title
string
abstract
string
A semantic framework for preference handling in answer set programming
We provide a semantic framework for preference handling in answer set programming. To this end, we introduce preference preserving consequence operators. The resulting fixpoint characterizations provide us with a uniform semantic framework for characterizing preference handling in existing approaches. Although our approach is extensible to other semantics by means of an alternating fixpoint theory, we focus here on the elaboration of preferences under answer set semantics. Alternatively, we show how these approaches can be characterized by the concept of order preservation. These uniform semantic characterizations provide us with new insights about interrelationships and moreover about ways of implementation.
Defeasible Logic Programming: An Argumentative Approach
The work reported here introduces Defeasible Logic Programming (DeLP), a formalism that combines results of Logic Programming and Defeasible Argumentation. DeLP provides the possibility of representing information in the form of weak rules in a declarative manner, and a defeasible argumentation inference mechanism for warranting the entailed conclusions. In DeLP an argumentation formalism will be used for deciding between contradictory goals. Queries will be supported by arguments that could be defeated by other arguments. A query q will succeed when there is an argument A for q that is warranted, ie, the argument A that supports q is found undefeated by a warrant procedure that implements a dialectical analysis. The defeasible argumentation basis of DeLP allows to build applications that deal with incomplete and contradictory information in dynamic domains. Thus, the resulting approach is suitable for representing agent's knowledge and for providing an argumentation based reasoning mechanism to agents.
Constraint-based analysis of composite solvers
Cooperative constraint solving is an area of constraint programming that studies the interaction between constraint solvers with the aim of discovering the interaction patterns that amplify the positive qualities of individual solvers. Automatisation and formalisation of such studies is an important issue of cooperative constraint solving. In this paper we present a constraint-based analysis of composite solvers that integrates reasoning about the individual solvers and the processed data. The idea is to approximate this reasoning by resolution of set constraints on the finite sets representing the predicates that express all the necessary properties. We illustrate application of our analysis to two important cooperation patterns: deterministic choice and loop.
Kalman-filtering using local interactions
There is a growing interest in using Kalman-filter models for brain modelling. In turn, it is of considerable importance to represent Kalman-filter in connectionist forms with local Hebbian learning rules. To our best knowledge, Kalman-filter has not been given such local representation. It seems that the main obstacle is the dynamic adaptation of the Kalman-gain. Here, a connectionist representation is presented, which is derived by means of the recursive prediction error method. We show that this method gives rise to attractive local learning rules and can adapt the Kalman-gain.
On the Notion of Cognition
We discuss philosophical issues concerning the notion of cognition basing ourselves in experimental results in cognitive sciences, especially in computer simulations of cognitive systems. There have been debates on the "proper" approach for studying cognition, but we have realized that all approaches can be in theory equivalent. Different approaches model different properties of cognitive systems from different perspectives, so we can only learn from all of them. We also integrate ideas from several perspectives for enhancing the notion of cognition, such that it can contain other definitions of cognition as special cases. This allows us to propose a simple classification of different types of cognition.
Unfolding Partiality and Disjunctions in Stable Model Semantics
The paper studies an implementation methodology for partial and disjunctive stable models where partiality and disjunctions are unfolded from a logic program so that an implementation of stable models for normal (disjunction-free) programs can be used as the core inference engine. The unfolding is done in two separate steps. Firstly, it is shown that partial stable models can be captured by total stable models using a simple linear and modular program transformation. Hence, reasoning tasks concerning partial stable models can be solved using an implementation of total stable models. Disjunctive partial stable models have been lacking implementations which now become available as the translation handles also the disjunctive case. Secondly, it is shown how total stable models of disjunctive programs can be determined by computing stable models for normal programs. Hence, an implementation of stable models of normal programs can be used as a core engine for implementing disjunctive programs. The feasibility of the approach is demonstrated by constructing a system for computing stable models of disjunctive programs using the smodels system as the core engine. The performance of the resulting system is compared to that of dlv which is a state-of-the-art special purpose system for disjunctive programs.
Multi-target particle filtering for the probability hypothesis density
When tracking a large number of targets, it is often computationally expensive to represent the full joint distribution over target states. In cases where the targets move independently, each target can instead be tracked with a separate filter. However, this leads to a model-data association problem. Another approach to solve the problem with computational complexity is to track only the first moment of the joint distribution, the probability hypothesis density (PHD). The integral of this distribution over any area S is the expected number of targets within S. Since no record of object identity is kept, the model-data association problem is avoided. The contribution of this paper is a particle filter implementation of the PHD filter mentioned above. This PHD particle filter is applied to tracking of multiple vehicles in terrain, a non-linear tracking problem. Experiments show that the filter can track a changing number of vehicles robustly, achieving near-real-time performance.
A Framework for Searching AND/OR Graphs with Cycles
Search in cyclic AND/OR graphs was traditionally known to be an unsolved problem. In the recent past several important studies have been reported in this domain. In this paper, we have taken a fresh look at the problem. First, a new and comprehensive theoretical framework for cyclic AND/OR graphs has been presented, which was found missing in the recent literature. Based on this framework, two best-first search algorithms, S1 and S2, have been developed. S1 does uninformed search and is a simple modification of the Bottom-up algorithm by Martelli and Montanari. S2 performs a heuristically guided search and replicates the modification in Bottom-up's successors, namely HS and AO*. Both S1 and S2 solve the problem of searching AND/OR graphs in presence of cycles. We then present a detailed analysis for the correctness and complexity results of S1 and S2, using the proposed framework. We have observed through experiments that S1 and S2 output correct results in all cases.
On rho in a Decision-Theoretic Apparatus of Dempster-Shafer Theory
Thomas M. Strat has developed a decision-theoretic apparatus for Dempster-Shafer theory (Decision analysis using belief functions, Intern. J. Approx. Reason. 4(5/6), 391-417, 1990). In this apparatus, expected utility intervals are constructed for different choices. The choice with the highest expected utility is preferable to others. However, to find the preferred choice when the expected utility interval of one choice is included in that of another, it is necessary to interpolate a discerning point in the intervals. This is done by the parameter rho, defined as the probability that the ambiguity about the utility of every nonsingleton focal element will turn out as favorable as possible. If there are several different decision makers, we might sometimes be more interested in having the highest expected utility among the decision makers rather than only trying to maximize our own expected utility regardless of choices made by other decision makers. The preference of each choice is then determined by the probability of yielding the highest expected utility. This probability is equal to the maximal interval length of rho under which an alternative is preferred. We must here take into account not only the choices already made by other decision makers but also the rational choices we can assume to be made by later decision makers. In Strats apparatus, an assumption, unwarranted by the evidence at hand, has to be made about the value of rho. We demonstrate that no such assumption is necessary. It is sufficient to assume a uniform probability distribution for rho to be able to discern the most preferable choice. We discuss when this approach is justifiable.
Updating beliefs with incomplete observations
Currently, there is renewed interest in the problem, raised by Shafer in 1985, of updating probabilities when observations are incomplete. This is a fundamental problem in general, and of particular interest for Bayesian networks. Recently, Grunwald and Halpern have shown that commonly used updating strategies fail in this case, except under very special assumptions. In this paper we propose a new method for updating probabilities with incomplete observations. Our approach is deliberately conservative: we make no assumptions about the so-called incompleteness mechanism that associates complete with incomplete observations. We model our ignorance about this mechanism by a vacuous lower prevision, a tool from the theory of imprecise probabilities, and we use only coherence arguments to turn prior into posterior probabilities. In general, this new approach to updating produces lower and upper posterior probabilities and expectations, as well as partially determinate decisions. This is a logical consequence of the existing ignorance about the incompleteness mechanism. We apply the new approach to the problem of classification of new evidence in probabilistic expert systems, where it leads to a new, so-called conservative updating rule. In the special case of Bayesian networks constructed using expert knowledge, we provide an exact algorithm for classification based on our updating rule, which has linear-time complexity for a class of networks wider than polytrees. This result is then extended to the more general framework of credal networks, where computations are often much harder than with Bayesian nets. Using an example, we show that our rule appears to provide a solid basis for reliable updating with incomplete observations, when no strong assumptions about the incompleteness mechanism are justified.
Updating Probabilities
As examples such as the Monty Hall puzzle show, applying conditioning to update a probability distribution on a ``naive space'', which does not take into account the protocol used, can often lead to counterintuitive results. Here we examine why. A criterion known as CAR (``coarsening at random'') in the statistical literature characterizes when ``naive'' conditioning in a naive space works. We show that the CAR condition holds rather infrequently, and we provide a procedural characterization of it, by giving a randomized algorithm that generates all and only distributions for which CAR holds. This substantially extends previous characterizations of CAR. We also consider more generalized notions of update such as Jeffrey conditioning and minimizing relative entropy (MRE). We give a generalization of the CAR condition that characterizes when Jeffrey conditioning leads to appropriate answers, and show that there exist some very simple settings in which MRE essentially never gives the right results. This generalizes and interconnects previous results obtained in the literature on CAR and MRE.
