alakxender/gemma-3-270m-dhivehi-text-classifier
Text Generation
•
0.3B
•
Updated
•
15
This dataset contains 91,759 Dhivehi-English translation pairs extracted from news articles and other content. The dataset is designed for machine translation research, cross-lingual information retrieval, and Dhivehi language processing tasks.
{
"dhivehi": "މަގުމަތީ އުޅޭ ބުޅާތަކަށް ހާނިއްކަކޮށް ނުމަރަން އިލްތިމާސްކޮށްފި",
"english": "Appeal Made Not to Harm or Kill Stray Cats",
"topic": "Environment"
}
dhivehi (string): The original text in Dhivehienglish (string): The corresponding English translationtopic (string): The content category/topic| Split | Examples |
|---|---|
| Train | 82,583 |
| Test | 9,176 |
| Total | 91,759 |
The dataset covers various topics with the following distribution:
| Topic | Count | Percentage |
|---|---|---|
| Politics | 22,145 | 24.1% |
| Local News | 12,331 | 13.4% |
| Crime | 11,430 | 12.5% |
| Business | 10,356 | 11.3% |
| Sports | 8,021 | 8.7% |
| International | 6,593 | 7.2% |
| Health | 5,358 | 5.8% |
| Entertainment | 4,370 | 4.8% |
| Education | 3,900 | 4.3% |
| Environment | 2,545 | 2.8% |
| Others (236 topics) | 4,710 | 5.1% |
The data was extracted and cleaned from Dhivehi news articles and other textual content.
from datasets import load_dataset
# Load the dataset
dataset = load_dataset("alakxender/dhivehi-english-translations")
# Access train/test splits
train_data = dataset['train']
test_data = dataset['test']
# Example usage
for example in train_data.select(range(5)):
print(f"Dhivehi: {example['dhivehi']}")
print(f"English: {example['english']}")
print(f"Topic: {example['topic']}")
print("-" * 50)
This dataset can be used for: