Dataset Preview
Duplicate
The full dataset viewer is not available (click to read why). Only showing a preview of the rows.
The dataset generation failed because of a cast error
Error code:   DatasetGenerationCastError
Exception:    DatasetGenerationCastError
Message:      An error occurred while generating the dataset

All the data files must have the same columns, but at some point there are 4 new columns ({'total_lines', 'first_object_keys_sorted', 'source_url', 'sha256_first_100_lines_bytes'}) and 7 missing columns ({'blob_id', 'score', 'path', 'length_bytes', 'repo_name', 'content', 'int_score'}).

This happened while the json dataset builder was generating data using

hf://datasets/dongbobo/annoy-datasync-rawcode-1k-summary/summary.json (at revision 58d1cb1a953ba8810ab464a9b2ef316566ac4aa2), [/tmp/hf-datasets-cache/medium/datasets/73335701257376-config-parquet-and-info-dongbobo-annoy-datasync-r-26575685/hub/datasets--dongbobo--annoy-datasync-rawcode-1k-summary/snapshots/58d1cb1a953ba8810ab464a9b2ef316566ac4aa2/sample_50.jsonl (origin=hf://datasets/dongbobo/annoy-datasync-rawcode-1k-summary@58d1cb1a953ba8810ab464a9b2ef316566ac4aa2/sample_50.jsonl), /tmp/hf-datasets-cache/medium/datasets/73335701257376-config-parquet-and-info-dongbobo-annoy-datasync-r-26575685/hub/datasets--dongbobo--annoy-datasync-rawcode-1k-summary/snapshots/58d1cb1a953ba8810ab464a9b2ef316566ac4aa2/summary.json (origin=hf://datasets/dongbobo/annoy-datasync-rawcode-1k-summary@58d1cb1a953ba8810ab464a9b2ef316566ac4aa2/summary.json)]

Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)
Traceback:    Traceback (most recent call last):
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1887, in _prepare_split_single
                  writer.write_table(table)
                File "/usr/local/lib/python3.12/site-packages/datasets/arrow_writer.py", line 674, in write_table
                  pa_table = table_cast(pa_table, self._schema)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2272, in table_cast
                  return cast_table_to_schema(table, schema)
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/table.py", line 2218, in cast_table_to_schema
                  raise CastError(
              datasets.table.CastError: Couldn't cast
              source_url: string
              total_lines: int64
              first_object_keys_sorted: list<item: string>
                child 0, item: string
              sha256_first_100_lines_bytes: string
              to
              {'blob_id': Value('string'), 'repo_name': Value('string'), 'path': Value('string'), 'length_bytes': Value('int64'), 'score': Value('float64'), 'int_score': Value('int64'), 'content': Value('string')}
              because column names don't match
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 1333, in compute_config_parquet_and_info_response
                  parquet_operations = convert_to_parquet(builder)
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/src/worker/job_runners/config/parquet_and_info.py", line 966, in convert_to_parquet
                  builder.download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 884, in download_and_prepare
                  self._download_and_prepare(
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 947, in _download_and_prepare
                  self._prepare_split(split_generator, **prepare_split_kwargs)
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1736, in _prepare_split
                  for job_id, done, content in self._prepare_split_single(
                                               ^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/usr/local/lib/python3.12/site-packages/datasets/builder.py", line 1889, in _prepare_split_single
                  raise DatasetGenerationCastError.from_cast_error(
              datasets.exceptions.DatasetGenerationCastError: An error occurred while generating the dataset
              
              All the data files must have the same columns, but at some point there are 4 new columns ({'total_lines', 'first_object_keys_sorted', 'source_url', 'sha256_first_100_lines_bytes'}) and 7 missing columns ({'blob_id', 'score', 'path', 'length_bytes', 'repo_name', 'content', 'int_score'}).
              
              This happened while the json dataset builder was generating data using
              
              hf://datasets/dongbobo/annoy-datasync-rawcode-1k-summary/summary.json (at revision 58d1cb1a953ba8810ab464a9b2ef316566ac4aa2), [/tmp/hf-datasets-cache/medium/datasets/73335701257376-config-parquet-and-info-dongbobo-annoy-datasync-r-26575685/hub/datasets--dongbobo--annoy-datasync-rawcode-1k-summary/snapshots/58d1cb1a953ba8810ab464a9b2ef316566ac4aa2/sample_50.jsonl (origin=hf://datasets/dongbobo/annoy-datasync-rawcode-1k-summary@58d1cb1a953ba8810ab464a9b2ef316566ac4aa2/sample_50.jsonl), /tmp/hf-datasets-cache/medium/datasets/73335701257376-config-parquet-and-info-dongbobo-annoy-datasync-r-26575685/hub/datasets--dongbobo--annoy-datasync-rawcode-1k-summary/snapshots/58d1cb1a953ba8810ab464a9b2ef316566ac4aa2/summary.json (origin=hf://datasets/dongbobo/annoy-datasync-rawcode-1k-summary@58d1cb1a953ba8810ab464a9b2ef316566ac4aa2/summary.json)]
              
              Please either edit the data files to have matching columns, or separate them into different configurations (see docs at https://hf.co/docs/hub/datasets-manual-configuration#multiple-configurations)

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

blob_id
string
repo_name
string
path
string
length_bytes
int64
score
float64
int_score
int64
content
string
b7b944e5d5dd1cd1b41952c55bc13c348f905024
Oyekunle-Mark/Graphs
/projects/ancestor/ancestor.py
1,360
3.671875
4
from graph import Graph from util import Stack def earliest_ancestor(ancestors, starting_node): # FIRST REPRESENT THE INPUT ANCESTORS AS A GRAPH # create a graph instance graph = Graph() # loop through ancestors and add every number as a vertex for parent, child in ancestors: # add the parent as a vertex graph.add_vertex(parent) # add the child as a vertex as well graph.add_vertex(child) # # loop through ancestors and build the connections for parent, child in ancestors: # connect the parent to the child # the connection is reversed because dft transverses downward graph.add_edge(child, parent) # if starting node has no child if not graph.vertices[starting_node]: # return -1 return -1 # create a stack to hold the vertices s = Stack() # add the starting_node to the stack s.push(starting_node) # set earliest_anc to -1 earliest_anc = -1 # loop while stack is not empty while s.size() > 0: # pop the stack vertex = s.pop() # set the earliest_anc to vertex earliest_anc = vertex # add all its connected vertices to the queue # sort the vertices maintain order for v in sorted(graph.vertices[vertex]): s.push(v) return earliest_anc
150d0efefb3c712edc14a5ff039ef2082c43152b
syurskyi/Python_Topics
/125_algorithms/_exercises/templates/_algorithms_challenges/leetcode/LeetCode_with_solution/111_Minimum_Depth_of_Binary_Tree.py
1,281
4.03125
4
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None c_ Solution o.. # def minDepth(self, root): # """ # :type root: TreeNode # :rtype: int # """ # # Recursion # if root is None: # return 0 # ld = self.minDepth(root.left) # rd = self.minDepth(root.right) # if ld != 0 and rd != 0: # # handle 0 case! # return 1 + min(ld, rd) # return 1 + ld +rd ___ minDepth root # BFS __ root is N..: r_ 0 queue = [root] depth, rightMost = 1, root w.. l.. queue) > 0: node = queue.pop(0) __ node.left is N.. a.. node.right is N..: ______ __ node.left is n.. N..: queue.a.. node.left) __ node.right is n.. N..: queue.a.. node.right) __ node __ rightMost: # reach the current level end depth += 1 __ node.right is n.. N..: rightMost = node.right ____ rightMost = node.left r_ depth
039dd3727cdd229548d94108ee220efa4a5b4838
mertdemirlicakmak/project_euler
/problem_5.py
1,144
4.0625
4
""""2520 is the smallest number that can be divided by each of the numbers from 1 to 10 without any remainder. What is the smallest positive number that is evenly divisible by all of the numbers from 1 to 20?""" # This function returns the smallest number that is divisible to # 1 to num def find_smallest_divisible(num): multi_list = [] result_dict = {} result = 1 multi_list.extend(range(2, num + 1)) for num in multi_list: prime_list = find_prime_factors(num) for prime in prime_list: if not (prime in result_dict): result_dict[prime] = 0 if result_dict[prime] < prime_list.count(prime): result_dict[prime] += 1 result *= prime return result # This functions returns the prime factors of num def find_prime_factors(num): temp = num result = [] while temp > 1: for number in range(2, temp + 1): if temp % number == 0: result.append(number) temp //= number break return result if __name__ == '__main__': print(find_smallest_divisible(20))
0437daed01bce0f5a3046616917a2c29a1ed15d0
zhouyuhangnju/freshLeetcode
/Combination Sum.py
1,252
3.71875
4
def combinationSum(candidates, target): """ :type candidates: List[int] :type target: int :rtype: List[List[int]] """ res = [] candidates = sorted(candidates) def combinationRemain(remain, curr_res): if remain == 0: res.append(curr_res) return for c in candidates: if c > remain: break if curr_res and c < curr_res[-1]: continue combinationRemain(remain - c, curr_res + [c]) combinationRemain(target, []) return res def combinationSum2(candidates, target): """ :type candidates: List[int] :type target: int :rtype: List[List[int]] """ res = [] candidates = sorted(candidates) def combinationRemain(remain, curr_res, curr_idx): if remain == 0: res.append(curr_res) return if remain < 0 or curr_idx >= len(candidates): return combinationRemain(remain-candidates[curr_idx], curr_res+[candidates[curr_idx]], curr_idx) combinationRemain(remain, curr_res, curr_idx + 1) combinationRemain(target, [], 0) return res if __name__ == '__main__': print combinationSum2([2, 3, 6, 7], 7)
246130cc6d8d3b7c3fee372774aa2f93018f4e35
alexleversen/AdventOfCode
/2020/08-2/main.py
1,119
3.625
4
import re file = open('input.txt', 'r') lines = list(file.readlines()) def testTermination(swapLine): if(lines[swapLine][0:3] == 'acc'): return False instructionIndex = 0 instructionsVisited = [] acc = 0 while(True): if(instructionIndex == len(lines)): return acc if(instructionIndex in instructionsVisited): return False instructionsVisited.append(instructionIndex) match = re.match('(\w{3}) ([+-]\d+)', lines[instructionIndex]) instruction, value = match.group(1, 2) if(instructionIndex == swapLine): if(instruction == 'jmp'): instruction = 'nop' elif(instruction == 'nop'): instruction = 'jmp' if(instruction == 'acc'): acc += int(value) instructionIndex += 1 elif(instruction == 'jmp'): instructionIndex += int(value) else: instructionIndex += 1 for i in range(len(lines)): terminationValue = testTermination(i) if(terminationValue != False): print(terminationValue)
f9af5624fe12b3c6bd0c359e5162b7f9f48234e7