Pruning Isomorphic Structural Sub-problems in Configuration
Configuring consists in simulating the realization of a complex product from a catalog of component parts, using known relations between types, and picking values for object attributes. This highly combinatorial problem in the field of constraint programming has been addressed with a variety of approaches since the foundation system R1(McDermott82). An inherent difficulty in solving configuration problems is the existence of many isomorphisms among interpretations. We describe a formalism independent approach to improve the detection of isomorphisms by configurators, which does not require to adapt the problem model. To achieve this, we exploit the properties of a characteristic subset of configuration problems, called the structural sub-problem, which canonical solutions can be produced or tested at a limited cost. In this paper we present an algorithm for testing the canonicity of configurations, that can be added as a symmetry breaking constraint to any configurator. The cost and efficiency of this canonicity test are given.
Probabilistic Reasoning as Information Compression by Multiple Alignment, Unification and Search: An Introduction and Overview
This article introduces the idea that probabilistic reasoning (PR) may be understood as "information compression by multiple alignment, unification and search" (ICMAUS). In this context, multiple alignment has a meaning which is similar to but distinct from its meaning in bio-informatics, while unification means a simple merging of matching patterns, a meaning which is related to but simpler than the meaning of that term in logic. A software model, SP61, has been developed for the discovery and formation of 'good' multiple alignments, evaluated in terms of information compression. The model is described in outline. Using examples from the SP61 model, this article describes in outline how the ICMAUS framework can model various kinds of PR including: PR in best-match pattern recognition and information retrieval; one-step 'deductive' and 'abductive' PR; inheritance of attributes in a class hierarchy; chains of reasoning (probabilistic decision networks and decision trees, and PR with 'rules'); geometric analogy problems; nonmonotonic reasoning and reasoning with default values; modelling the function of a Bayesian network.
Information Compression by Multiple Alignment, Unification and Search as a Unifying Principle in Computing and Cognition
This article presents an overview of the idea that "information compression by multiple alignment, unification and search" (ICMAUS) may serve as a unifying principle in computing (including mathematics and logic) and in such aspects of human cognition as the analysis and production of natural language, fuzzy pattern recognition and best-match information retrieval, concept hierarchies with inheritance of attributes, probabilistic reasoning, and unsupervised inductive learning. The ICMAUS concepts are described together with an outline of the SP61 software model in which the ICMAUS concepts are currently realised. A range of examples is presented, illustrated with output from the SP61 model.
Integrating cardinal direction relations and other orientation relations in Qualitative Spatial Reasoning
We propose a calculus integrating two calculi well-known in Qualitative Spatial Reasoning (QSR): Frank's projection-based cardinal direction calculus, and a coarser version of Freksa's relative orientation calculus. An original constraint propagation procedure is presented, which implements the interaction between the two integrated calculi. The importance of taking into account the interaction is shown with a real example providing an inconsistent knowledge base, whose inconsistency (a) cannot be detected by reasoning separately about each of the two components of the knowledge, just because, taken separately, each is consistent, but (b) is detected by the proposed algorithm, thanks to the interaction knowledge propagated from each of the two compnents to the other.
A ternary Relation Algebra of directed lines
We define a ternary Relation Algebra (RA) of relative position relations on two-dimensional directed lines (d-lines for short). A d-line has two degrees of freedom (DFs): a rotational DF (RDF), and a translational DF (TDF). The representation of the RDF of a d-line will be handled by an RA of 2D orientations, CYC_t, known in the literature. A second algebra, TA_t, which will handle the TDF of a d-line, will be defined. The two algebras, CYC_t and TA_t, will constitute, respectively, the translational and the rotational components of the RA, PA_t, of relative position relations on d-lines: the PA_t atoms will consist of those pairs <t,r> of a TA_t atom and a CYC_t atom that are compatible. We present in detail the RA PA_t, with its converse table, its rotation table and its composition tables. We show that a (polynomial) constraint propagation algorithm, known in the literature, is complete for a subset of PA_t relations including almost all of the atomic relations. We will discuss the application scope of the RA, which includes incidence geometry, GIS (Geographic Information Systems), shape representation, localisation in (multi-)robot navigation, and the representation of motion prepositions in NLP (Natural Language Processing). We then compare the RA to existing ones, such as an algebra for reasoning about rectangles parallel to the axes of an (orthogonal) coordinate system, a ``spatial Odyssey'' of Allen's interval algebra, and an algebra for reasoning about 2D segments.
From Statistical Knowledge Bases to Degrees of Belief
An intelligent agent will often be uncertain about various properties of its environment, and when acting in that environment it will frequently need to quantify its uncertainty. For example, if the agent wishes to employ the expected-utility paradigm of decision theory to guide its actions, it will need to assign degrees of belief (subjective probabilities) to various assertions. Of course, these degrees of belief should not be arbitrary, but rather should be based on the information available to the agent. This paper describes one approach for inducing degrees of belief from very rich knowledge bases, that can include information about particular individuals, statistical correlations, physical laws, and default rules. We call our approach the random-worlds method. The method is based on the principle of indifference: it treats all of the worlds the agent considers possible as being equally likely. It is able to integrate qualitative default reasoning with quantitative probabilistic reasoning by providing a language in which both types of information can be easily expressed. Our results show that a number of desiderata that arise in direct inference (reasoning from statistical information to conclusions about individuals) and default reasoning follow directly {from} the semantics of random worlds. For example, random worlds captures important patterns of reasoning such as specificity, inheritance, indifference to irrelevant information, and default assumptions of independence. Furthermore, the expressive power of the language used and the intuitive semantics of random worlds allow the method to deal with problems that are beyond the scope of many other non-deductive reasoning systems.
An Alternative to RDF-Based Languages for the Representation and Processing of Ontologies in the Semantic Web
This paper describes an approach to the representation and processing of ontologies in the Semantic Web, based on the ICMAUS theory of computation and AI. This approach has strengths that complement those of languages based on the Resource Description Framework (RDF) such as RDF Schema and DAML+OIL. The main benefits of the ICMAUS approach are simplicity and comprehensibility in the representation of ontologies, an ability to cope with errors and uncertainties in knowledge, and a versatile reasoning system with capabilities in the kinds of probabilistic reasoning that seem to be required in the Semantic Web.
Quantifying and Visualizing Attribute Interactions
Interactions are patterns between several attributes in data that cannot be inferred from any subset of these attributes. While mutual information is a well-established approach to evaluating the interactions between two attributes, we surveyed its generalizations as to quantify interactions between several attributes. We have chosen McGill's interaction information, which has been independently rediscovered a number of times under various names in various disciplines, because of its many intuitively appealing properties. We apply interaction information to visually present the most important interactions of the data. Visualization of interactions has provided insight into the structure of data on a number of domains, identifying redundant attributes and opportunities for constructing new features, discovering unexpected regularities in data, and have helped during construction of predictive models; we illustrate the methods on numerous examples. A machine learning method that disregards interactions may get caught in two traps: myopia is caused by learning algorithms assuming independence in spite of interactions, whereas fragmentation arises from assuming an interaction in spite of independence.
Evidential Force Aggregation
In this paper we develop an evidential force aggregation method intended for classification of evidential intelligence into recognized force structures. We assume that the intelligence has already been partitioned into clusters and use the classification method individually in each cluster. The classification is based on a measure of fitness between template and fused intelligence that makes it possible to handle intelligence reports with multiple nonspecific and uncertain propositions. With this measure we can aggregate on a level-by-level basis, starting from general intelligence to achieve a complete force structure with recognized units on all hierarchical levels.
Application of Kullback-Leibler Metric to Speech Recognition
Article discusses the application of Kullback-Leibler divergence to the recognition of speech signals and suggests three algorithms implementing this divergence criterion: correlation algorithm, spectral algorithm and filter algorithm. Discussion covers an approach to the problem of speech variability and is illustrated with the results of experimental modeling of speech signals. The article gives a number of recommendations on the choice of appropriate model parameters and provides a comparison to some other methods of speech recognition.
The Algebra of Utility Inference
Richard Cox [1] set the axiomatic foundations of probable inference and the algebra of propositions. He showed that consistency within these axioms requires certain rules for updating belief. In this paper we use the analogy between probability and utility introduced in [2] to propose an axiomatic foundation for utility inference and the algebra of preferences. We show that consistency within these axioms requires certain rules for updating preference. We discuss a class of utility functions that stems from the axioms of utility inference and show that this class is the basic building block for any general multiattribute utility function. We use this class of utility functions together with the algebra of preferences to construct utility functions represented by logical operations on the attributes.
An information theory for preferences
Recent literature in the last Maximum Entropy workshop introduced an analogy between cumulative probability distributions and normalized utility functions. Based on this analogy, a utility density function can de defined as the derivative of a normalized utility function. A utility density function is non-negative and integrates to unity. These two properties form the basis of a correspondence between utility and probability. A natural application of this analogy is a maximum entropy principle to assign maximum entropy utility values. Maximum entropy utility interprets many of the common utility functions based on the preference information needed for their assignment, and helps assign utility values based on partial preference information. This paper reviews maximum entropy utility and introduces further results that stem from the duality between probability and utility.
Abductive Logic Programs with Penalization: Semantics, Complexity and Implementation
Abduction, first proposed in the setting of classical logics, has been studied with growing interest in the logic programming area during the last years. In this paper we study abduction with penalization in the logic programming framework. This form of abductive reasoning, which has not been previously analyzed in logic programming, turns out to represent several relevant problems, including optimization problems, very naturally. We define a formal model for abduction with penalization over logic programs, which extends the abductive framework proposed by Kakas and Mancarella. We address knowledge representation issues, encoding a number of problems in our abductive framework. In particular, we consider some relevant problems, taken from different domains, ranging from optimization theory to diagnosis and planning; their encodings turn out to be simple and elegant in our formalism. We thoroughly analyze the computational complexity of the main problems arising in the context of abduction with penalization from logic programs. Finally, we implement a system supporting the proposed abductive framework on top of the DLV engine. To this end, we design a translation from abduction problems with penalties into logic programs with weak constraints. We prove that this approach is sound and complete.
Local-search techniques for propositional logic extended with cardinality constraints
We study local-search satisfiability solvers for propositional logic extended with cardinality atoms, that is, expressions that provide explicit ways to model constraints on cardinalities of sets. Adding cardinality atoms to the language of propositional logic facilitates modeling search problems and often results in concise encodings. We propose two ``native'' local-search solvers for theories in the extended language. We also describe techniques to reduce the problem to standard propositional satisfiability and allow us to use off-the-shelf SAT solvers. We study these methods experimentally. Our general finding is that native solvers designed specifically for the extended language perform better than indirect methods relying on SAT solvers.
WSAT(cc) - a fast local-search ASP solver
We describe WSAT(cc), a local-search solver for computing models of theories in the language of propositional logic extended by cardinality atoms. WSAT(cc) is a processing back-end for the logic PS+, a recently proposed formalism for answer-set programming.
Utility-Probability Duality
This paper presents duality between probability distributions and utility functions.
Parametric Connectives in Disjunctive Logic Programming
Disjunctive Logic Programming (\DLP) is an advanced formalism for Knowledge Representation and Reasoning (KRR). \DLP is very expressive in a precise mathematical sense: it allows to express every property of finite structures that is decidable in the complexity class $\SigmaP{2}$ ($\NP^{\NP}$). Importantly, the \DLP encodings are often simple and natural. In this paper, we single out some limitations of \DLP for KRR, which cannot naturally express problems where the size of the disjunction is not known ``a priori'' (like N-Coloring), but it is part of the input. To overcome these limitations, we further enhance the knowledge modelling abilities of \DLP, by extending this language by {\em Parametric Connectives (OR and AND)}. These connectives allow us to represent compactly the disjunction/conjunction of a set of atoms having a given property. We formally define the semantics of the new language, named $DLP^{\bigvee,\bigwedge}$ and we show the usefulness of the new constructs on relevant knowledge-based problems. We address implementation issues and discuss related works.
Logic-Based Specification Languages for Intelligent Software Agents
The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.
Great Expectations. Part I: On the Customizability of Generalized Expected Utility
We propose a generalization of expected utility that we call generalized EU (GEU), where a decision maker's beliefs are represented by plausibility measures, and the decision maker's tastes are represented by general (i.e.,not necessarily real-valued) utility functions. We show that every agent, ``rational'' or not, can be modeled as a GEU maximizer. We then show that we can customize GEU by selectively imposing just the constraints we want. In particular, we show how each of Savage's postulates corresponds to constraints on GEU.
Great Expectations. Part II: Generalized Expected Utility as a Universal Decision Rule
Many different rules for decision making have been introduced in the literature. We show that a notion of generalized expected utility proposed in Part I of this paper is a universal decision rule, in the sense that it can represent essentially all other decision rules.
Unsupervised Grammar Induction in a Framework of Information Compression by Multiple Alignment, Unification and Search
This paper describes a novel approach to grammar induction that has been developed within a framework designed to integrate learning with other aspects of computing, AI, mathematics and logic. This framework, called "information compression by multiple alignment, unification and search" (ICMAUS), is founded on principles of Minimum Length Encoding pioneered by Solomonoff and others. Most of the paper describes SP70, a computer model of the ICMAUS framework that incorporates processes for unsupervised learning of grammars. An example is presented to show how the model can infer a plausible grammar from appropriate input. Limitations of the current model and how they may be overcome are briefly discussed.
Integrating existing cone-shaped and projection-based cardinal direction relations and a TCSP-like decidable generalisation
We consider the integration of existing cone-shaped and projection-based calculi of cardinal direction relations, well-known in QSR. The more general, integrating language we consider is based on convex constraints of the qualitative form $r(x,y)$, $r$ being a cone-shaped or projection-based cardinal direction atomic relation, or of the quantitative form $(\alpha ,\beta)(x,y)$, with $\alpha ,\beta\in [0,2\pi)$ and $(\beta -\alpha)\in [0,\pi ]$: the meaning of the quantitative constraint, in particular, is that point $x$ belongs to the (convex) cone-shaped area rooted at $y$, and bounded by angles $\alpha$ and $\beta$. The general form of a constraint is a disjunction of the form $[r_1\vee...\vee r_{n_1}\vee (\alpha_1,\beta_1)\vee...\vee (\alpha _{n_2},\beta_{n_2})](x,y)$, with $r_i(x,y)$, $i=1... n_1$, and $(\alpha _i,\beta_i)(x,y)$, $i=1... n_2$, being convex constraints as described above: the meaning of such a general constraint is that, for some $i=1... n_1$, $r_i(x,y)$ holds, or, for some $i=1... n_2$, $(\alpha_i,\beta_i)(x,y)$ holds. A conjunction of such general constraints is a $\tcsp$-like CSP, which we will refer to as an $\scsp$ (Spatial Constraint Satisfaction Problem). An effective solution search algorithm for an $\scsp$ will be described, which uses (1) constraint propagation, based on a composition operation to be defined, as the filtering method during the search, and (2) the Simplex algorithm, guaranteeing completeness, at the leaves of the search tree. The approach is particularly suited for large-scale high-level vision, such as, e.g., satellite-like surveillance of a geographic area.
Modeling Object Oriented Constraint Programs in Z
Object oriented constraint programs (OOCPs) emerge as a leading evolution of constraint programming and artificial intelligence, first applied to a range of industrial applications called configuration problems. The rich variety of technical approaches to solving configuration problems (CLP(FD), CC(FD), DCSP, Terminological systems, constraint programs with set variables ...) is a source of difficulty. No universally accepted formal language exists for communicating about OOCPs, which makes the comparison of systems difficult. We present here a Z based specification of OOCPs which avoids the falltrap of hidden object semantics. The object system is part of the specification, and captures all of the most advanced notions from the object oriented modeling standard UML. The paper illustrates these issues and the conciseness and precision of Z by the specification of a working OOCP that solves an historical AI problem : parsing a context free grammar. Being written in Z, an OOCP specification also supports formal proofs. The whole builds the foundation of an adaptative and evolving framework for communicating about constrained object models and programs.
Diagnostic reasoning with A-Prolog
In this paper we suggest an architecture for a software agent which operates a physical device and is capable of making observations and of testing and repairing the device's components. We present simplified definitions of the notions of symptom, candidate diagnosis, and diagnosis which are based on the theory of action language ${\cal AL}$. The definitions allow one to give a simple account of the agent's behavior in which many of the agent's tasks are reduced to computing stable models of logic programs.
Weight Constraints as Nested Expressions
We compare two recent extensions of the answer set (stable model) semantics of logic programs. One of them, due to Lifschitz, Tang and Turner, allows the bodies and heads of rules to contain nested expressions. The other, due to Niemela and Simons, uses weight constraints. We show that there is a simple, modular translation from the language of weight constraints into the language of nested expressions that preserves the program's answer sets. Nested expressions can be eliminated from the result of this translation in favor of additional atoms. The translation makes it possible to compute answer sets for some programs with weight constraints using satisfiability solvers, and to prove the strong equivalence of programs with weight constraints using the logic of here-and there.
On the Expressibility of Stable Logic Programming
(We apologize for pidgin LaTeX) Schlipf \cite{sch91} proved that Stable Logic Programming (SLP) solves all $\mathit{NP}$ decision problems. We extend Schlipf's result to prove that SLP solves all search problems in the class $\mathit{NP}$. Moreover, we do this in a uniform way as defined in \cite{mt99}. Specifically, we show that there is a single $\mathrm{DATALOG}^{\neg}$ program $P_{\mathit{Trg}}$ such that given any Turing machine $M$, any polynomial $p$ with non-negative integer coefficients and any input $\sigma$ of size $n$ over a fixed alphabet $\Sigma$, there is an extensional database $\mathit{edb}_{M,p,\sigma}$ such that there is a one-to-one correspondence between the stable models of $\mathit{edb}_{M,p,\sigma} \cup P_{\mathit{Trg}}$ and the accepting computations of the machine $M$ that reach the final state in at most $p(n)$ steps. Moreover, $\mathit{edb}_{M,p,\sigma}$ can be computed in polynomial time from $p$, $\sigma$ and the description of $M$ and the decoding of such accepting computations from its corresponding stable model of $\mathit{edb}_{M,p,\sigma} \cup P_{\mathit{Trg}}$ can be computed in linear time. A similar statement holds for Default Logic with respect to $\Sigma_2^\mathrm{P}$-search problems\footnote{The proof of this result involves additional technical complications and will be a subject of another publication.}.
Unifying Computing and Cognition: The SP Theory and its Applications
This book develops the conjecture that all kinds of information processing in computers and in brains may usefully be understood as "information compression by multiple alignment, unification and search". This "SP theory", which has been under development since 1987, provides a unified view of such things as the workings of a universal Turing machine, the nature of 'knowledge', the interpretation and production of natural language, pattern recognition and best-match information retrieval, several kinds of probabilistic reasoning, planning and problem solving, unsupervised learning, and a range of concepts in mathematics and logic. The theory also provides a basis for the design of an 'SP' computer with several potential advantages compared with traditional digital computers.
Recycling Computed Answers in Rewrite Systems for Abduction
In rule-based systems, goal-oriented computations correspond naturally to the possible ways that an observation may be explained. In some applications, we need to compute explanations for a series of observations with the same domain. The question whether previously computed answers can be recycled arises. A yes answer could result in substantial savings of repeated computations. For systems based on classic logic, the answer is YES. For nonmonotonic systems however, one tends to believe that the answer should be NO, since recycling is a form of adding information. In this paper, we show that computed answers can always be recycled, in a nontrivial way, for the class of rewrite procedures that we proposed earlier for logic programs with negation. We present some experimental results on an encoding of the logistics domain.
Memory As A Monadic Control Construct In Problem-Solving
Recent advances in programming languages study and design have established a standard way of grounding computational systems representation in category theory. These formal results led to a better understanding of issues of control and side-effects in functional and imperative languages. This framework can be successfully applied to the investigation of the performance of Artificial Intelligence (AI) inference and cognitive systems. In this paper, we delineate a categorical formalisation of memory as a control structure driving performance in inference systems. Abstracting away control mechanisms from three widely used representations of memory in cognitive systems (scripts, production rules and clusters) we explain how categorical triples capture the interaction between learning and problem-solving.
Integrating Defeasible Argumentation and Machine Learning Techniques
The field of machine learning (ML) is concerned with the question of how to construct algorithms that automatically improve with experience. In recent years many successful ML applications have been developed, such as datamining programs, information-filtering systems, etc. Although ML algorithms allow the detection and extraction of interesting patterns of data for several kinds of problems, most of these algorithms are based on quantitative reasoning, as they rely on training data in order to infer so-called target functions. In the last years defeasible argumentation has proven to be a sound setting to formalize common-sense qualitative reasoning. This approach can be combined with other inference techniques, such as those provided by machine learning theory. In this paper we outline different alternatives for combining defeasible argumentation and machine learning techniques. We suggest how different aspects of a generic argument-based framework can be integrated with other ML-based approaches.
Epistemic Foundation of Stable Model Semantics
Stable model semantics has become a very popular approach for the management of negation in logic programming. This approach relies mainly on the closed world assumption to complete the available knowledge and its formulation has its basis in the so-called Gelfond-Lifschitz transformation. The primary goal of this work is to present an alternative and epistemic-based characterization of stable model semantics, to the Gelfond-Lifschitz transformation. In particular, we show that stable model semantics can be defined entirely as an extension of the Kripke-Kleene semantics. Indeed, we show that the closed world assumption can be seen as an additional source of `falsehood' to be added cumulatively to the Kripke-Kleene semantics. Our approach is purely algebraic and can abstract from the particular formalism of choice as it is based on monotone operators (under the knowledge order) over bilattices only.
The role of behavior modifiers in representation development
We address the problem of the development of representations and their relationship to the environment. We study a software agent which develops in a network a representation of its simple environment which captures and integrates the relationships between agent and environment through a closure mechanism. The inclusion of a variable behavior modifier allows better representation development. This can be confirmed with an internal description of the closure mechanism, and with an external description of the properties of the representation network.
Parametric external predicates for the DLV System
This document describes syntax, semantics and implementation guidelines in order to enrich the DLV system with the possibility to make external C function calls. This feature is realized by the introduction of parametric external predicates, whose extension is not specified through a logic program but implicitly computed through external code.
Toward the Implementation of Functions in the DLV System (Preliminary Technical Report)
This document describes the functions as they are treated in the DLV system. We give first the language, then specify the main implementation issues.
Knowledge And The Action Description Language A
We introduce Ak, an extension of the action description language A (Gelfond and Lifschitz, 1993) to handle actions which affect knowledge. We use sensing actions to increase an agent's knowledge of the world and non-deterministic actions to remove knowledge. We include complex plans involving conditionals and loops in our query language for hypothetical reasoning. We also present a translation of Ak domain descriptions into epistemic logic programs.
A Comparative Study of Fuzzy Classification Methods on Breast Cancer Data
In this paper, we examine the performance of four fuzzy rule generation methods on Wisconsin breast cancer data. The first method generates fuzzy if then rules using the mean and the standard deviation of attribute values. The second approach generates fuzzy if then rules using the histogram of attributes values. The third procedure generates fuzzy if then rules with certainty of each attribute into homogeneous fuzzy sets. In the fourth approach, only overlapping areas are partitioned. The first two approaches generate a single fuzzy if then rule for each class by specifying the membership function of each antecedent fuzzy set using the information about attribute values of training patterns. The other two approaches are based on fuzzy grids with homogeneous fuzzy partitions of each attribute. The performance of each approach is evaluated on breast cancer data sets. Simulation results show that the Modified grid approach has a high classification rate of 99.73 %.
Intelligent Systems: Architectures and Perspectives
The integration of different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the hybridization or fusion of these techniques has, in recent years, contributed to a large number of new intelligent system designs. Computational intelligence is an innovative framework for constructing intelligent hybrid architectures involving Neural Networks (NN), Fuzzy Inference Systems (FIS), Probabilistic Reasoning (PR) and derivative free optimization techniques such as Evolutionary Computation (EC). Most of these hybridization approaches, however, follow an ad hoc design methodology, justified by success in certain application domains. Due to the lack of a common framework it often remains difficult to compare the various hybrid systems conceptually and to evaluate their performance comparatively. This chapter introduces the different generic architectures for integrating intelligent systems. The designing aspects and perspectives of different hybrid archirectures like NN-FIS, EC-FIS, EC-NN, FIS-PR and NN-FIS-EC systems are presented. Some conclusions are also provided towards the end.
A Neuro-Fuzzy Approach for Modelling Electricity Demand in Victoria
Neuro-fuzzy systems have attracted growing interest of researchers in various scientific and engineering areas due to the increasing need of intelligent systems. This paper evaluates the use of two popular soft computing techniques and conventional statistical approach based on Box--Jenkins autoregressive integrated moving average (ARIMA) model to predict electricity demand in the State of Victoria, Australia. The soft computing methods considered are an evolving fuzzy neural network (EFuNN) and an artificial neural network (ANN) trained using scaled conjugate gradient algorithm (CGA) and backpropagation (BP) algorithm. The forecast accuracy is compared with the forecasts used by Victorian Power Exchange (VPX) and the actual energy demand. To evaluate, we considered load demand patterns for 10 consecutive months taken every 30 min for training the different prediction models. Test results show that the neuro-fuzzy system performed better than neural networks, ARIMA model and the VPX forecasts.
Neuro Fuzzy Systems: Sate-of-the-Art Modeling Techniques
Fusion of Artificial Neural Networks (ANN) and Fuzzy Inference Systems (FIS) have attracted the growing interest of researchers in various scientific and engineering areas due to the growing need of adaptive intelligent systems to solve the real world problems. ANN learns from scratch by adjusting the interconnections between layers. FIS is a popular computing framework based on the concept of fuzzy set theory, fuzzy if-then rules, and fuzzy reasoning. The advantages of a combination of ANN and FIS are obvious. There are several approaches to integrate ANN and FIS and very often it depends on the application. We broadly classify the integration of ANN and FIS into three categories namely concurrent model, cooperative model and fully fused model. This paper starts with a discussion of the features of each model and generalize the advantages and deficiencies of each model. We further focus the review on the different types of fused neuro-fuzzy systems and citing the advantages and disadvantages of each model.
Is Neural Network a Reliable Forecaster on Earth? A MARS Query!
Long-term rainfall prediction is a challenging task especially in the modern world where we are facing the major environmental problem of global warming. In general, climate and rainfall are highly non-linear phenomena in nature exhibiting what is known as the butterfly effect. While some regions of the world are noticing a systematic decrease in annual rainfall, others notice increases in flooding and severe storms. The global nature of this phenomenon is very complicated and requires sophisticated computer modeling and simulation to predict accurately. In this paper, we report a performance analysis for Multivariate Adaptive Regression Splines (MARS)and artificial neural networks for one month ahead prediction of rainfall. To evaluate the prediction efficiency, we made use of 87 years of rainfall data in Kerala state, the southern part of the Indian peninsula situated at latitude -longitude pairs (8o29'N - 76o57' E). We used an artificial neural network trained using the scaled conjugate gradient algorithm. The neural network and MARS were trained with 40 years of rainfall data. For performance evaluation, network predicted outputs were compared with the actual rainfall data. Simulation results reveal that MARS is a good forecasting tool and performed better than the considered neural network.
