Dataset Viewer
Auto-converted to Parquet
record_id
stringlengths
12
12
mine_type
stringclasses
4 values
country
stringclasses
5 values
age
int64
18
65
gender
stringclasses
2 values
employment_years
float64
0.5
40
silica_exposed
bool
2 classes
job_category
stringclasses
11 values
hiv_status
stringclasses
2 values
silicosis_status
stringclasses
2 values
tb_history
stringclasses
2 values
tb_current
stringclasses
2 values
silico_tb
bool
2 classes
respiratory_symptoms
stringclasses
2 values
comorbidities
stringclasses
2 values
screening_year
int64
2.02k
2.02k
OCC-0A975D4F
artisanal
south_africa
30
male
14
true
processor
negative
negative
no
negative
false
yes
yes
2,020
OCC-D89067C3
formal_platinum
ghana
25
male
7
true
supervisor
negative
negative
no
negative
false
yes
no
2,024
OCC-09A1AE4D
artisanal
tanzania
23
male
6.7
true
general
negative
negative
yes
negative
false
no
no
2,024
OCC-118F48BC
artisanal
south_africa
18
male
2
true
processor
negative
negative
yes
negative
false
no
no
2,023
OCC-20D762E7
formal_gold
south_africa
55
male
5.7
true
winch_operator
positive
negative
no
negative
false
yes
yes
2,024
OCC-A889BAB7
artisanal
zimbabwe
36
male
3.3
true
processor
negative
negative
no
positive
false
yes
yes
2,023
OCC-3B8E184D
artisanal
tanzania
47
male
1
true
general
positive
positive
yes
positive
true
yes
no
2,020
OCC-F1A064DD
artisanal
ghana
19
male
0.7
true
digger
negative
negative
no
positive
false
yes
no
2,023
OCC-DBBD6BF4
formal_gold
ghana
56
male
19.6
true
driller
negative
positive
yes
negative
false
yes
no
2,024
OCC-AEF9A1B3
formal_coal
zimbabwe
39
female
21
true
loader_operator
negative
negative
no
negative
false
no
no
2,024
OCC-66F21E4D
formal_platinum
south_africa
49
male
16.5
false
loader_operator
negative
negative
no
positive
false
yes
no
2,023
OCC-C7431689
artisanal
zimbabwe
40
male
1.1
true
digger
positive
negative
no
negative
false
yes
yes
2,019
OCC-409E868E
artisanal
south_africa
47
male
12.5
true
digger
positive
negative
yes
negative
false
no
no
2,023
OCC-2FB73A24
artisanal
ghana
18
male
1.1
true
digger
negative
positive
yes
positive
true
yes
no
2,018
OCC-01396CA1
formal_platinum
south_africa
42
female
20.7
false
winch_operator
negative
negative
no
negative
false
no
no
2,022
OCC-5A5C7D7E
formal_gold
south_africa
46
female
12.5
true
other
negative
negative
no
negative
false
yes
no
2,020
OCC-E9C4E640
formal_coal
zimbabwe
33
male
15
true
maintenance
negative
negative
no
negative
false
no
no
2,019
OCC-0544AB3F
formal_gold
zimbabwe
50
female
14.3
true
other
negative
negative
yes
positive
false
yes
yes
2,024
OCC-A488ADE3
artisanal
ghana
34
male
12.2
true
digger
negative
negative
no
negative
false
no
no
2,023
OCC-1956B6EC
artisanal
zimbabwe
58
female
3.3
true
processor
negative
negative
no
negative
false
yes
no
2,022
OCC-D245B613
artisanal
drc
44
male
9.9
true
digger
positive
negative
no
negative
false
yes
no
2,022
OCC-F79DA141
formal_platinum
tanzania
28
male
5.2
true
winch_operator
positive
negative
yes
positive
false
yes
no
2,019
OCC-9B1E9640
artisanal
tanzania
18
male
2
true
transporter
negative
negative
no
negative
false
yes
no
2,021
OCC-B25E6ABD
artisanal
ghana
45
male
5.8
true
transporter
negative
negative
no
positive
false
yes
no
2,020
OCC-C56967CC
artisanal
ghana
28
male
8.3
true
processor
negative
negative
no
negative
false
no
no
2,024
OCC-8313C386
formal_gold
ghana
26
male
8
false
loader_operator
negative
negative
no
negative
false
no
no
2,022
OCC-532F8BF3
formal_coal
zimbabwe
43
male
24.4
false
blaster
negative
negative
no
negative
false
no
no
2,024
OCC-1CD38E40
formal_gold
south_africa
42
male
24
true
blaster
negative
negative
no
negative
false
no
no
2,019
OCC-F2BF477A
formal_gold
zimbabwe
47
male
28.7
true
driller
negative
negative
no
negative
false
yes
yes
2,020
OCC-12AFFFC0
artisanal
south_africa
46
male
2.4
true
processor
negative
negative
no
negative
false
no
yes
2,022
OCC-55E4F294
artisanal