Yarin78/yal
/python/yal/fenwick.py
1,025
3.765625
4
# Datastructure for storing and updating integer values in an array in log(n) time # and answering queries "what is the sum of all value in the array between 0 and x?" in log(n) time # # Also called Binary Indexed Tree (BIT). See http://codeforces.com/blog/entry/619 class FenwickTree: def __init__(self, exp): '''Creates a FenwickTree with range 0..(2^exp)-1''' self.exp = exp self.t = [0] * 2 ** (exp+1) def query_range(self, x, y): '''Gets the sum of the values in the range [x, y)''' return self.query(y) - self.query(x) def query(self, x, i=-1): '''Gets the sum of the values in the range [0, x).''' if i < 0: i = self.exp return (x&1) * self.t[(1<<i)+x-1] + self.query(x//2, i-1) if x else 0 def insert(self, x, v, i=-1): '''Adds the value v to the position x''' if i < 0: i = self.exp self.t[(1<<i)+x] += v return self.t[(1<<i)+x] + (self.insert(x//2, v, i-1) if i > 0 else 0)
25ce186e86fc56201f52b12615caa13f98044d99
travisoneill/project-euler
/python/007.py
327
3.953125
4
from math import sqrt def is_prime(n): if n < 2: return False for i in range(2, int(sqrt(n)) + 1): if n % i == 0: return False return True def nth_prime(n): count = 2 i = 3 while count < n: i+=2 if is_prime(i): count += 1 print(i) nth_prime(10001)
5bb4299f898d7a3957d4a0fd1ed4eb151ab44b47
efeacer/EPFL_ML_Labs
/Lab04/template/least_squares.py
482
3.5625
4
# -*- coding: utf-8 -*- """Exercise 3. Least Square """ import numpy as np def compute_error_vector(y, tx, w): return y - tx.dot(w) def compute_mse(error_vector): return np.mean(error_vector ** 2) / 2 def least_squares(y, tx): coefficient_matrix = tx.T.dot(tx) constant_vector = tx.T.dot(y) w = np.linalg.solve(coefficient_matrix, constant_vector) error_vector = compute_error_vector(y, tx, w) loss = compute_mse(error_vector) return w, loss
0a186e9f92527a8509f7082f2f4065d3b366e957
vinnyatanasov/naive-bayes-classifier
/nb.py
3,403
3.6875
4
""" Naive Bayes classifier - gets reviews as input - counts how many times words appear in pos/neg - adds one to each (to not have 0 probabilities) - computes likelihood and multiply by prior (of review being pos/neg) to get the posterior probability - in a balanced dataset, prior is the same for both, so we ignore it here - chooses highest probability to be prediction """ import math def test(words, probs, priors, file_name): label = 1 if "pos" in file_name else -1 count = 0 correct = 0 with open(file_name) as file: for line in file: # begin with prior (simply how likely it is to be pos/neg before evidence) pos = priors[0] neg = priors[1] # compute likelihood # sum logs, better than multiplying very small numbers for w in line.strip().split(): # if word wasn't in train data, then we have to ignore it # same effect if we add test words into corpus and gave small probability if w in words: pos += math.log(probs[w][0]) neg += math.log(probs[w][1]) # say it's positive if pos >= neg pred = 1 if pos >= neg else -1 # increment counters count += 1 if pred == label: correct += 1 # return results return 100*(correct/float(count)) def main(): # count number of occurances of each word in pos/neg reviews # we'll use a dict containing a two item list [pos count, neg count] words = {} w_count = 0 # words p_count = 0 # positive instances n_count = 0 # negative instances # count positive occurrences with open("data/train.positive") as file: for line in file: for word in line.strip().split(): try: words[word][0] += 1 except: words[word] = [1, 0] w_count += 1 p_count += 1 # count negative occurrences with open("data/train.negative") as file: for line in file: for word in line.strip().split(): try: words[word][1] += 1 except: words[word] = [0, 1] w_count += 1 n_count += 1 # calculate probabilities of each word corpus = len(words) probs = {} for key, value in words.iteritems(): # smooth values (add one to each) value[0]+=1 value[1]+=1 # prob = count / total count + number of words (for smoothing) p_pos = value[0] / float(w_count + corpus) p_neg = value[1] / float(w_count + corpus) probs[key] = [p_pos, p_neg] # compute priors based on frequency of reviews priors = [] priors.append(math.log(p_count / float(p_count + n_count))) priors.append(math.log(n_count / float(p_count + n_count))) # test naive bayes pos_result = test(words, probs, priors, "data/test.positive") neg_result = test(words, probs, priors, "data/test.negative") print "Accuracy(%)" print "Positive:", pos_result print "Negative:", neg_result print "Combined:", (pos_result+neg_result)/float(2) if __name__ == "__main__": print "-- Naive Bayes classifier --\n" main()
ceca83f8d1a6d0dbc027ad04a7632bb8853bc17f
harshablast/numpy_NN
/nn.py
2,183
3.734375
4
import numpy as np def sigmoid(x): return 1 / (1 + np.exp(-x)) def d_sigmoid(x): return x * (1 - x) def relu(x): return x * (x > 0) def d_relu(x): return 1 * (x > 0) class neural_network: def __init__(self, nodes): self.input_dim = nodes[0] self.HL01_dim = nodes[1] self.HL02_dim = nodes[2] self.output_dim = nodes[3] self.W1 = 2 * (np.random.rand(self.input_dim, self.HL01_dim) -1) self.W2 = 2 * (np.random.rand(self.HL01_dim, self.HL02_dim) -1) self.W3 = 2 * (np.random.rand(self.HL02_dim, self.output_dim) -1) self.B1 = 2 * (np.random.rand(1, self.HL01_dim)) self.B2 = 2 * (np.random.rand(1, self.HL02_dim)) self.B3 = 2 * (np.random.rand(1, self.output_dim)) def forward_pass(self, input): self.HL01_out = sigmoid(np.add(np.matmul(input, self.W1), self.B1)) self.HL02_out = sigmoid(np.add(np.matmul(self.HL01_out, self.W2), self.B2)) self.output = sigmoid(np.add(np.matmul(self.HL02_out, self.W3), self.B3)) return self.output def backward_pass(self, train_data_X, train_data_Y, iterations, learning_rate): for j in range(iterations): self.forward_pass(train_data_X) error = np.sum(np.square(self.output - train_data_Y)) print(error) output_error = self.output - train_data_Y output_deltas = output_error * d_sigmoid(self.output) self.W3 -= np.dot(self.HL02_out.T, output_deltas) * learning_rate self.B3 -= np.sum(output_deltas, axis=0, keepdims=True) * learning_rate HL02_error = np.dot(output_deltas, self.W3.T) HL02_deltas = HL02_error * d_sigmoid(self.HL02_out) self.W2 -= np.dot(self.HL01_out.T, HL02_deltas) * learning_rate self.B2 -= np.sum(HL02_deltas, axis=0, keepdims=True) * learning_rate HL01_error = np.dot(HL02_deltas, self.W2.T) HL01_deltas = HL01_error * d_sigmoid(self.HL01_out) self.W1 -= np.dot(train_data_X.T, HL01_deltas) * learning_rate self.B1 -= np.sum(HL01_deltas, axis=0, keepdims=True) * learning_rate
235fee728f7853aa65b05a101deeb1dfeb5ebf8f
syurskyi/Python_Topics
/125_algorithms/_examples/_algorithms_challenges/leetcode/leetCode/DynamicProgramming/198_HouseRobber.py
469
3.609375
4
#! /usr/bin/env python # -*- coding: utf-8 -*- class Solution(object): # Dynamic Programming def rob(self, nums): if not nums: return 0 pre_rob = 0 pre_not_rob = 0 for num in nums: cur_rob = pre_not_rob + num cur_not_rob = max(pre_rob, pre_not_rob) pre_rob = cur_rob pre_not_rob = cur_not_rob return max(pre_rob, pre_not_rob) """ [] [1,2] [12, 1,1,12,1] """
0d0892bf443e39c3c5ef078f2cb846370b7852e9
JakobLybarger/Graph-Pathfinding-Algorithms
/dijkstras.py
1,297
4.15625
4
import math import heapq def dijkstras(graph, start): distances = {} # Dictionary to keep track of the shortest distance to each vertex in the graph # The distance to each vertex is not known so we will just assume each vertex is infinitely far away for vertex in graph: distances[vertex] = math.inf distances[start] = 0 # Distance from the first point to the first point is 0 vertices_to_explore = [(0, start)] # Continue while heap is not empty while vertices_to_explore: distance, vertex = heapq.heappop(vertices_to_explore) # Pop the minimum distance vertex off of the heap for neighbor, e_weight in graph[vertex]: new_distance = distance + e_weight # If the new distance is less than the current distance set the current distance as new distance if new_distance < distances[neighbor]: distances[neighbor] = new_distance heapq.heappush(vertices_to_explore, (new_distance, neighbor)) return distances # The dictionary of minimum distances from start to each vertex graph = { 'A': [('B', 10), ('C', 3)], 'C': [('D', 2)], 'D': [('E', 10)], 'E': [('A', 7)], 'B': [('C', 3), ('D', 2)] } print(dijkstras(graph, "A"))
c3626ea1efb1c930337e261be165d048d842d15a
Razorro/Leetcode
/72. Edit Distance.py
3,999
3.515625
4
""" Given two words word1 and word2, find the minimum number of operations required to convert word1 to word2. You have the following 3 operations permitted on a word: Insert a character Delete a character Replace a character Example 1: Input: word1 = "horse", word2 = "ros" Output: 3 Explanation: horse -> rorse (replace 'h' with 'r') rorse -> rose (remove 'r') rose -> ros (remove 'e') Example 2: Input: word1 = "intention", word2 = "execution" Output: 5 Explanation: intention -> inention (remove 't') inention -> enention (replace 'i' with 'e') enention -> exention (replace 'n' with 'x') exention -> exection (replace 'n' with 'c') exection -> execution (insert 'u') A good question! I thought it was similiar with the dynamic programming example in CLRS, it turns out the skeleton may has a little similiarity, but the core idea can't be extracted with the situation of this question. It was called Levenshtein distance. Mathematically, the Levenshtein distance between two strings {\displaystyle a,b} a,b (of length {\displaystyle |a|} |a| and {\displaystyle |b|} |b| respectively) is given by {\displaystyle \operatorname {lev} _{a,b}(|a|,|b|)} \operatorname{lev}_{a,b}(|a|,|b|) where | --- max(i, j) if min(i, j) = 0 lev(i, j) = | min --- lev(i-1, j) + 1 | --- lev(i, j-1) + 1 | --- lev(i-1, j-1) + 1 Computing the Levenshtein distance is based on the observation that if we reserve a matrix to hold the Levenshtein distances between all prefixes of the first string and all prefixes of the second, then we can compute the values in the matrix in a dynamic programming fashion, and thus find the distance between the two full strings as the last value computed. This algorithm, an example of bottom-up dynamic programming, is discussed, with variants, in the 1974 article The String-to-string correction problem by Robert A. Wagner and Michael J. Fischer.[4] """ class Solution: def minDistance(self, word1: 'str', word2: 'str') -> 'int': points = self.findBiggestCommon(word1, word2) def findBiggestCommon(self, source, target): path = [0] * len(source) directions = [] for i in range(len(target)): current = [0] * len(source) d = [] for j in range(len(source)): if target[i] == source[j]: current[j] = path[j-1] + 1 if j-1 >= 0 else 1 d.append('=') else: left = current[j-1] if j-1 >= 0 else 0 if left > path[j]: d.append('l') else: d.append('u') current[j] = max(left, path[j]) path = current directions.append(d) x_y = [] row, col = len(target)-1, len(source)-1 while row >= 0 and col >=0: if directions[row][col] == '=': x_y.append((row, col)) row -= 1 col -= 1 elif directions[row][col] == 'u': row -= 1 else: col -= 1 return x_y def standardAnswer(self, word1, word2): m = len(word1) + 1 n = len(word2) + 1 det = [[0 for _ in range(n)] for _ in range(m)] for i in range(m): det[i][0] = i for i in range(n): det[0][i] = i for i in range(1, m): for j in range(1, n): det[i][j] = min(det[i][j - 1] + 1, det[i - 1][j] + 1, det[i - 1][j - 1] + 0 if word1[i - 1] == word2[j - 1] else 1) return det[m - 1][n - 1] if __name__ == '__main__': s = Solution() distance = s.findBiggestCommon('horse', 'ros') distance = sorted(distance, key=lambda e: e[1]) c = 0 trans = 0 for left, right in distance: trans += abs(right - left) + left-c c = left + 1 print(s.findBiggestCommon('horse', 'ros'))