DCT Based Texture Classification Using Soft Computing Approach
Classification of texture pattern is one of the most important problems in pattern recognition. In this paper, we present a classification method based on the Discrete Cosine Transform (DCT) coefficients of texture image. As DCT works on gray level image, the color scheme of each image is transformed into gray levels. For classifying the images using DCT we used two popular soft computing techniques namely neurocomputing and neuro-fuzzy computing. We used a feedforward neural network trained using the backpropagation learning and an evolving fuzzy neural network to classify the textures. The soft computing models were trained using 80% of the texture data and remaining was used for testing and validation purposes. A performance comparison was made among the soft computing models for the texture classification problem. We also analyzed the effects of prolonged training of neural networks. It is observed that the proposed neuro-fuzzy model performed better than neural network.
Estimating Genome Reversal Distance by Genetic Algorithm
Sorting by reversals is an important problem in inferring the evolutionary relationship between two genomes. The problem of sorting unsigned permutation has been proven to be NP-hard. The best guaranteed error bounded is the 3/2- approximation algorithm. However, the problem of sorting signed permutation can be solved easily. Fast algorithms have been developed both for finding the sorting sequence and finding the reversal distance of signed permutation. In this paper, we present a way to view the problem of sorting unsigned permutation as signed permutation. And the problem can then be seen as searching an optimal signed permutation in all n2 corresponding signed permutations. We use genetic algorithm to conduct the search. Our experimental result shows that the proposed method outperform the 3/2-approximation algorithm.
Intrusion Detection Systems Using Adaptive Regression Splines
Past few years have witnessed a growing recognition of intelligent techniques for the construction of efficient and reliable intrusion detection systems. Due to increasing incidents of cyber attacks, building effective intrusion detection systems (IDS) are essential for protecting information systems security, and yet it remains an elusive goal and a great challenge. In this paper, we report a performance analysis between Multivariate Adaptive Regression Splines (MARS), neural networks and support vector machines. The MARS procedure builds flexible regression models by fitting separate splines to distinct intervals of the predictor variables. A brief comparison of different neural network learning algorithms is also given.
Data Mining Approach for Analyzing Call Center Performance
The aim of our research was to apply well-known data mining techniques (such as linear neural networks, multi-layered perceptrons, probabilistic neural networks, classification and regression trees, support vector machines and finally a hybrid decision tree neural network approach) to the problem of predicting the quality of service in call centers; based on the performance data actually collected in a call center of a large insurance company. Our aim was two-fold. First, to compare the performance of models built using the above-mentioned techniques and, second, to analyze the characteristics of the input sensitivity in order to better understand the relationship between the perform-ance evaluation process and the actual performance and in this way help improve the performance of call centers. In this paper we summarize our findings.
Modeling Chaotic Behavior of Stock Indices Using Intelligent Paradigms
The use of intelligent systems for stock market predictions has been widely established. In this paper, we investigate how the seemingly chaotic behavior of stock markets could be well represented using several connectionist paradigms and soft computing techniques. To demonstrate the different techniques, we considered Nasdaq-100 index of Nasdaq Stock MarketS and the S&P CNX NIFTY stock index. We analyzed 7 year's Nasdaq 100 main index values and 4 year's NIFTY index values. This paper investigates the development of a reliable and efficient technique to model the seemingly chaotic behavior of stock markets. We considered an artificial neural network trained using Levenberg-Marquardt algorithm, Support Vector Machine (SVM), Takagi-Sugeno neuro-fuzzy model and a Difference Boosting Neural Network (DBNN). This paper briefly explains how the different connectionist paradigms could be formulated using different learning methods and then investigates whether they can provide the required level of performance, which are sufficiently good and robust so as to provide a reliable forecast model for stock market indices. Experiment results reveal that all the connectionist paradigms considered could represent the stock indices behavior very accurately.
Hybrid Fuzzy-Linear Programming Approach for Multi Criteria Decision Making Problems
The purpose of this paper is to point to the usefulness of applying a linear mathematical formulation of fuzzy multiple criteria objective decision methods in organising business activities. In this respect fuzzy parameters of linear programming are modelled by preference-based membership functions. This paper begins with an introduction and some related research followed by some fundamentals of fuzzy set theory and technical concepts of fuzzy multiple objective decision models. Further a real case study of a manufacturing plant and the implementation of the proposed technique is presented. Empirical results clearly show the superiority of the fuzzy technique in optimising individual objective functions when compared to non-fuzzy approach. Furthermore, for the problem considered, the optimal solution helps to infer that by incorporating fuzziness in a linear programming model either in constraints, or both in objective functions and constraints, provides a similar (or even better) level of satisfaction for obtained results compared to non-fuzzy linear programming.
Meta-Learning Evolutionary Artificial Neural Networks
In this paper, we present MLEANN (Meta-Learning Evolutionary Artificial Neural Network), an automatic computational framework for the adaptive optimization of artificial neural networks wherein the neural network architecture, activation function, connection weights; learning algorithm and its parameters are adapted according to the problem. We explored the performance of MLEANN and conventionally designed artificial neural networks for function approximation problems. To evaluate the comparative performance, we used three different well-known chaotic time series. We also present the state of the art popular neural network learning algorithms and some experimentation results related to convergence speed and generalization performance. We explored the performance of backpropagation algorithm; conjugate gradient algorithm, quasi-Newton algorithm and Levenberg-Marquardt algorithm for the three chaotic time series. Performances of the different learning algorithms were evaluated when the activation functions and architecture were changed. We further present the theoretical background, algorithm, design strategy and further demonstrate how effective and inevitable is the proposed MLEANN framework to design a neural network, which is smaller, faster and with a better generalization performance.
The Largest Compatible Subset Problem for Phylogenetic Data
The phylogenetic tree construction is to infer the evolutionary relationship between species from the experimental data. However, the experimental data are often imperfect and conflicting each others. Therefore, it is important to extract the motif from the imperfect data. The largest compatible subset problem is that, given a set of experimental data, we want to discard the minimum such that the remaining is compatible. The largest compatible subset problem can be viewed as the vertex cover problem in the graph theory that has been proven to be NP-hard. In this paper, we propose a hybrid Evolutionary Computing (EC) method for this problem. The proposed method combines the EC approach and the algorithmic approach for special structured graphs. As a result, the complexity of the problem is dramatically reduced. Experiments were performed on randomly generated graphs with different edge densities. The vertex covers produced by the proposed method were then compared to the vertex covers produced by a 2-approximation algorithm. The experimental results showed that the proposed method consistently outperformed a classical 2- approximation algorithm. Furthermore, a significant improvement was found when the graph density was small.
A Concurrent Fuzzy-Neural Network Approach for Decision Support Systems
Decision-making is a process of choosing among alternative courses of action for solving complicated problems where multi-criteria objectives are involved. The past few years have witnessed a growing recognition of Soft Computing technologies that underlie the conception, design and utilization of intelligent systems. Several works have been done where engineers and scientists have applied intelligent techniques and heuristics to obtain optimal decisions from imprecise information. In this paper, we present a concurrent fuzzy-neural network approach combining unsupervised and supervised learning techniques to develop the Tactical Air Combat Decision Support System (TACDSS). Experiment results clearly demonstrate the efficiency of the proposed technique.
Analysis of Hybrid Soft and Hard Computing Techniques for Forex Monitoring Systems
In a universe with a single currency, there would be no foreign exchange market, no foreign exchange rates, and no foreign exchange. Over the past twenty-five years, the way the market has performed those tasks has changed enormously. The need for intelligent monitoring systems has become a necessity to keep track of the complex forex market. The vast currency market is a foreign concept to the average individual. However, once it is broken down into simple terms, the average individual can begin to understand the foreign exchange market and use it as a financial instrument for future investing. In this paper, we attempt to compare the performance of hybrid soft computing and hard computing techniques to predict the average monthly forex rates one month ahead. The soft computing models considered are a neural network trained by the scaled conjugate gradient algorithm and a neuro-fuzzy model implementing a Takagi-Sugeno fuzzy inference system. We also considered Multivariate Adaptive Regression Splines (MARS), Classification and Regression Trees (CART) and a hybrid CART-MARS technique. We considered the exchange rates of Australian dollar with respect to US dollar, Singapore dollar, New Zealand dollar, Japanese yen and United Kingdom pounds. The models were trained using 70% of the data and remaining was used for testing and validation purposes. It is observed that the proposed hybrid models could predict the forex rates more accurately than all the techniques when applied individually. Empirical results also reveal that the hybrid hard computing approach also improved some of our previous work using a neuro-fuzzy approach.