south_africa
28
male
0.5
true
digger
negative
negative
no
negative
false
no
no
2,024
OCC-4DC806C0
artisanal
tanzania
36
male
6.3
true
transporter
negative
negative
no
positive
false
yes
no
2,018
OCC-6B41B346
formal_platinum
south_africa
38
male
8.7
true
winch_operator
negative
negative
no
negative
false
yes
no
2,018
OCC-E000B1C3
formal_platinum
zimbabwe
63
male
22
false
other
positive
negative
yes
negative
false
yes
no
2,023
OCC-98E03574
formal_coal
ghana
46
male
18.5
true
supervisor
negative
negative
no
negative
false
no
yes
2,018
OCC-3EA6C282
formal_gold
south_africa
46
male
21.5
true
driller
positive
positive
yes
positive
true
yes
no
2,020
OCC-D4E10962
formal_gold
tanzania
46
male
23.3
true
driller
negative
positive
no
negative
false
yes
no
2,022
OCC-C2AD1614
formal_coal
south_africa
54
male
11.4
true
driller
negative
positive
no
negative
false
yes
no
2,020
OCC-5EC7C531
formal_gold
tanzania
50
male
20.9
false
maintenance
positive
negative
yes
negative
false
yes
no
2,023
OCC-6DE70F5F
artisanal
tanzania
30
male
2.8
true
processor
negative
negative
no
negative
false
no
no
2,018
OCC-2A082FF4
formal_platinum
south_africa
48
male
29
true
winch_operator
positive
positive
no
negative
false
yes
no
2,022
OCC-B2637407
artisanal
south_africa
37
male
5.1
true
general
negative
negative
no
negative
false
yes
no
2,022
OCC-4E56D7B3
artisanal
south_africa
30
male
7
true
processor
negative
negative
no
negative
false
no
no
2,019
OCC-0F126E01
formal_platinum
zimbabwe
51
female
31.6
true
supervisor
negative
negative
yes
negative
false
no
no
2,022
OCC-C4852958
artisanal
south_africa
34
male
1.5
true
transporter
positive
positive
yes
positive
true
no
no
2,021
OCC-6DD857E2
artisanal
drc
22
male
3.2
true
digger
negative
negative
no
negative
false
yes
no
2,024
OCC-D41550C0
formal_platinum
south_africa
26
male
8
true
driller
negative
negative
no
negative
false
no
no
2,023
OCC-158A80CF
formal_platinum
tanzania
26
male
8
true
maintenance
negative
negative
no
negative
false
yes
no
2,023
OCC-18494D24
artisanal
south_africa
43
male
2.5
true
digger
negative
negative
yes
negative
false
no
no
2,021
OCC-5B72201D
formal_gold
drc
43
male
16.9
true
other
positive
positive
yes
negative
false
no
no
2,022
OCC-2B89035D
formal_gold
south_africa
42
male
24
true
driller
negative
positive
no
negative
false
yes
yes
2,018
OCC-CD7C498E
formal_gold
zimbabwe
50
male
8.7
true
other
negative
negative
no
negative
false
no
no
2,020
OCC-781F2611
artisanal
zimbabwe
39
female
0.5
true
processor
negative
negative
no
negative
false
yes
no
2,020
OCC-A1329967
artisanal
south_africa
18
male
2
true
processor
negative
negative
yes
negative
false
yes
no
2,018
OCC-D94D207E
artisanal
tanzania
50
male
6.9
true
processor
negative
negative
no
negative
false
no
no
2,023
OCC-B6D9ED36
artisanal
south_africa
35
male
0.5
false
general
positive
negative
no
negative
false
yes
no
2,022
OCC-547EF76F
formal_coal
zimbabwe
44
male
14.7
true
other
negative
negative
no
negative
false
no
no
2,020
OCC-6DE4B350
formal_coal
zimbabwe
50
male
8.3
true
loader_operator
negative
negative
no
negative
false
no
no
2,018
OCC-0195D979
formal_gold
ghana
32
male
14
true
winch_operator
positive
positive
yes
positive
true
yes
no
2,024
OCC-51DBA21C
formal_gold
south_africa
44
male
25.4
true
loader_operator
positive
positive
yes
positive
true
yes
yes
2,022
OCC-A7D49FDC
artisanal
south_africa
39
male
3.1
true
digger
negative
negative
yes
negative
false
yes
no
2,023
OCC-DB714F66
formal_coal
south_africa
31
male
13
true
winch_operator
negative
positive
yes
negative
false
yes
yes
2,018
OCC-04A39D53
formal_coal
south_africa
48
male
13.7
false
other
positive
negative
yes
negative
false
no
no
2,024
OCC-08CD857F
artisanal
south_africa
47
male
2.5
true
general
negative
negative
no
negative
false
no
no
2,018
OCC-F6042D1C
artisanal
drc
41
female
5.2
true
general
negative
negative
no
negative
false
no
no
2,024
OCC-A80F5415
formal_coal
zimbabwe
