Dataset Viewer
The dataset could not be loaded because the splits use different data file formats, which is not supported. Read more about the splits configuration. Click for more details.
Couldn't infer the same data file format for all splits. Got {NamedSplit('train'): ('imagefolder', {}), NamedSplit('test'): ('json', {})}
Error code:   FileFormatMismatchBetweenSplitsError

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

VLM-Gym Inference Dataset

This dataset contains pre-defined test episodes and initial states for evaluating Vision-Language Models (VLMs) on the VLM-Gym benchmark.

Dataset Structure

inference-dataset/
├── test_set_easy/           # Easy difficulty test episodes (JSONL)
├── test_set_hard/           # Hard difficulty test episodes (JSONL)
├── initial_states_easy/     # Initial environment states for easy episodes (JSON)
├── initial_states_hard/     # Initial environment states for hard episodes (JSON)
└── partial_datasets/        # Assets required by some environments
    ├── objaverse/           # 3D models for mental rotation tasks
    ├── counting/            # Images for counting tasks
    ├── refcoco+/            # Images for referring expression tasks
    └── ...

Tasks Included

Task Description
maze_2d 2D maze navigation
maze_3d 3D maze navigation
mental_rotation_2d 2D shape rotation matching
mental_rotation_3d_cube 3D cube rotation matching
mental_rotation_3d_objaverse 3D object rotation matching
jigsaw Jigsaw puzzle solving
sliding_block Sliding block puzzle
colorization Image colorization
counting Object counting
patch_reassembly Image patch reassembly
matchstick_equation Matchstick equation solving
matchstick_rotation Matchstick rotation
video_unshuffle Video frame ordering
zoom_in_puzzle Zoom-in puzzle solving
fetch_reach Robotic reaching (easy only)
fetch_pick_and_place Robotic manipulation (hard only)
referring_dot_pointing Referring expression grounding (easy only)

Quick Start

Installation

pip install huggingface_hub

Download Full Dataset

from huggingface_hub import snapshot_download

dataset_path = snapshot_download(
    repo_id="VisGym/inference-dataset",
    repo_type="dataset",
)

Download Specific Subsets

from huggingface_hub import snapshot_download

# Download only test sets (small, no large assets)
dataset_path = snapshot_download(
    repo_id="VisGym/inference-dataset",
    repo_type="dataset",
    allow_patterns=["test_set_easy/**", "test_set_hard/**"],
)

# Download only easy difficulty
dataset_path = snapshot_download(
    repo_id="VisGym/inference-dataset",
    repo_type="dataset",
    allow_patterns=["*_easy/**"],
)

Using the Loader Script

# Download everything
python load_from_hf.py --output_dir ./inference_dataset

# Download only test sets (no large assets)
python load_from_hf.py --output_dir ./inference_dataset --subset test_sets

# Download only easy difficulty
python load_from_hf.py --output_dir ./inference_dataset --subset easy

File Formats

Test Set Files (JSONL)

Each line in the JSONL files contains an episode specification:

{"seed": 1803372, "env_id": "maze_2d/hard", "episode_seed": 1052368083, "extra_state": null}

Initial State Files (JSON)

JSON files containing the initial state for reproducible episode starts:

{
  "object_path": "000-156/fa3dad5169784cec85b96682231e3f44.glb",
  "secret_yaw": 1.098,
  "secret_pitch": 0.487,
  ...
}

Usage with VLM-Gym

from pathlib import Path
import json

# Load test episodes
test_file = Path(dataset_path) / "test_set_easy" / "maze_2d__easy" / "*.jsonl"
for jsonl_file in test_file.parent.glob("*.jsonl"):
    with open(jsonl_file) as f:
        for line in f:
            episode = json.loads(line)
            env_id = episode["env_id"]
            seed = episode["seed"]
            episode_seed = episode["episode_seed"]
            # Use with VLM-Gym inference runner

Citation

If you use this dataset, please cite:

@misc{vlmgym2024,
  title={VLM-Gym: A Benchmark for Vision-Language Models in Interactive Environments},
  author={VLM-Gym Team},
  year={2024},
  url={https://huggingface.co/datasets/VisGym/inference-dataset}
}

License

MIT License

Downloads last month
12