Business Intelligence from Web Usage Mining
The rapid e-commerce growth has made both business community and customers face a new situation. Due to intense competition on one hand and the customer's option to choose from several alternatives business community has realized the necessity of intelligent marketing strategies and relationship management. Web usage mining attempts to discover useful knowledge from the secondary data obtained from the interactions of the users with the Web. Web usage mining has become very critical for effective Web site management, creating adaptive Web sites, business and support services, personalization, network traffic flow analysis and so on. In this paper, we present the important concepts of Web usage mining and its various practical applications. We further present a novel approach 'intelligent-miner' (i-Miner) to optimize the concurrent architecture of a fuzzy clustering algorithm (to discover web data clusters) and a fuzzy inference system to analyze the Web site visitor trends. A hybrid evolutionary fuzzy clustering algorithm is proposed in this paper to optimally segregate similar user interests. The clustered data is then used to analyze the trends using a Takagi-Sugeno fuzzy inference system learned using a combination of evolutionary algorithm and neural network learning. Proposed approach is compared with self-organizing maps (to discover patterns) and several function approximation techniques like neural networks, linear genetic programming and Takagi-Sugeno fuzzy inference system (to analyze the clusters). The results are graphically illustrated and the practical significance is discussed in detail. Empirical results clearly show that the proposed Web usage-mining framework is efficient.
Adaptation of Mamdani Fuzzy Inference System Using Neuro - Genetic Approach for Tactical Air Combat Decision Support System
Normally a decision support system is build to solve problem where multi-criteria decisions are involved. The knowledge base is the vital part of the decision support containing the information or data that is used in decision-making process. This is the field where engineers and scientists have applied several intelligent techniques and heuristics to obtain optimal decisions from imprecise information. In this paper, we present a hybrid neuro-genetic learning approach for the adaptation a Mamdani fuzzy inference system for the Tactical Air Combat Decision Support System (TACDSS). Some simulation results demonstrating the difference of the learning techniques and are also provided.
EvoNF: A Framework for Optimization of Fuzzy Inference Systems Using Neural Network Learning and Evolutionary Computation
Several adaptation techniques have been investigated to optimize fuzzy inference systems. Neural network learning algorithms have been used to determine the parameters of fuzzy inference system. Such models are often called as integrated neuro-fuzzy models. In an integrated neuro-fuzzy model there is no guarantee that the neural network learning algorithm converges and the tuning of fuzzy inference system will be successful. Success of evolutionary search procedures for optimization of fuzzy inference system is well proven and established in many application areas. In this paper, we will explore how the optimization of fuzzy inference systems could be further improved using a meta-heuristic approach combining neural network learning and evolutionary computation. The proposed technique could be considered as a methodology to integrate neural networks, fuzzy inference systems and evolutionary search procedures. We present the theoretical frameworks and some experimental results to demonstrate the efficiency of the proposed technique.
Optimization of Evolutionary Neural Networks Using Hybrid Learning Algorithms
Evolutionary artificial neural networks (EANNs) refer to a special class of artificial neural networks (ANNs) in which evolution is another fundamental form of adaptation in addition to learning. Evolutionary algorithms are used to adapt the connection weights, network architecture and learning algorithms according to the problem environment. Even though evolutionary algorithms are well known as efficient global search algorithms, very often they miss the best local solutions in the complex solution space. In this paper, we propose a hybrid meta-heuristic learning approach combining evolutionary learning and local search methods (using 1st and 2nd order error information) to improve the learning and faster convergence obtained using a direct evolutionary approach. The proposed technique is tested on three different chaotic time series and the test results are compared with some popular neuro-fuzzy systems and a recently developed cutting angle method of global optimization. Empirical results reveal that the proposed technique is efficient in spite of the computational complexity.
Export Behaviour Modeling Using EvoNF Approach
The academic literature suggests that the extent of exporting by multinational corporation subsidiaries (MCS) depends on their product manufactured, resources, tax protection, customers and markets, involvement strategy, financial independence and suppliers' relationship with a multinational corporation (MNC). The aim of this paper is to model the complex export pattern behaviour using a Takagi-Sugeno fuzzy inference system in order to determine the actual volume of MCS export output (sales exported). The proposed fuzzy inference system is optimised by using neural network learning and evolutionary computation. Empirical results clearly show that the proposed approach could model the export behaviour reasonable well compared to a direct neural network approach.
Traffic Accident Analysis Using Decision Trees and Neural Networks
The costs of fatalities and injuries due to traffic accident have a great impact on society. This paper presents our research to model the severity of injury resulting from traffic accidents using artificial neural networks and decision trees. We have applied them to an actual data set obtained from the National Automotive Sampling System (NASS) General Estimates System (GES). Experiment results reveal that in all the cases the decision tree outperforms the neural network. Our research analysis also shows that the three most important factors in fatal injury are: driver's seat belt usage, light condition of the roadway, and driver's alcohol usage.
Short Term Load Forecasting Models in Czech Republic Using Soft Computing Paradigms
This paper presents a comparative study of six soft computing models namely multilayer perceptron networks, Elman recurrent neural network, radial basis function network, Hopfield model, fuzzy inference system and hybrid fuzzy neural network for the hourly electricity demand forecast of Czech Republic. The soft computing models were trained and tested using the actual hourly load data for seven years. A comparison of the proposed techniques is presented for predicting 2 day ahead demands for electricity. Simulation results indicate that hybrid fuzzy neural network and radial basis function networks are the best candidates for the analysis and forecasting of electricity demand.
Decision Support Systems Using Intelligent Paradigms
Decision-making is a process of choosing among alternative courses of action for solving complicated problems where multi-criteria objectives are involved. The past few years have witnessed a growing recognition of Soft Computing (SC) technologies that underlie the conception, design and utilization of intelligent systems. In this paper, we present different SC paradigms involving an artificial neural network trained using the scaled conjugate gradient algorithm, two different fuzzy inference methods optimised using neural network learning/evolutionary algorithms and regression trees for developing intelligent decision support systems. We demonstrate the efficiency of the different algorithms by developing a decision support system for a Tactical Air Combat Environment (TACE). Some empirical comparisons between the different algorithms are also provided.
Regression with respect to sensing actions and partial states
In this paper, we present a state-based regression function for planning domains where an agent does not have complete information and may have sensing actions. We consider binary domains and employ the 0-approximation [Son & Baral 2001] to define the regression function. In binary domains, the use of 0-approximation means using 3-valued states. Although planning using this approach is incomplete with respect to the full semantics, we adopt it to have a lower complexity. We prove the soundness and completeness of our regression formulation with respect to the definition of progression. More specifically, we show that (i) a plan obtained through regression for a planning problem is indeed a progression solution of that planning problem, and that (ii) for each plan found through progression, using regression one obtains that plan or an equivalent one. We then develop a conditional planner that utilizes our regression function. We prove the soundness and completeness of our planning algorithm and present experimental results with respect to several well known planning problems in the literature.
Propositional Defeasible Logic has Linear Complexity
Defeasible logic is a rule-based nonmonotonic logic, with both strict and defeasible rules, and a priority relation on rules. We show that inference in the propositional form of the logic can be performed in linear time. This contrasts markedly with most other propositional nonmonotonic logics, in which inference is intractable.
Pruning Search Space in Defeasible Argumentation
Defeasible argumentation has experienced a considerable growth in AI in the last decade. Theoretical results have been combined with development of practical applications in AI & Law, Case-Based Reasoning and various knowledge-based systems. However, the dialectical process associated with inference is computationally expensive. This paper focuses on speeding up this inference process by pruning the involved search space. Our approach is twofold. On one hand, we identify distinguished literals for computing defeat. On the other hand, we restrict ourselves to a subset of all possible conflicting arguments by introducing dialectical constraints.
A proposal to design expert system for the calculations in the domain of QFT
Main purposes of the paper are followings: 1) To show examples of the calculations in domain of QFT via ``derivative rules'' of an expert system; 2) To consider advantages and disadvantage that technology of the calculations; 3) To reflect about how one would develop new physical theories, what knowledge would be useful in their investigations and how this problem can be connected with designing an expert system.
A New Approach to Draw Detection by Move Repetition in Computer Chess Programming
We will try to tackle both the theoretical and practical aspects of a very important problem in chess programming as stated in the title of this article - the issue of draw detection by move repetition. The standard approach that has so far been employed in most chess programs is based on utilising positional matrices in original and compressed format as well as on the implementation of the so-called bitboard format. The new approach that we will be trying to introduce is based on using variant strings generated by the search algorithm (searcher) during the tree expansion in decision making. We hope to prove that this approach is more efficient than the standard treatment of the issue, especially in positions with few pieces (endgames). To illustrate what we have in mind a machine language routine that implements our theoretical assumptions is attached. The routine is part of the Axon chess program, developed by the authors. Axon, in its current incarnation, plays chess at master strength (ca. 2400-2450 Elo, based on both Axon vs computer programs and Axon vs human masters in over 3000 games altogether).
Autogenic Training With Natural Language Processing Modules: A Recent Tool For Certain Neuro Cognitive Studies
Learning to respond to voice-text input involves the subject's ability in understanding the phonetic and text based contents and his/her ability to communicate based on his/her experience. The neuro-cognitive facility of the subject has to support two important domains in order to make the learning process complete. In many cases, though the understanding is complete, the response is partial. This is one valid reason why we need to support the information from the subject with scalable techniques such as Natural Language Processing (NLP) for abstraction of the contents from the output. This paper explores the feasibility of using NLP modules interlaced with Neural Networks to perform the required task in autogenic training related to medical applications.