b3a6e632568dd13f128eda2cba96293e2bd0d3cd
sniperswang/dev
/leetcode/L265/test.py
1,452
3.640625
4
""" There are a row of n houses, each house can be painted with one of the k colors. The cost of painting each house with a certain color is different. You have to paint all the houses such that no two adjacent houses have the same color. The cost of painting each house with a certain color is represented by a n x k cost matrix. For example, costs[0][0] is the cost of painting house 0 with color 0; costs[1][2] is the cost of painting house 1 with color 2, and so on... Find the minimum cost to paint all houses. Note: All costs are positive integers. Follow up: Could you solve it in O(nk) runtime? """ class Solution(object): def minCostII(self, costs): """ :type costs: List[List[int]] :rtype: int """ if len(costs) == 0: return 0 m = len(costs) n = len(costs[0]) for i in range (1, m): preMin = {} preMin[0] = min(costs[i-1][1:]) costs[i][0] = costs[i][0] + preMin[0] if ( n > 1): preMin[n-1] = min(costs[i-1][:n-1]) costs[i][n-1] = costs[i][n-1] + preMin[n-1] for j in range (1, n-1): preMin[j] = min( min(costs[i-1][:j]), min(costs[i-1][j+1:]) ) costs[i][j] = costs[i][j] + preMin[j] return min(costs[len(costs)-1]) costa = [1,2,4] costb = [3,1,0] costc = [1,2,1] costs = [] costs.append(costa) costs.append(costb) costs.append(costc) s = Solution() print s.minCostII(costs)
a1b41adcda2d3b3522744e954cf8ae2f901c6b01
drunkwater/leetcode
/medium/python3/c0099_209_minimum-size-subarray-sum/00_leetcode_0099.py
798
3.546875
4
# DRUNKWATER TEMPLATE(add description and prototypes) # Question Title and Description on leetcode.com # Function Declaration and Function Prototypes on leetcode.com #209. Minimum Size Subarray Sum #Given an array of n positive integers and a positive integer s, find the minimal length of a contiguous subarray of which the sum ≥ s. If there isn't one, return 0 instead. #For example, given the array [2,3,1,2,4,3] and s = 7, #the subarray [4,3] has the minimal length under the problem constraint. #click to show more practice. #Credits: #Special thanks to @Freezen for adding this problem and creating all test cases. #class Solution: # def minSubArrayLen(self, s, nums): # """ # :type s: int # :type nums: List[int] # :rtype: int # """ # Time Is Money
40a908c9b3cf99674e66b75f56809d485f0a81f9
Gborgman05/algs
/py/populate_right_pointers.py
1,019
3.859375
4
""" # Definition for a Node. class Node: def __init__(self, val: int = 0, left: 'Node' = None, right: 'Node' = None, next: 'Node' = None): self.val = val self.left = left self.right = right self.next = next """ class Solution: def connect(self, root: 'Optional[Node]') -> 'Optional[Node]': saved = root levels = [] l = [root] n = [] while l: n = [] for node in l: if node: if node.left: n.append(node.left) if node.right: n.append(node.right) levels.append(l) l = n for level in levels: for i in range(len(level)): if level[i] == None: continue if i < len(level) - 1: level[i].next = level[i+1] else: level[i].next = None return root
c2f622f51bbddc54b0199c4e0e2982bc2ebfa030
qdm12/courses
/Fundamental Algorithms/Lesson-03/algorithms.py
2,479
3.875
4
from operator import itemgetter from math import floor def radix_sort_alpha(words): l = len(words[0]) for w in words: if len(w) != l: raise Exception("All words should be of same length") for i in range(l, 0, -1): words = sorted(words, key=itemgetter(i - 1)) words_str = str([''.join(w) for w in words]) print "PASS "+str(l - i + 1)+": "+words_str return words_str def bucket_sort(A): print "Initial input array A: "+str(A) n = len(A) for i in range(n): assert(A[i] >= 0 and A[i] < 1) B = [[] for _ in range(n)] print "Initial output buckets array B: "+str(B) for i in range(n): place = int(floor(A[i] * n)) B[place].append(A[i]) print "Output buckets array B with elements in buckets: "+str(B) for j in range(n): B[j].sort() print "Output buckets array B with elements sorted in buckets: "+str(B) B_final = [] for bucket in B: B_final += bucket print "Final output array B: "+str(B_final) return B_final class MergeSort(object): def merge(self, A, l, q, r): n1 = q - l + 1 n2 = r - q L = [A[l + i] for i in range(n1)] R = [A[q + 1 + i] for i in range(n2)] i = j = 0 # Initial index of first and second subarrays k = l # Initial index of merged subarray while i < n1 and j < n2: if L[i] <= R[j]: A[k] = L[i] i += 1 else: A[k] = R[j] j += 1 k += 1 # Copy the remaining elements of L[], if there are any while i < n1: A[k] = L[i] i += 1 k += 1 # Copy the remaining elements of R[], if there are any while j < n2: A[k] = R[j] j += 1 k += 1 def mergeSort(self, A, l, r): if l < r: q = int(floor((l+r)/2)) self.mergeSort(A, l, q) self.mergeSort(A, q+1, r) self.merge(A, l, q, r) def run(self): A = [54,26,93,17,77,31,44,55,20] self.mergeSort(A, 0, len(A) - 1) print A if __name__ == "__main__": radix_sort_alpha(["COW", "DOG", "SEA", "RUG", "ROW", "MOB", "BOX", "TAB", "BAR", "EAR", "TAR", "DIG", "BIG", "TEA", "NOW", "FOX"]) bucket_sort([.79,.13,.16,.64,.39,.20,.89,.53,.71,.43]) m = MergeSort() m.run()
baa6b0b8905dfc9e832125196f3503f271557273
syurskyi/Python_Topics
/125_algorithms/_exercises/templates/_algorithms_challenges/leetcode/leetCode/Array/SlidingWindowMaximum.py
2,656
4.03125
4
""" Given an array nums, there is a sliding window of size k which is moving from the very left of the array to the very right. You can only see the k numbers in the window. Each time the sliding window moves right by one position. Return the max sliding window. Example: Input: nums = [1,3,-1,-3,5,3,6,7], and k = 3 Output: [3,3,5,5,6,7] Explanation: Window position Max --------------- ----- [1 3 -1] -3 5 3 6 7 3 1 [3 -1 -3] 5 3 6 7 3 1 3 [-1 -3 5] 3 6 7 5 1 3 -1 [-3 5 3] 6 7 5 1 3 -1 -3 [5 3 6] 7 6 1 3 -1 -3 5 [3 6 7] 7 Note: You may assume k is always valid, 1 ≤ k ≤ input array's size for non-empty array. Follow up: Could you solve it in linear time? 这个我的思路是: 1. 先把前 k 个数取出来,然后排序一组,不排序一组。 2. 排序的一组作为查找使用。 不排序的一组作为删除增加会用。 3. 这里也可以使用堆代替排序,红黑树应该最好不过了。 4. 这里使用排序过的列表是为了能够使用二分法,从而达到 log n 级别的查找和后续添加。 但同时因为即使在 log n级别查找到要添加删除的位置,进行列表的添加和删除仍然是一个 O(n) 级别的事情... 所以使用堆或者红黑树是最好的,添加和删除都是 log n 级别的。 5. sorted list 主要是进行获取最大与删除冗余,这里使用二分法来删除冗余。 6. unsorted list 用于知道要删除和添加的都是哪一个。 beat 31% 176ms. 测试地址: https://leetcode.com/problems/sliding-window-maximum/description/ """ from collections import deque import bisect c.. Solution o.. ___ find_bi nums, target lo = 0 hi = l..(nums) _____ lo < hi: mid = (lo + hi) // 2 __ nums[mid] __ target: r_ mid __ nums[mid] < target: lo = mid + 1 ____ hi = mid ___ maxSlidingWindow nums, k """ :type nums: List[int] :type k: int :rtype: List[int] """ __ n.. nums: r_ [] x = nums[:k] y = s..(x) x = deque(x) maxes = m..(x) result = [maxes] ___ i __ nums[k:]: pop = x.popleft() x.a.. i) index = self.find_bi(y, pop) y.pop(index) bisect.insort_left(y, i) result.a.. y[-1]) r_ result
8496596aefa39873f8321a61d361bf209e54dcbd
syurskyi/Python_Topics
/125_algorithms/_exercises/templates/_algorithms_challenges/leetcode/LeetCode_with_solution/108_Convert_Sorted_Array_to_Binary_Search_Tree.py
977
3.859375
4
# Definition for a binary tree node. # class TreeNode(object): # def __init__(self, x): # self.val = x # self.left = None # self.right = None c_ Solution o.. # def sortedArrayToBST(self, nums): # """ # :type nums: List[int] # :rtype: TreeNode # """ # # Recursion with slicing # if not nums: # return None # mid = len(nums) / 2 # root = TreeNode(nums[mid]) # root.left = self.sortedArrayToBST(nums[:mid]) # root.right = self.sortedArrayToBST(nums[mid + 1:]) # return root ___ sortedArrayToBST nums # Recursion with index r_ getHelper(nums, 0, l.. nums) - 1) ___ getHelper nums, start, end __ start > end: r_ N.. mid = (start + end) / 2 node = TreeNode(nums[mid]) node.left = getHelper(nums, start, mid - 1) node.right = getHelper(nums, mid + 1, end) r_ node
0be537def5f8cc9ba9218267bf774b28ee44d4c7
SoumyaMalgonde/AlgoBook
/python/graph_algorithms/Dijkstra's_Shortest_Path_Implementation_using_Adjacency_List.py
2,933
3.921875
4
class Node_Distance : def __init__(self, name, dist) : self.name = name self.dist = dist class Graph : def __init__(self, node_count) : self.adjlist = {} self.node_count = node_count def Add_Into_Adjlist(self, src, node_dist) : if src not in self.adjlist : self.adjlist[src] = [] self.adjlist[src].append(node_dist) def Dijkstras_Shortest_Path(self, source) : # Initialize the distance of all the nodes from source to infinity distance = [999999999999] * self.node_count # Distance of source node to itself is 0 distance[source] = 0 # Create a dictionary of { node, distance_from_source } dict_node_length = {source: 0} while dict_node_length : # Get the key for the smallest value in the dictionary # i.e Get the node with the shortest distance from the source source_node = min(dict_node_length, key = lambda k: dict_node_length[k]) del dict_node_length[source_node] for node_dist in self.adjlist[source_node] : adjnode = node_dist.name length_to_adjnode = node_dist.dist # Edge relaxation if distance[adjnode] > distance[source_node] + length_to_adjnode : distance[adjnode] = distance[source_node] + length_to_adjnode dict_node_length[adjnode] = distance[adjnode] for i in range(self.node_count) : print("Source Node ("+str(source)+") -> Destination Node(" + str(i) + ") : " + str(distance[i])) def main() : g = Graph(6) # Node 0: <1,5> <2,1> <3,4> g.Add_Into_Adjlist(0, Node_Distance(1, 5)) g.Add_Into_Adjlist(0, Node_Distance(2, 1)) g.Add_Into_Adjlist(0, Node_Distance(3, 4)) # Node 1: <0,5> <2,3> <4,8> g.Add_Into_Adjlist(1, Node_Distance(0, 5)) g.Add_Into_Adjlist(1, Node_Distance(2, 3)) g.Add_Into_Adjlist(1, Node_Distance(4, 8)) # Node 2: <0,1> <1,3> <3,2> <4,1> g.Add_Into_Adjlist(2, Node_Distance(0, 1)) g.Add_Into_Adjlist(2, Node_Distance(1, 3)) g.Add_Into_Adjlist(2, Node_Distance(3, 2)) g.Add_Into_Adjlist(2, Node_Distance(4, 1)) # Node 3: <0,4> <2,2> <4,2> <5,1> g.Add_Into_Adjlist(3, Node_Distance(0, 4)) g.Add_Into_Adjlist(3, Node_Distance(2, 2)) g.Add_Into_Adjlist(3, Node_Distance(4, 2)) g.Add_Into_Adjlist(3, Node_Distance(5, 1)) # Node 4: <1,8> <2,1> <3,2> <5,3> g.Add_Into_Adjlist(4, Node_Distance(1, 8)) g.Add_Into_Adjlist(4, Node_Distance(2, 1)) g.Add_Into_Adjlist(4, Node_Distance(3, 2)) g.Add_Into_Adjlist(4, Node_Distance(5, 3)) # Node 5: <3,1> <4,3> g.Add_Into_Adjlist(5, Node_Distance(3, 1)) g.Add_Into_Adjlist(5, Node_Distance(4, 3)) g.Dijkstras_Shortest_Path(0) print("\n") g.Dijkstras_Shortest_Path(5) if __name__ == "__main__" : main()
