Datasets:

Modalities:
Image
Text
Formats:
parquet
ArXiv:
Libraries:
Datasets
Dask
License:
File size: 2,901 Bytes
572efab
 
d6f376d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
572efab
d6f376d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5610180
 
 
d6f376d
 
 
 
 
 
 
 
 
 
bd70d67
 
d6f376d
 
bd70d67
 
d6f376d
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
---

license: mit
modalities:
- image
- tabular
configs:
- config_name: onland
  data_files: onland/data_*.parquet
- config_name: underwater
  data_files: underwater/data_*.parquet
dataset_info:
  - config_name: onland
    features:
    - name: image
      dtype: image
    - name: fx
      dtype: float32
    - name: fy
      dtype: float32
    - name: fz
      dtype: float32
    - name: tx
      dtype: float32
    - name: ty
      dtype: float32
    - name: tz
      dtype: float32
    - name: object
      dtype: string
    - name: env
      dtype: string
  - config_name: underwater
    features:
    - name: image
      dtype: image
    - name: fx
      dtype: float32
    - name: fy
      dtype: float32
    - name: fz
      dtype: float32
    - name: tx
      dtype: float32
    - name: ty
      dtype: float32
    - name: tz
      dtype: float32
    - name: object
      dtype: string
    - name: env
      dtype: string
size_categories:
- 10K<n<100K
---


# FingerNet-Img-40k

This dataset contains about 40,000 samples of image and force data collected for soft robotic fingers interacting with various objects both on land and underwater.

## Dataset Schema

The dataset is organized as follows:

```text

fingernet-img-40k/

├── onland/

│   ├── data_0.parquet

│   ├── data_1.parquet

│   ├── data_2.parquet

│   └── ...

└── underwater/

    ├── data_0.parquet

    ├── data_1.parquet

    ├── data_2.parquet

    └── ...

```

Each record in contains:

| Field | Type | Description |
|--------|------|-------------|
| `image` | `Image` | Image containing finger structure, `640x480` pixels |
| `Fx`, `Fy`, `Fz`, `Mx`, `My`, `Mz` | `float32` | 6D force-torque data in `N` and `Nmm` |
| `object` | `string` | Contacted object name |
| `env` | `string` | Environment (`onland` / `underwater`) |

## Usage

To read the dataset, you can use the following code:

```python

from datasets import load_dataset



# Load the onland dataset

ds = load_dataset("asRobotics/magiclaw-touch-dataset", "onland")

print(ds[0])



# Load the underwater dataset

ds = load_dataset("asRobotics/magiclaw-touch-dataset", "underwater")

print(ds[0])

```

## Citation

If you use this dataset in your research, please cite the following paper:

```bibtex

@article{guo2024autoencoding,

  title={Autoencoding a Soft Touch to Learn Grasping from On-Land to Underwater},

  author={Guo, Ning and Han, Xudong and Liu, Xiaobo and Zhong, Shuqiao and Zhou, Zhiyuan and Lin, Jian and Dai, Jiansheng and Wan, Fang and Song, Chaoyang},

  journal={Advanced Intelligent Systems},

  volume={6},

  number={1},

  pages={2300382},

  year={2024},

  publisher={Wiley Online Library},

  doi = {10.1002/aisy.202300382}

}

```

[](https://arxiv.org/abs/2308.08510)