The dataset viewer is not available for this split.
Error code: FeaturesError
Exception: ArrowInvalid
Message: JSON parse error: Column() changed from object to array in row 0
Traceback: Traceback (most recent call last):
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 174, in _generate_tables
df = pandas_read_json(f)
^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 38, in pandas_read_json
return pd.read_json(path_or_buf, **kwargs)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 815, in read_json
return json_reader.read()
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1014, in read
obj = self._get_object_parser(self.data)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1040, in _get_object_parser
obj = FrameParser(json, **kwargs).parse()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1176, in parse
self._parse()
File "/usr/local/lib/python3.12/site-packages/pandas/io/json/_json.py", line 1391, in _parse
self.obj = DataFrame(
^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/core/frame.py", line 778, in __init__
mgr = dict_to_mgr(data, index, columns, dtype=dtype, copy=copy, typ=manager)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 503, in dict_to_mgr
return arrays_to_mgr(arrays, columns, index, dtype=dtype, typ=typ, consolidate=copy)
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 114, in arrays_to_mgr
index = _extract_index(arrays)
^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/pandas/core/internals/construction.py", line 677, in _extract_index
raise ValueError("All arrays must be of the same length")
ValueError: All arrays must be of the same length
During handling of the above exception, another exception occurred:
Traceback (most recent call last):
File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 243, in compute_first_rows_from_streaming_response
iterable_dataset = iterable_dataset._resolve_features()
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
features = _infer_features_from_batch(self.with_format(None)._head())
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
return next(iter(self.iter(batch_size=n)))
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
for key, example in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
for key, pa_table in self._iter_arrow():
^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
yield from self.ex_iterable._iter_arrow()
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
for key, pa_table in iterator:
^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
for key, pa_table in self.generate_tables_fn(**gen_kwags):
^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 177, in _generate_tables
raise e
File "/usr/local/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
pa_table = paj.read_json(
^^^^^^^^^^^^^^
File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
pyarrow.lib.ArrowInvalid: JSON parse error: Column() changed from object to array in row 0Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.
L-RIPLIB
Dataset Summary
L-RIPLIB is an industrial-scale benchmark for Resource Investment Problems (RIP) derived from cloud computing workloads. It contains 1,000 instances with problem sizes ranging from 2,500 to 10,000 tasks, intended to support realistic large-scale evaluation and to complement smaller classical benchmarks (e.g., PSPLIB).
Each instance is stored as a JSON record describing a task set with time windows, durations, precedence constraints, per-task resource requirements, and solution-related metadata produced by OR-Tools CP-SAT under a time cap.
Supported Tasks and Usage Scenarios
This dataset is suitable for:
- Large-scale project/task scheduling with precedence constraints and time windows.
- Resource provisioning / resource investment with per-resource unit costs.
- Learning-augmented optimization (e.g., predicting good schedules, costs, bounds, or warm-start solutions).
- Dynamic / continual re-optimization experiments using the provided “modified_data” deltas (see “Modified_data” field).
Languages
- English
Dataset Structure
Data Format
- One JSON object per instance.
Data Fields (per instance)
The dataset uses the following key elements:
- Tasks (
T): list of task names (activities) within the instance. - Earliest_start (
e): earliest start time for each task. - Deadline (
l): deadline / latest finish time for each task. - Duration (
d): duration for each task. - Dependencies (
P): precedence constraints specifying which tasks must finish before others can start. - Resources (
R): resources allocated to each task (resource requirements). - Costs (
c): unit cost of each resource type. - Task_start (
(S_i)_{i∈T}): a CP-SAT solution (task start times) obtained under a limited time budget of 0.1 × |T| seconds. - Best_cost: total resource cost for the provided solution.
- Time: CP-SAT solve time for the instance.
- Bound: CP-SAT lower bound on total resource cost.
- Modified_data (
Δq): the difference betweenqandq'(used to represent instance modifications).
- Downloads last month
- 429