8130b1edf4df29a9ab76784289a22d5fb90863e7
ridhishguhan/faceattractivenesslearner
/Classify.py
1,158
3.6875
4
import numpy as np import Utils class Classifier: training = None train_arr = None classes = None def __init__(self, training, train_arr, CLASSES = 3): self.training = training self.train_arr = train_arr self.classes = CLASSES #KNN Classification method def OneNNClassify(self, test_set, K): # KNN Method # for each test sample t # for each training sample tr # compute norm |t - tr| # choose top norm # class which it belongs to is classification [tr,tc] = test_set.shape [trr,trc] = self.train_arr.shape result = np.array(np.zeros([tc])) i = 0 #print "KNN : with K = ",K while i < tc: x = test_set[:,i] xmat = np.tile(x,(1,trc)) xmat = xmat - self.train_arr norms = Utils.ComputeNorm(xmat) closest_train = np.argmin(norms) which_train = self.training[closest_train] attr = which_train.attractiveness result[i] = attr #print "Class : ",result[i] i += 1 return result
fa0a2e8e0ec8251c6d735b02dfa1d7a94e09c6b2
paul0920/leetcode
/question_leetcode/1488_2.py
1,538
3.984375
4
import collections import heapq rains = [1, 2, 0, 0, 2, 1] # 0 1 2 3 4 5 rains = [10, 20, 20, 0, 20, 10] # min heap to track the days when flooding would happen (if lake not dried) nearest = [] # dict to store all rainy days # use case: to push the subsequent rainy days into the heap for wet lakes locs = collections.defaultdict(collections.deque) # result - assume all days are rainy res = [-1] * len(rains) # pre-processing - {K: lake, V: list of rainy days} for i, lake in enumerate(rains): locs[lake].append(i) for i, lake in enumerate(rains): print "nearest wet day:", nearest # check whether the day, i, is a flooded day # the nearest lake got flooded (termination case) if nearest and nearest[0] == i: print [] exit() # lake got wet if lake != 0: # pop the wet day. time complexity: O(1) locs[lake].popleft() # prioritize the next rainy day of this lake if locs[lake]: nxt = locs[lake][0] heapq.heappush(nearest, nxt) print "nearest wet day:", nearest # a dry day else: # no wet lake, append an arbitrary value if not nearest: res[i] = 1 else: # dry the lake that has the highest priority # since that lake will be flooded in nearest future otherwise (greedy property) next_wet_day = heapq.heappop(nearest) wet_lake = rains[next_wet_day] res[i] = wet_lake print "" print res
ef0440b8ce5c5303d75b1d297e323a1d8b92d619
AndreiBoris/sample-problems
/python/0200-numbers-of-islands/number-of-islands.py
5,325
3.84375
4
from typing import List LAND = '1' WATER = '0' # TODO: Review a superior solutions def overlaps(min1, max1, min2, max2): overlap = max(0, min(max1, max2) - max(min1, min2)) if overlap > 0: return True if min1 == min2 or min1 == max2 or max1 == min2 or max1 == max2: return True if (min1 > min2 and max1 < max2) or (min2 > min1 and max2 < max1): return True return False print(overlaps(0, 2, 1, 1)) # Definition for a Bucket. class Bucket: def __init__(self, identifiers: List[int]): self.destination = None self.identifiers = set(identifiers) def hasDestination(self) -> bool: return self.destination != None def getDestination(self): if not self.hasDestination(): return self return self.destination.getDestination() def combine(self, bucket): otherDestination = bucket.getDestination() thisDestination = self.getDestination() uniqueIdentifiers = otherDestination.identifiers | thisDestination.identifiers newBucket = Bucket(uniqueIdentifiers) otherDestination.destination = newBucket thisDestination.destination = newBucket return newBucket def contains(self, identifier: int) -> bool: return identifier in self.getDestination().identifiers class Solution: ''' Given a 2d grid map of '1's (land) and '0's (water), count the number of islands. An island is surrounded by water and is formed by connecting adjacent lands horizontally or vertically. You may assume all four edges of the grid are all surrounded by water. ''' def numIslands(self, grid: List[List[str]]) -> int: if len(grid) < 1: return 0 nextRowIsland = 1 rowIslands = {} currentRowIslandStart = None ''' Here we are generating row islands that we will then be pairing with adjacent row islands to form groups that we will then combine into the true islands that are needed to get the correct answer ''' for rowIndex, row in enumerate(grid): lastSpot = WATER lengthOfRow = len(row) rowIslands[rowIndex] = [] for spotIndex, spot in enumerate(row): if lastSpot == WATER and spot == LAND: currentRowIslandStart = spotIndex if spotIndex + 1 >= lengthOfRow and spot == LAND: rowIslands[rowIndex].append((nextRowIsland, currentRowIslandStart, spotIndex)) nextRowIsland += 1 currentRowIslandStart = None elif spot == WATER and currentRowIslandStart != None: rowIslands[rowIndex].append((nextRowIsland, currentRowIslandStart, spotIndex - 1)) nextRowIsland += 1 if spot == WATER: currentRowIslandStart = None lastSpot = spot nextGroup = 1 maxRowIndex = len(grid) rowIslandsToGroups = {} for rowNumber in [rowNumber for rowNumber in range(maxRowIndex)]: for rowIslandNumber, startIndex, endIndex in rowIslands[rowNumber]: rowIslandsToGroups[rowIslandNumber] = [] if rowNumber == 0: rowIslandsToGroups[rowIslandNumber].append(nextGroup) nextGroup += 1 continue for prevRowIslandNumber, prevStartIndex, prevEndIndex in rowIslands[rowNumber - 1]: if overlaps(prevStartIndex, prevEndIndex, startIndex, endIndex): for groupNumber in rowIslandsToGroups[prevRowIslandNumber]: rowIslandsToGroups[rowIslandNumber].append(groupNumber) if len(rowIslandsToGroups[rowIslandNumber]) == 0: rowIslandsToGroups[rowIslandNumber].append(nextGroup) nextGroup += 1 groupBuckets = {} allBuckets = [] for rowIslandNumber in range(1, nextRowIsland): relatedGroups = rowIslandsToGroups[rowIslandNumber] for group in relatedGroups: if (groupBuckets.get(group, None)) == None: newGroupBucket = Bucket([group]) groupBuckets[group] = newGroupBucket allBuckets.append(newGroupBucket) relatedBuckets = [groupBuckets[group] for group in relatedGroups] firstBucket = relatedBuckets[0] for group in relatedGroups: if not firstBucket.contains(group): newCombinedBucket = firstBucket.combine(groupBuckets[group]) allBuckets.append(newCombinedBucket) return len([resultBucket for resultBucket in allBuckets if not resultBucket.hasDestination()]) solver = Solution() # 1 # inputGrid = [ # '11110', # '11010', # '11000', # '00000', # ] # 3 # inputGrid = [ # '11000', # '11000', # '00100', # '00011', # ] # 1 # inputGrid = [ # '11011', # '10001', # '10001', # '11111', # ] # 5 # inputGrid = [ # '101', # '010', # '101', # ] # 1 inputGrid = [ '111', '010', '010', ] print(solver.numIslands(inputGrid))
227925521077e04140edcb13d50808695efd39a5
erikseulean/machine_learning
/python/linear_regression/multivariable.py
1,042
3.671875
4
import numpy as np import matplotlib.pyplot as plt import seaborn as sns iterations = 35 alpha = 0.1 def read_data(): data = np.loadtxt('data/housing_prices.in', delimiter=',') X = data[:, [0,1]] y = data[:, 2] y.shape = (y.shape[0], 1) return X, y def normalize(X): return (X - X.mean(0))/X.std(0) def add_xzero(X): return np.hstack((np.ones((X.shape[0],1)), X)) def gradient_descent(X, y): theta = np.zeros((X.shape[1],1)) m = X.shape[0] cost = [] for _ in range(iterations): X_transpose = np.transpose(X) cost_deriv = (alpha/m) * np.dot(X_transpose, np.dot(X, theta) - y) theta = theta - cost_deriv cost_func = np.sum(np.square(np.dot(X, theta) - y))/(2 * m) cost.append(cost_func) return theta, cost def plot_cost_function(cost): plt.plot(cost) plt.xlabel("Iterations") plt.ylabel("Cost function") plt.show() X, y = read_data() X = add_xzero(normalize(X)) theta, cost = gradient_descent(X, y) plot_cost_function(cost)
c7b567bde9e143c404c3670793576644a26f6142
AhmadQasim/Battleships-AI
/gym-battleship/gym_battleship/envs/battleship_env.py
4,760
3.53125
4
import gym import numpy as np from abc import ABC from gym import spaces from typing import Tuple from copy import deepcopy from collections import namedtuple Ship = namedtuple('Ship', ['min_x', 'max_x', 'min_y', 'max_y']) Action = namedtuple('Action', ['x', 'y']) # Extension: Add info for when the ship is sunk class BattleshipEnv(gym.Env, ABC): def __init__(self, board_size: Tuple = None, ship_sizes: dict = None, episode_steps: int = 100): self.ship_sizes = ship_sizes or {5: 1, 4: 1, 3: 2, 2: 1} self.board_size = board_size or (10, 10) self.board = None self.board_generated = None self.observation = None self.done = None self.step_count = None self.episode_steps = episode_steps self.action_space = spaces.Discrete(self.board_size[0] * self.board_size[1]) # MultiBinary is a binary space array self.observation_space = spaces.MultiBinary([2, self.board_size[0], self.board_size[1]]) # dict to save all the ship objects self.ship_dict = {} def step(self, raw_action: int) -> Tuple[np.ndarray, int, bool, dict]: assert (raw_action < self.board_size[0]*self.board_size[1]),\ "Invalid action (Superior than size_board[0]*size_board[1])" action = Action(x=raw_action // self.board_size[0], y=raw_action % self.board_size[1]) self.step_count += 1 if self.step_count >= self.episode_steps: self.done = True # it looks if there is a ship on the current cell # if there is a ship then the cell is 1 and 0 otherwise if self.board[action.x, action.y] != 0: # if the cell that we just hit is the last one from the respective ship # then add this info to the observation if self.board[self.board == self.board[action.x, action.y]].shape[0] == 1: ship = self.ship_dict[self.board[action.x, action.y]] self.observation[1, ship.min_x:ship.max_x, ship.min_y:ship.max_y] = 1 self.board[action.x, action.y] = 0 self.observation[0, action.x, action.y] = 1 # if the whole board is already filled, no ships if not self.board.any(): self.done = True return self.observation, 100, self.done, {} return self.observation, 1, self.done, {} # we end up here if we hit a cell that we had hit before already elif self.observation[0, action.x, action.y] == 1 or self.observation[1, action.x, action.y] == 1: return self.observation, -1, self.done, {} # we end up here if we hit a cell that has not been hit before and doesn't contain a ship else: self.observation[1, action.x, action.y] = 1 return self.observation, 0, self.done, {} def reset(self): self.set_board() # maintain an original copy of the board generated in the start self.board_generated = deepcopy(self.board) self.observation = np.zeros((2, *self.board_size), dtype=np.float32) self.step_count = 0 return self.observation def set_board(self): self.board = np.zeros(self.board_size, dtype=np.float32) k = 1 for i, (ship_size, ship_count) in enumerate(self.ship_sizes.items()): for j in range(ship_count): self.place_ship(ship_size, k) k += 1 def place_ship(self, ship_size, ship_index): can_place_ship = False while not can_place_ship: ship = self.get_ship(ship_size, self.board_size) can_place_ship = self.is_place_empty(ship) # set the ship cells to one self.board[ship.min_x:ship.max_x, ship.min_y:ship.max_y] = ship_index self.ship_dict.update({ship_index: ship}) @staticmethod def get_ship(ship_size, board_size) -> Ship: if np.random.choice(('Horizontal', 'Vertical')) == 'Horizontal': # find the ship coordinates randomly min_x = np.random.randint(0, board_size[0] - 1 - ship_size) min_y = np.random.randint(0, board_size[1] - 1) return Ship(min_x=min_x, max_x=min_x + ship_size, min_y=min_y, max_y=min_y + 1) else: min_x = np.random.randint(0, board_size[0] - 1) min_y = np.random.randint(0, board_size[1] - 1 - ship_size) return Ship(min_x=min_x, max_x=min_x + 1, min_y=min_y, max_y=min_y + ship_size) def is_place_empty(self, ship): # make sure that there are no ships by simply summing the cell values return np.count_nonzero(self.board[ship.min_x:ship.max_x, ship.min_y:ship.max_y]) == 0 def get_board(self): return self.board