Generalized Evolutionary Algorithm based on Tsallis Statistics
Generalized evolutionary algorithm based on Tsallis canonical distribution is proposed. The algorithm uses Tsallis generalized canonical distribution to weigh the configurations for `selection' instead of Gibbs-Boltzmann distribution. Our simulation results show that for an appropriate choice of non-extensive index that is offered by Tsallis statistics, evolutionary algorithms based on this generalization outperform algorithms based on Gibbs-Boltzmann distribution.
Decomposition Based Search - A theoretical and experimental evaluation
In this paper we present and evaluate a search strategy called Decomposition Based Search (DBS) which is based on two steps: subproblem generation and subproblem solution. The generation of subproblems is done through value ranking and domain splitting. Subdomains are explored so as to generate, according to the heuristic chosen, promising subproblems first. We show that two well known search strategies, Limited Discrepancy Search (LDS) and Iterative Broadening (IB), can be seen as special cases of DBS. First we present a tuning of DBS that visits the same search nodes as IB, but avoids restarts. Then we compare both theoretically and computationally DBS and LDS using the same heuristic. We prove that DBS has a higher probability of being successful than LDS on a comparable number of nodes, under realistic assumptions. Experiments on a constraint satisfaction problem and an optimization problem show that DBS is indeed very effective if compared to LDS.
Postponing Branching Decisions
Solution techniques for Constraint Satisfaction and Optimisation Problems often make use of backtrack search methods, exploiting variable and value ordering heuristics. In this paper, we propose and analyse a very simple method to apply in case the value ordering heuristic produces ties: postponing the branching decision. To this end, we group together values in a tie, branch on this sub-domain, and defer the decision among them to lower levels of the search tree. We show theoretically and experimentally that this simple modification can dramatically improve the efficiency of the search strategy. Although in practise similar methods may have been applied already, to our knowledge, no empirical or theoretical study has been proposed in the literature to identify when and to what extent this strategy should be used.
Reduced cost-based ranking for generating promising subproblems
In this paper, we propose an effective search procedure that interleaves two steps: subproblem generation and subproblem solution. We mainly focus on the first part. It consists of a variable domain value ranking based on reduced costs. Exploiting the ranking, we generate, in a Limited Discrepancy Search tree, the most promising subproblems first. An interesting result is that reduced costs provide a very precise ranking that allows to almost always find the optimal solution in the first generated subproblem, even if its dimension is significantly smaller than that of the original problem. Concerning the proof of optimality, we exploit a way to increase the lower bound for subproblems at higher discrepancies. We show experimental results on the TSP and its time constrained variant to show the effectiveness of the proposed approach, but the technique could be generalized for other problems.
A Simple Proportional Conflict Redistribution Rule
One proposes a first alternative rule of combination to WAO (Weighted Average Operator) proposed recently by Josang, Daniel and Vannoorenberghe, called Proportional Conflict Redistribution rule (denoted PCR1). PCR1 and WAO are particular cases of WO (the Weighted Operator) because the conflicting mass is redistributed with respect to some weighting factors. In this first PCR rule, the proportionalization is done for each non-empty set with respect to the non-zero sum of its corresponding mass matrix - instead of its mass column average as in WAO, but the results are the same as Ph. Smets has pointed out. Also, we extend WAO (which herein gives no solution) for the degenerate case when all column sums of all non-empty sets are zero, and then the conflicting mass is transferred to the non-empty disjunctive form of all non-empty sets together; but if this disjunctive form happens to be empty, then one considers an open world (i.e. the frame of discernment might contain new hypotheses) and thus all conflicting mass is transferred to the empty set. In addition to WAO, we propose a general formula for PCR1 (WAO for non-degenerate cases).
An Algorithm for Quasi-Associative and Quasi-Markovian Rules of Combination in Information Fusion
In this paper one proposes a simple algorithm of combining the fusion rules, those rules which first use the conjunctive rule and then the transfer of conflicting mass to the non-empty sets, in such a way that they gain the property of associativity and fulfill the Markovian requirement for dynamic fusion. Also, a new rule, SDL-improved, is presented.
FLUX: A Logic Programming Method for Reasoning Agents
FLUX is a programming method for the design of agents that reason logically about their actions and sensor information in the presence of incomplete knowledge. The core of FLUX is a system of Constraint Handling Rules, which enables agents to maintain an internal model of their environment by which they control their own behavior. The general action representation formalism of the fluent calculus provides the formal semantics for the constraint solver. FLUX exhibits excellent computational behavior due to both a carefully restricted expressiveness and the inference paradigm of progression.
Cauchy Annealing Schedule: An Annealing Schedule for Boltzmann Selection Scheme in Evolutionary Algorithms
Boltzmann selection is an important selection mechanism in evolutionary algorithms as it has theoretical properties which help in theoretical analysis. However, Boltzmann selection is not used in practice because a good annealing schedule for the `inverse temperature' parameter is lacking. In this paper we propose a Cauchy annealing schedule for Boltzmann selection scheme based on a hypothesis that selection-strength should increase as evolutionary process goes on and distance between two selection strengths should decrease for the process to converge. To formalize these aspects, we develop formalism for selection mechanisms using fitness distributions and give an appropriate measure for selection-strength. In this paper, we prove an important result, by which we derive an annealing schedule called Cauchy annealing schedule. We demonstrate the novelty of proposed annealing schedule using simulations in the framework of genetic algorithms.
Proportional Conflict Redistribution Rules for Information Fusion
In this paper we propose five versions of a Proportional Conflict Redistribution rule (PCR) for information fusion together with several examples. From PCR1 to PCR2, PCR3, PCR4, PCR5 one increases the complexity of the rules and also the exactitude of the redistribution of conflicting masses. PCR1 restricted from the hyper-power set to the power set and without degenerate cases gives the same result as the Weighted Average Operator (WAO) proposed recently by J{\o}sang, Daniel and Vannoorenberghe but does not satisfy the neutrality property of vacuous belief assignment. That's why improved PCR rules are proposed in this paper. PCR4 is an improvement of minC and Dempster's rules. The PCR rules redistribute the conflicting mass, after the conjunctive rule has been applied, proportionally with some functions depending on the masses assigned to their corresponding columns in the mass matrix. There are infinitely many ways these functions (weighting factors) can be chosen depending on the complexity one wants to deal with in specific applications and fusion systems. Any fusion combination rule is at some degree ad-hoc.
The Generalized Pignistic Transformation
This paper presents in detail the generalized pignistic transformation (GPT) succinctly developed in the Dezert-Smarandache Theory (DSmT) framework as a tool for decision process. The GPT allows to provide a subjective probability measure from any generalized basic belief assignment given by any corpus of evidence. We mainly focus our presentation on the 3D case and provide the complete result obtained by the GPT and its validation drawn from the probability theory.
Unification of Fusion Theories
Since no fusion theory neither rule fully satisfy all needed applications, the author proposes a Unification of Fusion Theories and a combination of fusion rules in solving problems/applications. For each particular application, one selects the most appropriate model, rule(s), and algorithm of implementation. We are working in the unification of the fusion theories and rules, which looks like a cooking recipe, better we'd say like a logical chart for a computer programmer, but we don't see another method to comprise/unify all things. The unification scenario presented herein, which is now in an incipient form, should periodically be updated incorporating new discoveries from the fusion and engineering research.
Normal forms for Answer Sets Programming
Normal forms for logic programs under stable/answer set semantics are introduced. We argue that these forms can simplify the study of program properties, mainly consistency. The first normal form, called the {\em kernel} of the program, is useful for studying existence and number of answer sets. A kernel program is composed of the atoms which are undefined in the Well-founded semantics, which are those that directly affect the existence of answer sets. The body of rules is composed of negative literals only. Thus, the kernel form tends to be significantly more compact than other formulations. Also, it is possible to check consistency of kernel programs in terms of colorings of the Extended Dependency Graph program representation which we previously developed. The second normal form is called {\em 3-kernel.} A 3-kernel program is composed of the atoms which are undefined in the Well-founded semantics. Rules in 3-kernel programs have at most two conditions, and each rule either belongs to a cycle, or defines a connection between cycles. 3-kernel programs may have positive conditions. The 3-kernel normal form is very useful for the static analysis of program consistency, i.e., the syntactic characterization of existence of answer sets. This result can be obtained thanks to a novel graph-like representation of programs, called Cycle Graph which presented in the companion article \cite{Cos04b}.
An In-Depth Look at Information Fusion Rules & the Unification of Fusion Theories
This paper may look like a glossary of the fusion rules and we also introduce new ones presenting their formulas and examples: Conjunctive, Disjunctive, Exclusive Disjunctive, Mixed Conjunctive-Disjunctive rules, Conditional rule, Dempster's, Yager's, Smets' TBM rule, Dubois-Prade's, Dezert-Smarandache classical and hybrid rules, Murphy's average rule, Inagaki-Lefevre-Colot-Vannoorenberghe Unified Combination rules [and, as particular cases: Iganaki's parameterized rule, Weighting Average Operator, minC (M. Daniel), and newly Proportional Conflict Redistribution rules (Smarandache-Dezert) among which PCR5 is the most exact way of redistribution of the conflicting mass to non-empty sets following the path of the conjunctive rule], Zhang's Center Combination rule, Convolutive x-Averaging, Consensus Operator (Josang), Cautious Rule (Smets), ?-junctions rules (Smets), etc. and three new T-norm & T-conorm rules adjusted from fuzzy and neutrosophic sets to information fusion (Tchamova-Smarandache). Introducing the degree of union and degree of inclusion with respect to the cardinal of sets not with the fuzzy set point of view, besides that of intersection, many fusion rules can be improved. There are corner cases where each rule might have difficulties working or may not get an expected result.