25
male
7
true
loader_operator
negative
negative
no
positive
false
yes
no
2,021
OCC-9DAAB81A
formal_coal
ghana
47
male
14.7
false
supervisor
negative
negative
no
negative
false
no
yes
2,024
OCC-35413659
formal_platinum
zimbabwe
29
male
9.3
true
maintenance
negative
negative
no
negative
false
no
no
2,024
OCC-8CB90F51
formal_gold
south_africa
40
male
22
true
winch_operator
negative
negative
no
negative
false
no
no
2,024
OCC-AAEAEA5A
formal_platinum
zimbabwe
53
male
35
false
loader_operator
negative
negative
no
negative
false
no
no
2,023
OCC-4BF4F688
formal_gold
south_africa
46
male
28
true
other
positive
negative
no
negative
false
yes
no
2,018
OCC-FE4F4268
formal_platinum
south_africa
28
male
10
true
blaster
positive
negative
no
negative
false
no
no
2,022
OCC-2D120479
artisanal
zimbabwe
52
male
0.9
true
digger
negative
negative
no
negative
false
no
no
2,021
OCC-42C6EC7F
formal_gold
zimbabwe
37
male
17.9
true
winch_operator
positive
positive
no
negative
false
yes
no
2,023
OCC-7C625F49
formal_gold
drc
29
male
10.4
true
other
positive
negative
yes
positive
false
yes
no
2,024
OCC-E9A1C569
formal_platinum
south_africa
27
female
9
true
winch_operator
negative
negative
no
negative
false
yes
no
2,021
OCC-F5B9D140
formal_platinum
zimbabwe
45
male
21.9
true
other
negative
negative
no
negative
false
yes
no
2,019
OCC-2C298DC6
artisanal
south_africa
33
male
1.5
true
digger
negative
positive
yes
negative
false
no
no
2,023
OCC-0FC6D160
formal_coal
south_africa
50
male
16.9
false
driller
positive
negative
yes
negative
false
no
no
2,019
OCC-D49927CA
artisanal
ghana
50
male
6.6
true
processor
negative
negative
no
negative
false
no
no
2,021
OCC-28F17A32
artisanal
south_africa
39
male
3.4
true
digger
negative
negative
no
negative
false
yes
no
2,022
OCC-DDEB5EFD
formal_platinum
zimbabwe
48
male
17.5
true
supervisor
negative
positive
yes
positive
true
yes
no
2,024
OCC-03DE4B74
artisanal
zimbabwe
43
male
4.4
true
digger
negative
negative
no
negative
false
no
no
2,023
OCC-E7CEEF93
formal_gold
south_africa
50
male
15.9
true
maintenance
negative
negative
no
negative
false
no
no
2,022
OCC-B4DE613C
formal_gold
drc
44
male
12.6
false
driller
positive
negative
no
negative
false
no
no
2,021
OCC-17D2815A
formal_gold
zimbabwe
41
male
23
true
driller
positive
negative
no
negative
false
yes
no
2,020
OCC-7C7255E2
artisanal
tanzania
42
male
5.7
true
processor
negative
negative
no
negative
false
yes
no
2,023
OCC-76F5917F
formal_coal
zimbabwe
33
male
15
false
winch_operator
negative
negative
no
negative
false
no
no
2,020
OCC-0A40898B
formal_gold
drc
40
male
6.9
true
maintenance
negative
negative
no
positive
false
yes
no
2,019
OCC-5398A0A1
formal_coal
south_africa
31
male
13
false
blaster
negative
negative
no
negative
false
no
no
2,022
OCC-49BE5756
formal_gold
zimbabwe
36
male
18
true
winch_operator
negative
negative
no
negative
false
no
no
2,024
OCC-729EC46B
artisanal
tanzania
53
male
0.6
true
processor
negative
negative
no
negative
false
no
no
2,021
OCC-16970B31
formal_platinum
south_africa
45
male
14.8
true
loader_operator
negative
negative
no
negative
false
yes
no
2,020
OCC-3FAE0288
formal_platinum
zimbabwe
43
male
25
false
other
negative
negative
no
negative
false
yes
no
2,019
OCC-EC9F19E7
formal_platinum
drc
65
male
10.6
true
driller
positive
negative
no
negative
false
no
no
2,023
OCC-01F6C1CC
artisanal
zimbabwe
46
male
6.1
true
digger
positive
positive
yes
positive
true
yes
no
2,022
OCC-21316DCB
formal_platinum
ghana
31
male
13
true
maintenance
positive
positive
yes
negative
false
yes
no
2,019
OCC-86F039E1
formal_gold
ghana
43
male
25
true
other
negative
negative
no
negative
false
no
no
2,022
OCC-917D0BCD
formal_gold
tanzania
30
male
12
false
loader_operator
negative
negative
no
negative
false
yes
no
2,020
OCC-35E6E401
artisanal
tanzania
31
female
6.9
true
general
negative
negative
no
negative
false
yes
no
2,018
End of preview. Expand in Data Studio