d818d77f017fb908113dbdffbbaafa2b301d5999
dlaststark/machine-learning-projects
/Programming Language Detection/Experiment-2/Dataset/Train/Python/fibonacci-n-step-number-sequences-3.py
549
3.671875
4
from itertools import islice, cycle def fiblike(tail): for x in tail: yield x for i in cycle(xrange(len(tail))): tail[i] = x = sum(tail) yield x fibo = fiblike([1, 1]) print list(islice(fibo, 10)) lucas = fiblike([2, 1]) print list(islice(lucas, 10)) suffixes = "fibo tribo tetra penta hexa hepta octo nona deca" for n, name in zip(xrange(2, 11), suffixes.split()): fib = fiblike([1] + [2 ** i for i in xrange(n - 1)]) items = list(islice(fib, 15)) print "n=%2i, %5snacci -> %s ..." % (n, name, items)
d6ddba1536a4377251089a3df2ad91fb87b987b8
jeremyyew/tech-prep-jeremy.io
/code/techniques/8-DFS/M341-flatten-nested-list-iterator.py
606
4
4
''' - Only pop and unpack what is necessary. - Pop and unpack when `hasNext` is called - it ensures there is a next available for `next`, if there really is a next. - At the end only need to check if stack is nonempty - stack nonempty and last element not integer is not possible. ''' class NestedIterator(object): def __init__(self, nestedList): self.stack = nestedList[::-1] def next(self): return self.stack.pop().getInteger() def hasNext(self): while self.stack and not self.stack[-1].isInteger(): nl = self.stack.pop() self.stack.extend(nl.getList()[::-1]) return self.stack
eeb2068deeec87798355fe1bdd1e0f3508cbdcab
jiqin/leetcode
/codes/212.py
2,112
3.53125
4
class Solution(object): def findWords(self, board, words): """ :type board: List[List[str]] :type words: List[str] :rtype: List[str] """ word_map = {} for word in words: for i in range(len(word)): word_map[word[0:i+1]] = 0 for word in words: word_map[word] = 1 # print word_map results = [] for i in range(len(board)): for j in range(len(board[0])): tmp_word = '' history_pos = [] heap = [(i, j, 0)] while heap: x, y, l = heap.pop() if x < 0 or x >= len(board) or y < 0 or y >= len(board[0]): continue assert len(history_pos) >= l history_pos = history_pos[0:l] if (x, y) in history_pos: continue assert len(tmp_word) >= l tmp_word = tmp_word[0:l] + board[x][y] history_pos.append((x, y)) # print x, y, tmp_word, heap, history_pos value = word_map.get(tmp_word) if value is None: continue if value == 1: results.append(tmp_word) heap.append((x - 1, y, l + 1)) heap.append((x + 1, y, l + 1)) heap.append((x, y - 1, l + 1)) heap.append((x, y + 1, l + 1)) return list(set(results)) for b, w in ( # ([ # ['o', 'a', 'a', 'n'], # ['e', 't', 'a', 'e'], # ['i', 'h', 'k', 'r'], # ['i', 'f', 'l', 'v'] # ], # ["oath", "pea", "eat", "rain"]), # (['ab', 'cd'], ['acdb']), # (["ab","cd"], ["ab","cb","ad","bd","ac","ca","da","bc","db","adcb","dabc","abb","acb"]), (["abc","aed","afg"], ["abcdefg","gfedcbaaa","eaabcdgfa","befa","dgc","ade"]), ): print Solution().findWords(b, w)
5185d421330d59dc45577e6ed4e046a961461ae6
m-hawke/codeeval
/moderate/17_sum_of_integers.py
970
3.703125
4
import sys for line in open(sys.argv[1]): numbers = [int(x) for x in line.strip().split(',')] max_ = sum(numbers) for length in range(1, len(numbers), 2): # N.B increment by 2 sum_ = sum(numbers[:length]) max_ = sum_ if sum_ > max_ else max_ for i in range(len(numbers)-length): # N.B. the following sum is also a sum of contiguous numbers # for length + 1. We need calculate this once only, and # therefore the length loop (see above) is incremented by 2 # each time. */ sum_ += numbers[i+length] max_ = sum_ if sum_ > max_ else max_ sum_ -= numbers[i] max_ = sum_ if sum_ > max_ else max_ print(max_) #for line in open(sys.argv[1]): # numbers = [int(x) for x in line.strip().split(',')] # print(max([sum(numbers[x:x+i]) # for i in range(1,len(numbers)+1) # for x in range(len(numbers)-i+1)]))
9d1ed42cd4a586df38bb7f2a122db69fbece314a
aidank18/PythonProjects
/montyhall/MontyHall.py
1,052
3.78125
4
from random import random def game(stay): doors = makeDoors() choice = int(random() * 3) for i in range(0, 2): if (i != choice) and doors[i] == "g": doors[i] = "r" break if stay: return doors[choice] else: doors[choice] = "r" for door in doors: if door != "r": return door def makeDoors(): doors = ["g", "g", "c"] for i in range(0, 10): val1 = int(random() * 3) val2 = int(random() * 3) temp = doors[val1] doors[val1] = doors[val2] doors[val2] = temp return doors def tests(stay): cars = 0 for i in range(0, 10000): if game(stay) == "c": cars += 1 probability = cars/10000 if stay: print() print("The probability of picking the car by staying with the same door is", probability) print() else: print() print("The probability of picking the car by switching doors is", probability) print() tests(False)
4b7ef56e7abace03cacb505daa6b34bdf90897b5
sandrahelicka88/codingchallenges
/EveryDayChallenge/happyNumber.py
796
4.09375
4
import unittest '''Write an algorithm to determine if a number is "happy". A happy number is a number defined by the following process: Starting with any positive integer, replace the number by the sum of the squares of its digits, and repeat the process until the number equals 1 (where it will stay), or it loops endlessly in a cycle which does not include 1. Those numbers for which this process ends in 1 are happy numbers.''' def isHappy(n): path = set() while n not in path and n!=1: path.add(n) nextSum = 0 while n: nextSum+=(n%10)**2 n = n//10 n = nextSum return n==1 class Test(unittest.TestCase): def test_happyNumber(self): self.assertTrue(isHappy(19)) if __name__ == '__main__': unittest.main()
35f9a1fc4c45112660f9cd871d1514b348990ddf
Jyun-Neng/LeetCode_Python
/103-binary-tree-zigzag-level-order.py
1,644
4.09375
4
""" Given a binary tree, return the zigzag level order traversal of its nodes' values. (ie, from left to right, then right to left for the next level and alternate between). For example: Given binary tree [3,9,20,null,null,15,7], 3 / \ 9 20 / \ 15 7 return its zigzag level order traversal as: [ [3], [20,9], [15,7] ] """ import collections # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def zigzagLevelOrder(self, root): """ :type root: TreeNode :rtype: List[List[int]] """ if not root: return [] queue = collections.deque([]) queue.append(root) reverse = False res = [] # BFS while queue: size = len(queue) nodes = [0 for i in range(size)] for i in range(size): node = queue.popleft() idx = i if not reverse else size - 1 - i nodes[idx] = node.val if node.left: queue.append(node.left) if node.right: queue.append(node.right) reverse = not reverse res.append(nodes) return res if __name__ == "__main__": vals = [3, 9, 20, None, None, 15, 7] root = TreeNode(vals[0]) node = root node.left = TreeNode(vals[1]) node.right = TreeNode(vals[2]) node = node.right node.left = TreeNode(vals[5]) node.right = TreeNode(vals[6]) print(Solution().zigzagLevelOrder(root))
eee031351c4115a1057b3b81293fe25a17ad8066
jrinder42/Advent-of-Code-2020
/day15/day15.py
767
3.5
4
''' Advent of Code 2020 - Day 15 ''' lookup = {0: [1], 3: [2], 1: [3], 6: [4], 7: [5], 5: [6]} turn = 7 prev = 5 while turn != 2020 + 1: # Part 1 #while turn != 30_000_000 + 1: # Part 2 if prev in lookup and len(lookup[prev]) == 1: prev = 0 if prev in lookup: lookup[prev].append(turn) else: lookup[prev] = [turn] elif prev in lookup: # not unique prev = lookup[prev][-1] - lookup[prev][-2] # most recent - second most recent if prev in lookup: lookup[prev].append(turn) else: lookup[prev] = [turn] turn += 1 print('Advent of Code Day 15 Answer Part 1 / 2:', prev) # depends on while loop condition
0838fcd3cd4ab10f7dffb318fdf9534e7db0e079
rongduan-zhu/codejam2016
/1a/c/c.py
2,061
3.578125
4
#!/usr/bin/env python import sys class Node: def __init__(self, outgoing, incoming): self.outgoing = outgoing self.incoming = incoming def solve(fname): with open(fname) as f: tests = int(f.readline()) for i in xrange(tests): f.readline() deps = map(int, f.readline().split(' ')) two_node_cycles = [] nodes = {} for j in xrange(1, len(deps) + 1): # setup outgoing nodes if j in nodes: nodes[j].outgoing = deps[j - 1] else: nodes[j] = Node(deps[j - 1], []) # setup incoming nodes if deps[j - 1] in nodes: nodes[deps[j - 1]].incoming.append(j) else: nodes[deps[j - 1]] = Node(None, incoming=[j]) # setup two node cycles if nodes[j].outgoing in nodes and j == nodes[nodes[j].outgoing].outgoing: two_node_cycles.append((j, nodes[j].outgoing)) print 'Case #{}: {}'.format(i + 1, traverse(nodes, two_node_cycles)) def traverse(nodes, two_node_cycles): bff_cycle = 0 visited = {} for n1, n2 in two_node_cycles: visited[n1] = True visited[n2] = True bff_cycle += traverse_up(n1, nodes, visited, 1) bff_cycle += traverse_up(n2, nodes, visited, 1) for node in nodes: if node not in visited: visited_in_path = set() visited_in_path.add(node) start = node current = nodes[start].outgoing longest_cycle = 1 while current not in visited_in_path: visited_in_path.add(current) current = nodes[current].outgoing longest_cycle += 1 if start == current and longest_cycle > bff_cycle: bff_cycle = longest_cycle return bff_cycle def traverse_up(node, nodes, visited, length): max_len = length for up_node in nodes[node].incoming: if up_node not in visited: visited[up_node] = True up_length = traverse_up(up_node, nodes, visited, length + 1) max_len = up_length if up_length > max_len else max_len return max_len if __name__ == '__main__': solve(sys.argv[1])
d6c1dd48d0c1b6bdc9c5bd7ebd936b30201112e5
febikamBU/string-matching
/bmh.py
2,182
4.03125
4
