (a ⇨ ⊤) = a rw₁ : (⊤ ⇨ a) ⊓ ⊤ = a rw₂ : a ⊓ ⊤ = a ⊢ a ⇔ ⊤ = a
a = a
rw [bihimp, himp_top, top_himp, inf_top_eq]
[]
rw₄
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : (⊤ ⇨ a) ⊓ (a ⇨ ⊤) = a rw₁ : (⊤ ⇨ a) ⊓ ⊤ = a rw₂ : a ⊓ ⊤ = a rw₃ : a = a ⊢ a ⇔ ⊤ = a
a ⇔ ⊤ = a
rw [bihimp_comm, bihimp_top]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α ⊢ ⊤ ⇔ a = a
a = a
rw [bihimp_comm, bihimp_top]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : a ⇔ ⊤ = a ⊢ ⊤ ⇔ a = a
a = a
rw [bihimp_comm, bihimp_top]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a : α rw : a ⇔ ⊤ = a rw₁ : a = a ⊢ ⊤ ⇔ a = a
(b ⇨ a) ⊓ (a ⇨ b) = b ⇨ a
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : a ≤ b ⊢ a ⇔ b = b ⇨ a
(b ⇨ a) ⊓ ⊤ = b ⇨ a
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : a ≤ b rw : (b ⇨ a) ⊓ (a ⇨ b) = b ⇨ a ⊢ a ⇔ b = b ⇨ a
b ⇨ a = b ⇨ a
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : a ≤ b rw : (b ⇨ a) ⊓ (a ⇨ b) = b ⇨ a rw₁ : (b ⇨ a) ⊓ ⊤ = b ⇨ a ⊢ a ⇔ b = b ⇨ a
b ⇨ a = b ⇨ a
rw [bihimp, himp_eq_top_iff.2 h, inf_top_eq]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : a ≤ b rw : (b ⇨ a) ⊓ (a ⇨ b) = b ⇨ a rw₁ : (b ⇨ a) ⊓ ⊤ = b ⇨ a rw₂ : b ⇨ a = b ⇨ a ⊢ a ⇔ b = b ⇨ a
(b ⇨ a) ⊓ (a ⇨ b) = a ⇨ b
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : b ≤ a ⊢ a ⇔ b = a ⇨ b
⊤ ⊓ (a ⇨ b) = a ⇨ b
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : b ≤ a rw : (b ⇨ a) ⊓ (a ⇨ b) = a ⇨ b ⊢ a ⇔ b = a ⇨ b
a ⇨ b = a ⇨ b
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : b ≤ a rw : (b ⇨ a) ⊓ (a ⇨ b) = a ⇨ b rw₁ : ⊤ ⊓ (a ⇨ b) = a ⇨ b ⊢ a ⇔ b = a ⇨ b
a ⇨ b = a ⇨ b
rw [bihimp, himp_eq_top_iff.2 h, top_inf_eq]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : b ≤ a rw : (b ⇨ a) ⊓ (a ⇨ b) = a ⇨ b rw₁ : ⊤ ⊓ (a ⇨ b) = a ⇨ b rw₂ : a ⇨ b = a ⇨ b ⊢ a ⇔ b = a ⇨ b
a ≤ (c ⇨ b) ⊓ (b ⇨ c) ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b
simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
[]
simp_rw
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b c : α ⊢ a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b
a ≤ c ⇨ b ∧ a ≤ b ⇨ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b
simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
[]
simp_rw₁
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b c : α simp_rw : a ≤ (c ⇨ b) ⊓ (b ⇨ c) ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b ⊢ a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b
a ⊓ c ≤ b ∧ a ⊓ b ≤ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b
simp_rw [bihimp, le_inf_iff, le_himp_iff, and_comm]
[]
simp_rw₂
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b c : α simp_rw : a ≤ (c ⇨ b) ⊓ (b ⇨ c) ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b simp_rw₁ : a ≤ c ⇨ b ∧ a ≤ b ⇨ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b ⊢ a ≤ b ⇔ c ↔ a ⊓ b ≤ c ∧ a ⊓ c ≤ b
(b ⇨ a) ⊓ (a ⇨ b) = a ⊓ b
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : Codisjoint a b ⊢ a ⇔ b = a ⊓ b
(b ⇨ a) ⊓ b = a ⊓ b
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : Codisjoint a b rw : (b ⇨ a) ⊓ (a ⇨ b) = a ⊓ b ⊢ a ⇔ b = a ⊓ b
a ⊓ b = a ⊓ b
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : Codisjoint a b rw : (b ⇨ a) ⊓ (a ⇨ b) = a ⊓ b rw₁ : (b ⇨ a) ⊓ b = a ⊓ b ⊢ a ⇔ b = a ⊓ b
a ⊓ b = a ⊓ b
rw [bihimp, h.himp_eq_left, h.himp_eq_right]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b : α h : Codisjoint a b rw : (b ⇨ a) ⊓ (a ⇨ b) = a ⊓ b rw₁ : (b ⇨ a) ⊓ b = a ⊓ b rw₂ : a ⊓ b = a ⊓ b ⊢ a ⇔ b = a ⊓ b
a ⇨ (c ⇨ b) ⊓ (b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
[]
rw
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b c : α ⊢ a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
(a ⇨ c ⇨ b) ⊓ (a ⇨ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
[]
rw₁
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b c : α rw : a ⇨ (c ⇨ b) ⊓ (b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) ⊢ a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
(a ⊓ c ⇨ b) ⊓ (a ⇨ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
[]
rw₂
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b c : α rw : a ⇨ (c ⇨ b) ⊓ (b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) rw₁ : (a ⇨ c ⇨ b) ⊓ (a ⇨ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) ⊢ a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
(a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
[]
rw₃
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b c : α rw : a ⇨ (c ⇨ b) ⊓ (b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) rw₁ : (a ⇨ c ⇨ b) ⊓ (a ⇨ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) rw₂ : (a ⊓ c ⇨ b) ⊓ (a ⇨ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) ⊢ a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
(a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
rw [bihimp, himp_inf_distrib, himp_himp, himp_himp]
[]
rw₄
goal
α : Type u_2 inst✝ : GeneralizedHeytingAlgebra α a b c : α rw : a ⇨ (c ⇨ b) ⊓ (b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) rw₁ : (a ⇨ c ⇨ b) ⊓ (a ⇨ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) rw₂ : (a ⊓ c ⇨ b) ⊓ (a ⇨ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) rw₃ : (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c) ⊢ a ⇨ b ⇔ c = (a ⊓ c ⇨ b) ⊓ (a ⊓ b ⇨ c)
End of preview. Expand in Data Studio
README.md exists but content is empty.
Downloads last month
9