Intransitivity and Vagueness
There are many examples in the literature that suggest that indistinguishability is intransitive, despite the fact that the indistinguishability relation is typically taken to be an equivalence relation (and thus transitive). It is shown that if the uncertainty perception and the question of when an agent reports that two things are indistinguishable are both carefully modeled, the problems disappear, and indistinguishability can indeed be taken to be an equivalence relation. Moreover, this model also suggests a logic of vagueness that seems to solve many of the problems related to vagueness discussed in the philosophical literature. In particular, it is shown here how the logic can handle the sorites paradox.
Sleeping Beauty Reconsidered: Conditioning and Reflection in Asynchronous Systems
A careful analysis of conditioning in the Sleeping Beauty problem is done, using the formal model for reasoning about knowledge and probability developed by Halpern and Tuttle. While the Sleeping Beauty problem has been viewed as revealing problems with conditioning in the presence of imperfect recall, the analysis done here reveals that the problems are not so much due to imperfect recall as to asynchrony. The implications of this analysis for van Fraassen's Reflection Principle and Savage's Sure-Thing Principle are considered.
Bounded Input Bounded Predefined Control Bounded Output
The paper is an attempt to generalize a methodology, which is similar to the bounded-input bounded-output method currently widely used for the system stability studies. The presented earlier methodology allows decomposition of input space into bounded subspaces and defining for each subspace its bounding surface. It also defines a corresponding predefined control, which maps any point of a bounded input into a desired bounded output subspace. This methodology was improved by providing a mechanism for the fast defining a bounded surface. This paper presents enhanced bounded-input bounded-predefined-control bounded-output approach, which provides adaptability feature to the control and allows transferring of a controlled system along a suboptimal trajectory.
Generating Conditional Probabilities for Bayesian Networks: Easing the Knowledge Acquisition Problem
The number of probability distributions required to populate a conditional probability table (CPT) in a Bayesian network, grows exponentially with the number of parent-nodes associated with that table. If the table is to be populated through knowledge elicited from a domain expert then the sheer magnitude of the task forms a considerable cognitive barrier. In this paper we devise an algorithm to populate the CPT while easing the extent of knowledge acquisition. The input to the algorithm consists of a set of weights that quantify the relative strengths of the influences of the parent-nodes on the child-node, and a set of probability distributions the number of which grows only linearly with the number of associated parent-nodes. These are elicited from the domain expert. The set of probabilities are obtained by taking into consideration the heuristics that experts use while arriving at probabilistic estimations. The algorithm is used to populate the CPT by computing appropriate weighted sums of the elicited distributions. We invoke the methods of information geometry to demonstrate how these weighted sums capture the expert's judgemental strategy.
Comparing Multi-Target Trackers on Different Force Unit Levels
Consider the problem of tracking a set of moving targets. Apart from the tracking result, it is often important to know where the tracking fails, either to steer sensors to that part of the state-space, or to inform a human operator about the status and quality of the obtained information. An intuitive quality measure is the correlation between two tracking results based on uncorrelated observations. In the case of Bayesian trackers such a correlation measure could be the Kullback-Leibler difference. We focus on a scenario with a large number of military units moving in some terrain. The units are observed by several types of sensors and "meta-sensors" with force aggregation capabilities. The sensors register units of different size. Two separate multi-target probability hypothesis density (PHD) particle filters are used to track some type of units (e.g., companies) and their sub-units (e.g., platoons), respectively, based on observations of units of those sizes. Each observation is used in one filter only. Although the state-space may well be the same in both filters, the posterior PHD distributions are not directly comparable -- one unit might correspond to three or four spatially distributed sub-units. Therefore, we introduce a mapping function between distributions for different unit size, based on doctrine knowledge of unit configuration. The mapped distributions can now be compared -- locally or globally -- using some measure, which gives the correlation between two PHD distributions in a bounded volume of the state-space. To locate areas where the tracking fails, a discretized quality map of the state-space can be generated by applying the measure locally to different parts of the space.
Extremal optimization for sensor report pre-processing
We describe the recently introduced extremal optimization algorithm and apply it to target detection and association problems arising in pre-processing for multi-target tracking. Here we consider the problem of pre-processing for multiple target tracking when the number of sensor reports received is very large and arrives in large bursts. In this case, it is sometimes necessary to pre-process reports before sending them to tracking modules in the fusion system. The pre-processing step associates reports to known tracks (or initializes new tracks for reports on objects that have not been seen before). It could also be used as a pre-process step before clustering, e.g., in order to test how many clusters to use. The pre-processing is done by solving an approximate version of the original problem. In this approximation, not all pair-wise conflicts are calculated. The approximation relies on knowing how many such pair-wise conflicts that are necessary to compute. To determine this, results on phase-transitions occurring when coloring (or clustering) large random instances of a particular graph ensemble are used.
The Combination of Paradoxical, Uncertain, and Imprecise Sources of Information based on DSmT and Neutro-Fuzzy Inference
The management and combination of uncertain, imprecise, fuzzy and even paradoxical or high conflicting sources of information has always been, and still remains today, of primal importance for the development of reliable modern information systems involving artificial reasoning. In this chapter, we present a survey of our recent theory of plausible and paradoxical reasoning, known as Dezert-Smarandache Theory (DSmT) in the literature, developed for dealing with imprecise, uncertain and paradoxical sources of information. We focus our presentation here rather on the foundations of DSmT, and on the two important new rules of combination, than on browsing specific applications of DSmT available in literature. Several simple examples are given throughout the presentation to show the efficiency and the generality of this new approach. The last part of this chapter concerns the presentation of the neutrosophic logic, the neutro-fuzzy inference and its connection with DSmT. Fuzzy logic and neutrosophic logic are useful tools in decision making after fusioning the information using the DSm hybrid rule of combination of masses.
Learning to automatically detect features for mobile robots using second-order Hidden Markov Models
In this paper, we propose a new method based on Hidden Markov Models to interpret temporal sequences of sensor data from mobile robots to automatically detect features. Hidden Markov Models have been used for a long time in pattern recognition, especially in speech recognition. Their main advantages over other methods (such as neural networks) are their ability to model noisy temporal signals of variable length. We show in this paper that this approach is well suited for interpretation of temporal sequences of mobile-robot sensor data. We present two distinct experiments and results: the first one in an indoor environment where a mobile robot learns to detect features like open doors or T-intersections, the second one in an outdoor environment where a different mobile robot has to identify situations like climbing a hill or crossing a rock.
Inferring knowledge from a large semantic network
In this paper, we present a rich semantic network based on a differential analysis. We then detail implemented measures that take into account common and differential features between words. In a last section, we describe some industrial applications.
Towards Automated Integration of Guess and Check Programs in Answer Set Programming: A Meta-Interpreter and Applications
Answer set programming (ASP) with disjunction offers a powerful tool for declaratively representing and solving hard problems. Many NP-complete problems can be encoded in the answer set semantics of logic programs in a very concise and intuitive way, where the encoding reflects the typical "guess and check" nature of NP problems: The property is encoded in a way such that polynomial size certificates for it correspond to stable models of a program. However, the problem-solving capacity of full disjunctive logic programs (DLPs) is beyond NP, and captures a class of problems at the second level of the polynomial hierarchy. While these problems also have a clear "guess and check" structure, finding an encoding in a DLP reflecting this structure may sometimes be a non-obvious task, in particular if the "check" itself is a coNP-complete problem; usually, such problems are solved by interleaving separate guess and check programs, where the check is expressed by inconsistency of the check program. In this paper, we present general transformations of head-cycle free (extended) disjunctive logic programs into stratified and positive (extended) disjunctive logic programs based on meta-interpretation techniques. The answer sets of the original and the transformed program are in simple correspondence, and, moreover, inconsistency of the original program is indicated by a designated answer set of the transformed program. Our transformations facilitate the integration of separate "guess" and "check" programs, which are often easy to obtain, automatically into a single disjunctive logic program. Our results complement recent results on meta-interpretation in ASP, and extend methods and techniques for a declarative "guess and check" problem solving paradigm through ASP.
Clever Search: A WordNet Based Wrapper for Internet Search Engines
This paper presents an approach to enhance search engines with information about word senses available in WordNet. The approach exploits information about the conceptual relations within the lexical-semantic net. In the wrapper for search engines presented, WordNet information is used to specify user's request or to classify the results of a publicly available web search engine, like google, yahoo, etc.
Issues in Exploiting GermaNet as a Resource in Real Applications
This paper reports about experiments with GermaNet as a resource within domain specific document analysis. The main question to be answered is: How is the coverage of GermaNet in a specific domain? We report about results of a field test of GermaNet for analyses of autopsy protocols and present a sketch about the integration of GermaNet inside XDOC. Our remarks will contribute to a GermaNet user's wish list.