from collections import defaultdict from sys import argv, exit from comparer import Comparer def precalc(pattern): """ Create the precalculation table: a dictionary of the number of characters after the last occurrence of a given character. This provides the number of characters to shift by in the case of a mismatch. Defaults to the length of the string. """ table = defaultdict(lambda: len(pattern)) for i in range(len(pattern) - 1): table[pattern[i]] = len(pattern) - i - 1 return table def run_bmh(table, text, pattern, compare): """ Using the precalculated table, yield every match of the pattern in the text, making comparisons with the provided compare function. """ # Currently attempted offset of the pattern in the text skip = 0 # Keep going until the pattern overflows the text while skip + len(pattern) <= len(text): # Start matching from the end of the string i = len(pattern) - 1 # Match each element in the pattern, from the end to the beginning while i >= 0 and compare(text, skip+i, pattern, i): i -= 1 # If the start of the string has been reached (and so every comparison # was successful), then yield the position if i < 0: yield skip # Shift by the precalculated offset given by the character in the text # at the far right of the pattern, so that it lines up with an equal # character in the pattern, if posssible. Otherwise the pattern is # moved to after this position. skip += table[text[skip + len(pattern) - 1]] if __name__ == "__main__": try: pattern = argv[1] text = argv[2] except IndexError: print("usage: python3 bmh.py PATTERN TEXT") exit() print(f'Searching for "{pattern}" in "{text}".') print() compare = Comparer() table = precalc(pattern) print(f'Precomputed shift table: {dict(table)}') print() for match in run_bmh(table, text, pattern, compare): print(f"Match found at position {match}") print(f"{compare.count} comparisons")
ed83eebfc06efbb76af1baf6f9996f4389556824
jhgdike/leetCode
/leetcode_python/1-100/43.py
686
3.578125
4
class Solution(object): """ Python can do it directly by str(int(num1)*int(num2)) """ def multiply(self, num1, num2): """ :type num1: str :type num2: str :rtype: str """ res = [0] * (len(num1) + len(num2)) lengh = len(res) for i, n1 in enumerate(reversed(num1)): for j, n2 in enumerate(reversed(num2)): res[i + j] += int(n1) * int(n2) res[i + j + 1] += res[i + j] / 10 res[i + j] %= 10 pt = lengh while pt > 0 and res[pt - 1] == 0: pt -= 1 res = res[:pt] return ''.join(map(str, res[::-1] or [0]))
db6be99a0fb8e2a18b0470e53a21557ef47a026a
akaliutau/cs-problems-python
/problems/dp/Solution32.py
426
3.875
4
""" Given a string containing just the characters '(' and ')', find the length of the longest valid (well-formed) parentheses substring. Example 1: Input: s = "(()" Output: 2 Explanation: The longest valid parentheses substring is "()". Example 2: Input: s = ")()())" Output: 4 Explanation: The longest valid parentheses substring is "()()". """ class Solution32: pass
f1d2f920c551650c468ce2db140b2a45bd44bbf7
DayGitH/Python-Challenges
/DailyProgrammer/DP20141231B.py
1,290
4.09375
4
""" [2014-12-31] Challenge #195 [Intermediate] Math Dice https://www.reddit.com/r/dailyprogrammer/comments/2qxrtk/20141231_challenge_195_intermediate_math_dice/ #Description: Math Dice is a game where you use dice and number combinations to score. It's a neat way for kids to get mathematical dexterity. In the game, you first roll the 12-sided Target Die to get your target number, then roll the five 6-sided Scoring Dice. Using addition and/or subtraction, combine the Scoring Dice to match the target number. The number of dice you used to achieve the target number is your score for that round. For more information, see the product page for the game: (http://www.thinkfun.com/mathdice) #Input: You'll be given the dimensions of the dice as NdX where N is the number of dice to roll and X is the size of the dice. In standard Math Dice Jr you have 1d12 and 5d6. #Output: You should emit the dice you rolled and then the equation with the dice combined. E.g. 9, 1 3 1 3 5 3 + 3 + 5 - 1 - 1 = 9 #Challenge Inputs: 1d12 5d6 1d20 10d6 1d100 50d6 #Challenge Credit: Thanks to /u/jnazario for his idea -- posted in /r/dailyprogrammer_ideas #New year: Happy New Year to everyone!! Welcome to Y2k+15 """ def main(): pass if __name__ == "__main__": main()
4b2eb7f54b2898ce241dddfc0cc7966971ac4589
Keshav1506/competitive_programming
/Hashing/006_geeksforgeeks_Swapping_Pairs_Make_Sum_Equal/Solution.py
3,297
4.03125
4
# # Time : O(N^3); Space: O(N) # @tag : Hashing # @by : Shaikat Majumdar # @date: Aug 27, 2020 # ************************************************************************** # GeeksForGeeks - Swapping pairs make sum equal # # Description: # # Given two arrays of integers A[] and B[] of size N and M, the task is to check if a pair of values (one value from each array) exists such that swapping the elements of the pair will make the sum of two arrays equal. # # Example 1: # # Input: N = 6, M = 4 # A[] = {4, 1, 2, 1, 1, 2} # B[] = (3, 6, 3, 3) # # Output: 1 # Explanation: Sum of elements in A[] = 11 # Sum of elements in B[] = 15, To get same # sum from both arrays, we can swap following # values: 1 from A[] and 3 from B[] # # Example 2: # # Input: N = 4, M = 4 # A[] = {5, 7, 4, 6} # B[] = {1, 2, 3, 8} # # Output: 1 # Explanation: We can swap 6 from array # A[] and 2 from array B[] # # Your Task: # This is a function problem. You don't need to take any input, as it is already accomplished by the driver code. # You just need to complete the function findSwapValues() that takes array A, array B, integer N, and integer M # as parameters and returns 1 if there exists any such pair otherwise returns -1. # # Expected Time Complexity: O(MlogM+NlogN). # Expected Auxiliary Space: O(1). # # ************************************************************************** # Source: https://practice.geeksforgeeks.org/problems/swapping-pairs-make-sum-equal4142/1 (GeeksForGeeks - Swapping pairs make sum equal) # # ************************************************************************** # Solution Explanation # ************************************************************************** # Refer to Solution_Explanation.md. # import unittest class Solution: # Returns sum of elements in list def getSum(self, X): sum = 0 for i in X: sum += i return sum # Finds value of # a - b = (sumA - sumB) / 2 def getTarget(self, A, B): # Calculations of sumd from both lists sum1 = self.getSum(A) sum2 = self.getSum(B) # Because that target must be an integer if (sum1 - sum2) % 2 != 0: return 0 return (sum1 - sum2) / 2 def findSwapValues(self, A, B): # Call for sorting the lists A.sort() B.sort() # Note that target can be negative target = self.getTarget(A, B) # target 0 means, answer is not possible if target == 0: return False i, j = 0, 0 while i < len(A) and j < len(B): diff = A[i] - B[j] if diff == target: return True # Look for a greater value in list A elif diff < target: i += 1 # Look for a greater value in list B else: j += 1 class Test(unittest.TestCase): def setUp(self) -> None: pass def tearDown(self) -> None: pass def test_fourSum(self) -> None: sol = Solution() for A, B, solution in ( [[4, 1, 2, 1, 1, 2], [3, 6, 3, 3], True], [[5, 7, 4, 6], [1, 2, 3, 8], True], ): self.assertEqual(solution, sol.findSwapValues(A, B)) if __name__ == "__main__": unittest.main()
545049864c75b1045885c8eddba22cc60de252d9
betty29/code-1
/recipes/Python/577289_Maclaurinsseriestan1/recipe-577289.py
1,615
4.0625
4
#On the name of ALLAH and may the blessing and peace of Allah #be upon the Messenger of Allah Mohamed Salla Allahu Aliahi Wassalam. #Author : Fouad Teniou #Date : 06/07/10 #version :2.6 """ maclaurin_tan-1 is a function to compute tan-1(x) using maclaurin series and the interval of convergence is -1 <= x <= +1 sin(x) = x - x^3/3 + x^5/5 - x^7/7 ........... """ from math import * def error(number): """ Raises interval of convergence error.""" if number > 1 or number < -1 : raise TypeError,\ "\n<The interval of convergence should be -1 <= value <= 1 \n" def maclaurin_cot(value, k): """ Compute maclaurin's series approximation for tan-1(x) """ global first_value first_value = 0.0 #attempt to Approximate tan-1(x) for a given value try: error(value) for item in xrange(1,k,4): next_value = value**item/float(item) first_value += next_value for arg in range(3,k,4): next_value = -1* value **arg/float(arg) first_value += next_value return round(first_value*180/pi,2) #Raise TypeError if input is not within #the interval of convergence except TypeError,exception: print exception if __name__ == "__main__": maclaurin_cot1 = maclaurin_cot(0.305730681,100) print maclaurin_cot1 maclaurin_cot2 = maclaurin_cot(0.75355405,100) print maclaurin_cot2 maclaurin_cot3 = maclaurin_cot(0.577350269,100) print maclaurin_cot3 ################################################################# #"C:\python #17.0 #37.0 #30.0
c56d992234d558fd0b0b49aa6029d6d287e90f2a
ARSimmons/IntroToPython
/Students/Dave Fugelso/Session 2/ack.py
2,766
4.25
4
''' Dave Fugelso Python Course homework Session 2 Oct. 9 The Ackermann function, A(m, n), is defined: A(m, n) = n+1 if m = 0 A(m-1, 1) if m > 0 and n = 0 A(m-1, A(m, n-1)) if m > 0 and n > 0. See http://en.wikipedia.org/wiki/Ackermann_funciton Create a new module called ack.py in a session02 folder in your student folder. In that module, write a function named ack that performs Ackermann's function. Write a good docstring for your function according to PEP 257. Ackermanns function is not defined for input values less than 0. Validate inputs to your function and return None if they are negative. The wikipedia page provides a table of output values for inputs between 0 and 4. Using this table, add a if __name__ == "__main__": block to test your function. Test each pair of inputs between 0 and 4 and assert that the result produced by your function is the result expected by the wikipedia table. When your module is run from the command line, these tests should be executed. If they all pass, print All Tests Pass as the result. Add your new module to your git clone and commit frequently while working on your implementation. Include good commit messages that explain concisely both what you are doing and why. When you are finished, push your changes to your fork of the class repository in GitHub. Then make a pull request and submit your assignment in Canvas. ''' #Ackermann function def ack(m, n): ''' Calculate the value for Ackermann's function for m, n. ''' if m < 0 or n < 0: return None if m == 0: return n+1 if n == 0: return ack(m-1, 1) return ack (m-1, ack (m, n-1)) class someClass (object): def __init__(self): self.setBody('there') def afunc (self, a): print a, self.getBody() def getBody(self): return self.__body def setBody(self, value): self.__body = value body = property(getBody, setBody, None, "Body property.") if __name__ == "__main__": ''' Unit test for Ackermann function. Print table m = 0,4 and n = 0,4. ''' #Print nicely print 'm/n\t\t', for n in range(0,5): print n, '\t', print '\n' for m in range (0,4): print m,'\t', for n in range(0,5): print '\t', print ack(m, n), print # for the m = 4 row, just print the first one (n = 0) otherwise we hit a stack overflow (maximum resursion) m = 4 print m,'\t', for n in range(0,1): print '\t', print ack(m, n), print '\t-\t-\t-\t-' print 'All Tests Pass' s = someClass () s.afunc('hello') s.body = 'fuck ya!' s.afunc('hello') s.body = 'why not?'
2b6b64ed41e1ed99a4e8a12e1e6ab53e6a9596ef
AusCommsteam/Algorithm-and-Data-Structures-and-Coding-Challenges
/Challenges/shortestWayToFormString.py
7,619
3.78125
4
""" Shortest Way to Form String From any string, we can form a subsequence of that string by deleting some number of characters (possibly no deletions). Given two strings source and target, return the minimum number of subsequences of source such that their concatenation equals target. If the task is impossible, return -1. """ """ Binary Search Create mapping from each source char to the indices in source of that char. Iterate over target, searching for the next index in source of each char. Return -1 if not found. Search is by binary search of the list of indices in source of char. If the next index in source requires wrapping around to the start of source, increment result count. Time: O(n log m) for source of length m and target of length n. Space: O(m) The idea is to create an inverted index that saves the offsets of where each character occurs in source. The index data structure is represented as a hashmap, where the Key is the character, and the Value is the (sorted) list of offsets where this character appears. To run the algorithm, for each character in target, use the index to get the list of possible offsets for this character. Then search this list for next offset which appears after the offset of the previous character. We can use binary search to efficiently search for the next offset in our index. Example with source = "abcab", target = "aabbaac" The inverted index data structure for this example would be: inverted_index = { a: [0, 3] # 'a' appears at index 0, 3 in source b: [1, 4], # 'b' appears at index 1, 4 in source c: [2], # 'c' appears at index 2 in source } Initialize i = -1 (i represents the smallest valid next offset) and loop_cnt = 1 (number of passes through source). Iterate through the target string "aabbaac" a => get the offsets of character 'a' which is [0, 3]. Set i to 1. a => get the offsets of character 'a' which is [0, 3]. Set i to 4. b => get the offsets of character 'b' which is [1, 4]. Set i to 5. b => get the offsets of character 'b' which is [1, 4]. Increment loop_cnt to 2, and Set i to 2. a => get the offsets of character 'a' which is [0, 3]. Set i to 4. a => get the offsets of character 'a' which is [0, 3]. Increment loop_cnt to 3, and Set i to 1. c => get the offsets of character 'c' which is [2]. Set i to 3. We're done iterating through target so return the number of loops (3). The runtime is O(M) to build the index, and O(logM) for each query. There are N queries, so the total runtime is O(M + N*logM). M is the length of source and N is the length of target. The space complexity is O(M), which is the space needed to store the index. """ class Solution: def shortestWay(self, source: str, target: str) -> int: index = collections.defaultdict(list) for i, s in enumerate(source): index[s].append(i) res = 0 i = 0 # next index of source to check for t in target: if t not in index: return -1 # cannot make target if char not in source indices = index[t] j = bisect.bisect_left(indices, i) if j == len(indices): # index in char_indices[c] that is >= i res += 1 # wrap around to beginning of source j = 0 i = indices[j] + 1 # next index in source return res if i == 0 else res + 1 # add 1 for partial source def shortestWay(self, source: str, target: str) -> int: inverted_index = collections.defaultdict(list) for i, ch in enumerate(source): inverted_index[ch].append(i) loop_cnt = 1 i = -1 for ch in target: if ch not in inverted_index: return -1 offset_list_for_ch = inverted_index[ch] # bisect_left(A, x) returns the smallest index j s.t. A[j] >= x. If no such index j exists, it returns len(A). j = bisect.bisect_left(offset_list_for_ch, i) if j == len(offset_list_for_ch): loop_cnt += 1 i = offset_list_for_ch[0] + 1 else: i = offset_list_for_ch[j] + 1 return loop_cnt """ DP The main idea behind this code is also to build up an inverted index data structure for the source string and then to greedily use characters from source to build up the target. In this code, it's the dict array. Each character is mapped to an index where it is found at in source. In this code, dict[i][c - 'a'] represents the earliest index >= i where character c occurs in source. For example, if source = "xyzy", then dict[0]['y' - 'a'] = 1 but dict[2]['y'-'a'] = 3. Also a value of -1, means that there are no occurrences of character c after the index i. So, after this inverted data structure is built (which took O(|Σ|*M) time). We iterate through the characters of our target String. The idxOfS represents the current index we are at in source. For each character c in target, we look for the earliest occurrence of c in source using dict via dict[idxOfS][c - 'a']. If this is -1, then we have not found any other occurrences and hence we need to use a new subsequence of S. Otherwise, we update idxOfS to be dict[idxOfS][c - 'a'] + 1 since we can only choose characters of source that occur after this character if we wish to use the same current subsequence to build the target. dict[idxOfS][c-'a'] = N - 1 is used as a marker value to represent that we have finished consuming the entire source and hence need to use a new subsequence to continue. (I would highly recommend reading @Twohu's examples of how to use the inverted index data structure to greedily build target using the indexes. They go into much more detail). At the end, the check for (idxOfS == 0? 0 : 1) represents whether or not we were in the middle of matching another subsequence. If we were in the middle of matching it, then we would need an extra subsequence count of 1 since it was never accounted for. """ class Solution: def shortestWay(self, source: str, target: str) -> int: if len(set(target) - set(source)) > 0: return -1 m = len(source) move = [[-1]*26 for _ in range(m)] move[0] = [source.find(chr(c)) + 1 for c in range(ord('a'), ord('a') + 26)] for i in range(-1, -m, -1): move[i] = list(map(lambda x: x+1, move[i+1])) move[i][ord(source[i]) - 97] = 1 i = 0 for c in target: i += move[i%m][ord(c)-ord('a')] return i//m + (i%m > 0) """ Greedy Time: O(MN) """ class Solution(object): def shortestWay(self, source, target): def match(st):#match source from st index of target idx=0#idx of source while idx<len(source) and st<n: if source[idx]==target[st]: st+=1 idx+=1 else: idx+=1 return st n=len(target) source_set=set(source) for ch in target: if ch not in source_set: return -1 #match one by one,match string until cannot match anymore. st=0 count=0 while st<n: st=match(st) count+=1 return count class Solution: def shortestWay(self, source: str, target: str) -> int: def inc(): self.cnt += 1 return 0 self.cnt = i = 0 for t in target: i = source.find(t, i) + 1 or source.find(t, inc()) + 1 if not i: return -1 return self.cnt + 1
6c8e13d208beafae5b669f07b0dadd18d1c6a2b4
dltech-xyz/Alg_Py_Xiangjie
/第5章/huo.py
1,953
3.921875
4
class Node(object): def __init__(self, value, left=None, right=None): self.value = value self.left = None self.right = None class Huffman(object): def __init__(self, items=[]): while len(items)!=1: a, b = items[0], items[1] newvalue = a.value + b.value newnode = Node(value=newvalue) newnode.left, newnode.right = a, b items.remove(a) items.remove(b) items.append(newnode) items = sorted(items, key=lambda node: int(node.value)) # 每次都要记得更新新的霍夫曼树的根节点 self.root = newnode def print(self): queue = [self.root] while queue: current = queue.pop(0) print(current.value, end='\t') if(current.left): queue.append(current.left) if current.right: queue.append(current.right) print() def sortlists(lists): return sorted(lists, key=lambda node: int(node.value)) def create_huffman_tree(lists): while len(lists)>1: a, b = lists[0], lists[1] node = Node(value=int(a.value+b.value)) node.left, node.right = a, b lists.remove(a) lists.remove(b) lists.append(node) lists = sorted(lists, key=lambda node: node.value) return lists def scan(root): if root: queue = [root] while queue: current = queue.pop(0) print(current.value, end='\t') if current.left: queue.append(current.left) if current.right: queue.append(current.right) if __name__ == '__main__': ls = [Node(i) for i in range(1, 5)] huffman = Huffman(items=ls) huffman.print() print('===================================') lssl = [Node(i) for i in range(1, 5)] root = create_huffman_tree(lssl)[0] scan(root)
5b5b2327e84313fca65952be1f103454b6f63797
annatjohansson/complex_dynamics
/Python scripts/M_DEM.py
2,566
3.8125
4
def M_Dist(cx, cy, max_it, R): """Computes the distance of a point z = x + iy from the Mandelbrot set """ """Inputs: c = cx + cy: translation max_it: maximum number of iterations R: escape radius (squared)""" x = 0.0 y = 0.0 x2 = 0.0 y2 = 0.0 dist = 0.0 it = 0 # List to store the orbit of the origin X = [0]*(max_it + 1) Y = [0]*(max_it + 1) # Iterate p until orbit exceeds escape radius or max no. of iterations is reached while (it < max_it) and (x2 + y2 < R): temp = x2 - y2 + cx y = 2*x*y + cy x = temp x2 = x*x y2 = y*y # Store the orbit X[it] = x Y[it] = y it = it + 1 # If the escape radius is exceeded, calculate the distance from M if (x2 + y2 > R): x_der = 0.0 y_der = 0.0 i = 0 flag = False # Approximate the derivative while (i < it) and (flag == False): temp = 2*(X[i]*x_der - Y[i]*y_der)+1 y_der = 2*(Y[i]*x_der + X[i]*y_der) x_der = temp flag = max(abs(x_der),abs(y_der)) > (2 ** 31 - 1) i = i+1 if (flag == False): dist = np.log(x2 + y2)*np.sqrt(x2 + y2)/np.sqrt(x_der*x_der + y_der*y_der) return dist def M_DEM(M, nx, ny, x_min, x_max, y_min, y_max, max_it, R, threshold): """Computes an approximation of the Mandelbrot set via the distance estimation method""" """Inputs: M: an output array of size nx*ny nx, ny: the image resolution in the x- and y direction x_min, x_max: the limits of the x-axis in the region y_min, y_max: the limits of the y-axis in the region max_it: the maximum number of iterations R: escape radius (squared) threshold: critical distance from the Mandelbrot set (in pixel units)""" # Calculate the threshold in terms of distance in the complex plane delta = threshold*(x_max-x_min)/(nx-1) # For each pixel in the nx*ny grid, calculate the distance of the point for iy in range(0, ny): cy = y_min + iy*(y_max - y_min)/(ny - 1) for ix in range(0, nx): cx = x_min + ix*(x_max - x_min)/(nx - 1) #Determine whether distance is smaller than critical distance dist = M_Dist(cx, cy, max_it, R) if dist < delta: M[ix][iy] = 1 else: M[ix][iy] = 0 return M
5dda83f2be9b2a8a87c459d3ba1dfe867633e9a2
dexterchan/DailyChallenge
/MAR2020/PhoneNumbers.py
2,568
3.9375
4
#Skill: Tries #Difficulty : EASY #Given a phone number, return all valid words that can be created using that phone number. #For instance, given the phone number 364 #we can construct the words ['dog', 'fog']. #Here's a starting point: #Analysis #If done by brutal force, time cost is exponent to find all possibilties #To reduce to linear, we can use data structure Tries #Create a Tries from valid words... using digit sequence.... time cost O[N] -> linear #To search for word with number, it cost O[N] #space complexity is Linear O(N) from typing import List lettersMaps = { 1: [], 2: ['a', 'b', 'c'], 3: ['d', 'e', 'f'], 4: ['g', 'h', 'i'], 5: ['j', 'k', 'l'], 6: ['m', 'n', 'o'], 7: ['p', 'q', 'r', 's'], 8: ['t', 'u', 'v'], 9: ['w', 'x', 'y', 'z'], 0: [] } class Tries(): def __init__(self, isWord=False): self.digits = [None]*10 self.isWord = isWord self.bagOfWords = [] def insertWord(self, word): self.isWord = True self.bagOfWords.append(word) def get(self, digit): return self.digits[digit] def assign(self, digit): self.digits[digit] = Tries() validWords = ['dog', 'fish', 'cat', 'fog'] class PhoneNumbers(): def __init__(self): self.tries = Tries() def constructTries(self, validWords:List[str]): for w in validWords: tries = self.tries cnt = 0 maxLen = len(w) for ch in w: d = self.__mapChToNumber(ch) if d is None: raise Exception("not found character to map digit:"+ch) if tries.get(d) is None: tries.assign(d) tries = tries.get(d) cnt = cnt + 1 if cnt == maxLen: tries.insertWord(w) def __mapChToNumber(self, ch): for (d, l) in lettersMaps.items(): if ch in l: return d return None def getWords(self, phoneNumbers:str): tries = self.tries result = [] for d in phoneNumbers: tries = tries.get(int(d)) if tries is None: return result result = tries.bagOfWords return result phoneNumbers = PhoneNumbers() phoneNumbers.constructTries(validWords) def makeWords(phone): #Fill this in phoneNumbersRef = phoneNumbers return phoneNumbers.getWords(phone) if __name__ == "__main__": print(makeWords('364')) # ['dog', 'fog'] print(makeWords('3474'))
2e027c271f142affced4a4f873058702cea3487b
Leahxuliu/Data-Structure-And-Algorithm
/Python/Binary Search Tree/669.Trim a Binary Search Tree.py
1,471
4.09375
4
# !/usr/bin/python # -*- coding: utf-8 -*- # @Time : 2020/03/30 # @Author : XU Liu # @FileName: 669.Trim a Binary Search Tree.py ''' 1. 题目类型: BST 2. 题目要求与理解: Trim a Binary Search Tree(修剪树) 给定一个二叉搜索树,同时给定最小边界 L 和最大边界 R。通过修剪二叉搜索树,使得所有节点的值在 [L, R] 中 (R>=L) 3. 解题思路: 对比R, L, root之间的大小关系,类似二分法里找一定范围内的值 用recursion a. end: root is None b. R < root.val --> 留下left subtree, 缩小范围 c. l > root.val --> 留下right subtree, 缩小范围 d. L <= root val and R >= root.val --> 留下both sides of the tree 4. 输出输入以及边界条件: input: root: TreeNode, L: int, R: int output: TreeNode corner case: None 5. 空间时间复杂度 ''' # Definition for a binary tree node. class TreeNode: def __init__(self, x): self.val = x self.left = None self.right = None class Solution: def trimBST(self, root, L, R): if root == None: return None if R < root.val: return self.trimBST(root.left, L, R) if L > root.val: return self.trimBST(root.right, L, R) if L <= root.val and R >= root.val: root.left = self.trimBST(root.left, L, R) root.right = self.trimBST(root.right, L, R) return root
304f5e570b6810e9a79473cfa6b1fbda91a02a90
boop34/adventofcode-2020
/day_13/day_13.py
1,810
3.609375
4
#!/usr/bin/env python3 # fetch the input with open('input.txt', 'r') as f: # initialize the departure time d_time = int(f.readline().strip()) # get the bus information bus_ids = f.readline().strip().split(',') # include the 'x' for the second part of the puzzle bus_ids = list((int (i) if i != 'x' else -1) for i in bus_ids) # bus_ids = list(map(int, (filter(lambda x: x != 'x', bus_ids)))) def solve1(d_time, bus_ids): # loop untill we find the perfect bus while True: # check if the current departure time can be fulfilled by buses for bus in bus_ids: # if -1 then skip if bus == -1: continue # chec if the current departure time is divisable by the bus id if d_time % bus == 0: return d_time, bus # otherwise increment the d_time d_time += 1 # ideally the control should never get here return None # for the first puzzle d_time_, bus_id = solve1(d_time, bus_ids) print(bus_id * (d_time_ - d_time)) # for the second part we have to implement Chinese Remainder Theorem # https://en.wikipedia.org/wiki/Chinese_remainder_theorem # initialize a list to store the remainder and moduli tuple l = [] # populate the list for i, r in enumerate(bus_ids): # if -1 then skip if r == -1: continue # otherwise valid bus id else: l.append((r, (r - i) % r)) # store the first moduli and the required value n, x = l[0] # https://en.wikipedia.org/wiki/Chinese_remainder_theorem#Search_by_sieving # https://github.com/woj76/adventofcode2020/blob/main/src/day13.py # iterate over the the list for n_, a in l[1:]: while True: x += n if x % n_ == a: break n *= n_ # for the second puzzle print(x)
16c125fbe1b7e1dfeba8515f38a5e88cf73e5380
sanket-qp/IK
/16-Strings/longest_repeating_substring.py
6,042
4.125
4
""" Longest repeating substring Approaches: (1) Brute force: Generate all substrings and count their occurrence Time Complexity: O(N^4) = O(N^2) for generating all substrings + O(N^2) for num_occurrence (string compare also takes O(N)) Space Complexity: O(1) (2) Using radix tree: We'll add all the suffixes of a given string in to a radix tree. Then we'll find the node with most termination character ($) in it's subtree. A node in the radix tree represents a prefix and all the children represents suffixes whose prefix is a current node. That means that the node which has most termination characters is a prefix of more than one suffixes We need to find such node which has most $ under it. so, to find most repeating substring, we'll just find a node with maximum $ in it'subtree. -------- Now, to find Longest repeating substring, we'll find a node which is farthest (i.e. longest) from the root and has multiple $s in it's subtree Example: banana: ana is a prefix of anana and ana ana is the Longest repeating substring mississippi: issi is prefix of issippi and issiissippi issi is the Longest repeating substring """ from radix_tree import RadixTree def all_substrings(s): for i in range(len(s)): for j in range(i + 1, len(s) + 1): yield s[i:j] def num_occurrence(s, substr): n = 0 for idx in range(len(s) - len(substr) + 1): temp = s[idx:idx + len(substr)] # print temp if temp == substr: n += 1 return n def longest_repeating_substring_brute_force(s): max_len = 1 longest_so_far = s[0] most_occurred = 1 for substr in all_substrings(s): n = num_occurrence(s, substr) if len(substr) > max_len and n >= most_occurred and n > 1: max_len = max(max_len, len(substr)) most_occurred = n longest_so_far = substr return longest_so_far def all_suffixes(s): for i in range(len(s) - 1, -1, -1): yield s[i:] def xnode_with_max_termination_chars(root): def get_node(node): if not node: return (None, 0, 0) if node.is_leaf(): return (node, 1, 1) _max = 0 chosen_node = None _sum = 0 for child in node.children: n, num, sum_child = get_node(child) _sum += num if sum_child > _max: _max = sum_child chosen_node = child print "chosen: %s, sum: %s" % (chosen_node, sum_child) print "child: %s, total: %s" % (child, _sum) return chosen_node, _max, _sum node, _max, _sum = get_node(root) print "node: %s, max: %s, sum: %s" % (node, _max, _sum) def node_with_max_termination_chars(root): def get_max(node): if not node: return 0 if node.is_leaf(): return 1 _sum = 0 for child in node.children: _sum += get_max(child) return _sum max_repeating_node = None max_occurrence = 0 for child in root.children: temp = get_max(child) if temp > max_occurrence: max_repeating_node = child max_occurrence = temp return max_repeating_node, max_occurrence def most_repeating_substring_using_radix_tree(s): tree = RadixTree() for suffix in all_suffixes(s): tree.add_word(suffix) tree.level_order() return node_with_max_termination_chars(tree.root) def longest_node_with_max_termination_chars(root): def get_longest(node): if not node: return 0, None if node.is_leaf(): return 1, node.key total = 0 longest_so_far = "" max_dollars = 0 for child in node.children: num_dollars, longest = get_longest(child) total += num_dollars # find the longest and most repeating if num_dollars > max_dollars: longest_so_far = longest max_dollars = num_dollars longest_so_far = node.key + longest_so_far return total, longest_so_far _max = 0 longest_repeating = None for child in root.children: total, longest = get_longest(child) print "%s: %s, total: %s" % (child.key, longest, total) if total > _max: _max = total longest_repeating = longest return longest_repeating[:-1] def longest_repeating_substring_using_radix_tree(s): """ root asks each of the children that give me the number of $ in your subtree and which one is the longest """ tree = RadixTree() for suffix in all_suffixes(s): tree.add_word(suffix) longest = longest_node_with_max_termination_chars(tree.root) # print "longest: %s" % longest return longest def main(): assert 2 == num_occurrence("banana", "ana") assert 3 == num_occurrence("banana", "a") assert 2 == num_occurrence("banana", "na") assert 2 == num_occurrence("banana", "an") assert 1 == num_occurrence("banana", "b") assert 0 == num_occurrence("banana", "xyz") assert "ana" == longest_repeating_substring_brute_force("banana") assert "a" == longest_repeating_substring_brute_force("abcdef") node, total = most_repeating_substring_using_radix_tree("banana") assert "a" == node.key assert 3 == total node, total = most_repeating_substring_using_radix_tree("mississippi") assert "i" == node.key assert 4 == total assert "ana" == longest_repeating_substring_using_radix_tree("banana") assert "issi" == longest_repeating_substring_using_radix_tree("mississippi") assert "aaa" == longest_repeating_substring_using_radix_tree("aaaa") if __name__ == '__main__': main()
0bb7b65666ac17d8207a34eea9141ea700d5aa46
N11K6/Digi_FX
/Distortion/Valve.py
1,552
3.5
4
#!/usr/bin/env python3 # -*- coding: utf-8 -*- """ This function applies distortion to a given audio signal by modelling the effects from a vacuum tube. Input parameters are the signal vector x, pre-gain G, "work point" Q, amount of distortion D, and pole positions r1 and r2 for the two filters used. @author: nk """ import numpy as np from scipy import signal from scipy.io import wavfile #%% def Valve(x,G=1,Q=-0.05,D=400,r1=0.97,r2=0.8): # Normalize input: x = x / (np.max(np.abs(x))) # Apply pre-gain: x *= G # Oversampling: x_over = signal.resample(x, 8 * len(x)) if Q == 0: y_over = x_over/(1-np.exp(-D * x_over)) - 1 / D else: # Apply Distortion: PLUS = Q / (1-np.exp(D*Q)) EQUAL_QX = 1 / D + Q / (1 - np.exp(D * Q)) # Logical indexing: logiQ = (x_over % Q != 0).astype(int) x_Q = x_over - Q y_0 = - (logiQ - 1) * EQUAL_QX y_1 = (logiQ * x_Q) / (1 - np.exp(-D * (logiQ * x_over -Q)))+PLUS y_over = y_0 + y_1 # Downsampling: y = signal.decimate(y_over, 8) # Filtering: B = [1, -2, 1] A = [1, -2*r1, r1**2] y = signal.filtfilt(B, A, y) b = 1-r2 a = [1, -r2] y = signal.filtfilt(b, a, y) # Normalization: y /= np.max(np.abs(y)) return y #%% if __name__ == "__main__": G=1 Q=-0.05 D=400 r1=0.97 r2=0.8 sr, data = wavfile.read("../TestGuitarPhraseMono.wav") y = Valve(data,G,Q,D,r1,r2) wavfile.write("example_Valve.wav", sr, y.astype(np.float32))
3690eb92ccb03029609dfd0ac4f38bfb363fb90e
zeroviral/leetcode_stuff
/trapping-rain-water/trapping-rain-water.py
1,519
3.75
4
class Solution: def trap(self, height: List[int]) -> int: ''' Setup: We need - leftmax, rightmax, left pointer, right pointer and area. 1. We will begin by declaring the variables, which are all 0 except right, which is going to close from the end. 2. While left < right, we iterate and check our positional index values. 2.1. If our left value is less than or equal to our right value, we will do the following: 2.1.1. We will update the leftmax = max(leftmax, value_at_left_index) 2.1.2. We will add to area: the abs(value_at_left_index - leftmax) 2.1.3. We will increment the right pointer. 2.2. If our rught value is smaller than the left, we will do the same as left, but with right values. 2.2.1. Update rightmax = max(rightmax, value_at_right_index) 2.2.2. Update the area to the abs(rightmax - value_at_right_index) 2.2.3. Increment the right pointer. 3. Return the area. ''' leftmax = rightmax = left = area = 0 right = len(height) - 1 while left < right: if height[left] <= height[right]: leftmax = max(leftmax, height[left]) area += abs(height[left] - leftmax) left += 1 else: rightmax = max(height[right], rightmax) area += abs(height[right] - rightmax) right -= 1 return area
null
null
null
null
null
null
null

No dataset card yet

Downloads last month
3