African Mining Occupational Health Dataset

Dataset Description

Overview

This dataset models the silicosis-tuberculosis-HIV syndemic affecting mining populations across sub-Saharan Africa. It provides synthetic screening records capturing the complex interplay between occupite dust exposure, infectious disease burden, and occupational health outcomes in both formal and artisanal mining contexts.

The dataset encodes epidemiologically-validated prevalence rates, risk factor associations, and comorbidity patterns derived from cross-sectional health screening studies conducted in Zimbabwe and South Africa.

Dataset Statistics

Attribute Value
Records 5,000
Variables 16
Geographic Scope South Africa, Zimbabwe, Ghana, Tanzania, DRC
Format CSV, Parquet

Data Schema

Variable Dictionary

Variable Type Description Value Range/Categories
record_id string Unique screening record identifier OCC-XXXXXXXX
mine_type categorical Mining operation type formal_gold, formal_platinum, formal_coal, artisanal
country categorical Country of screening south_africa, zimbabwe, ghana, tanzania, drc
age integer Worker age in years 18-65
gender categorical Worker gender male, female
employment_years float Duration of mining employment 0.5-40 years
silica_exposed boolean History of respirable silica exposure True/False
job_category categorical Occupational role driller, winch_operator, blaster, loader_operator, maintenance, supervisor, digger, processor, transporter, general, other
hiv_status categorical HIV serostatus positive, negative
silicosis_status categorical Radiological silicosis diagnosis positive, negative
tb_history categorical Previous tuberculosis diagnosis yes, no
tb_current categorical Current active tuberculosis positive, negative
silico_tb boolean Combined silico-tuberculosis diagnosis True/False
respiratory_symptoms categorical Self-reported respiratory symptoms yes, no
comorbidities categorical Other chronic conditions present yes, no
screening_year integer Year of health screening 2018-2024

Methodology

Epidemiological Framework

This dataset models the well-documented syndemic interaction between:

  1. Silicosis: Chronic fibrotic lung disease from crystalline silica inhalation
  2. Tuberculosis: Both primary infection and reactivation, amplified by silica-induced immunosuppression
  3. HIV/AIDS: Further immunocompromise increasing susceptibility to both silicosis progression and TB

Primary Literature Sources

Source ID Citation Parameters Extracted
ZWE_001-007 Moyo, D., et al. (2021). Prevalence of silicosis, pulmonary tuberculosis and their co-morbidities among artisanal and small-scale gold miners in Zimbabwe. Occupational and Environmental Medicine. PMC8583466 HIV prevalence (23.5%), silicosis prevalence (11.2%), TB prevalence (4.0%), silica exposure (95%), HIV-silicosis OR (2.79)
SA_001-004 teWaterNaude, J.M., et al. (2006). Tuberculosis and silica exposure in South African gold miners. Occupational and Environmental Medicine, 63(3), 187-192. PMC2078150 PTB prevalence (19.4-35.2%), high-risk occupations, exposure-response relationships

Key Epidemiological Parameters

HIV Prevalence (Moyo et al., 2021):

  • ASM workers: 23.5% (90/373 tested)
  • 95% CI: 19.4-28.1%

Silicosis Prevalence (Moyo et al., 2021):

  • Overall: 11.2% (52/464)
  • 95% CI: 8.6-14.4%

Tuberculosis Burden:

  • Current TB (Zimbabwe ASM): 4.0% (95% CI: 2.5-6.4%)
  • TB history (SA gold miners): 19.4% (95% CI: 16.0-22.8%)
  • TB with radiological evidence (SA): 35.2% (95% CI: 31.1-39.3%)

HIV-Silicosis Association (Moyo et al., 2021):

  • HIV+ workers have 2.79x increased silicosis risk
  • 95% CI: 1.48-5.24

Silica Exposure (Moyo et al., 2021):

  • 95% of ASM workers report dust exposure
  • 27% have ≥10 years mining duration

Conditional Dependencies Modeled

Silicosis Risk = f(silica_exposure, employment_years, hiv_status)
TB Risk = f(silicosis_status, hiv_status, employment_years)
Current TB = f(silicosis_status, hiv_status, tb_history)
Symptoms = f(silicosis_status, tb_current)

Limitations

  1. Cross-sectional Design: Source studies are cross-sectional; temporal relationships are inferred
  2. Selection Effects: Mining populations in studies may not represent all workers
  3. Diagnostic Heterogeneity: TB and silicosis definitions vary across source studies
  4. Treatment Effects: ART coverage and TB treatment effects not fully modeled
  5. Exposure Quantification: Silica exposure is binary rather than dose-response

Ethical Considerations

  • Sensitive Health Data: HIV status is highly sensitive; synthetic nature mitigates privacy risks
  • Stigmatization: Results should not stigmatize mining communities or countries
  • Health Equity: Dataset highlights occupational health disparities requiring policy attention
  • Clinical Limitations: Not suitable for individual diagnostic or prognostic decisions

Intended Uses

Appropriate Uses

  • Epidemiological modeling of occupational lung disease
  • Machine learning for screening program optimization
  • Health economics and cost-effectiveness research
  • Educational demonstrations of syndemic frameworks
  • Methods development for comorbidity analysis

Inappropriate Uses

  • Individual clinical diagnosis or prognosis
  • Insurance underwriting or risk stratification
  • Occupational health compliance certification
  • Policy decisions without validation against local data

Citation

@dataset{electric_sheep_africa_occupational_health_2024,
  title = {African Mining Occupational Health Dataset: Silicosis-TB-HIV Syndemic},
  author = {Electric Sheep Africa},
  year = {2024},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/electricsheepafrica/african-mining-occupational-health},
  note = {Synthetic dataset derived from epidemiological studies of African mining populations}
}

References

  1. Moyo, D., Zishiri, C., Ncube, R., Madziva, G., & Sandy, C. (2021). Prevalence of silicosis and pulmonary tuberculosis among artisanal and small-scale gold miners in Zimbabwe. Occupational and Environmental Medicine, 78(Suppl 1), A1-A173.

  2. teWaterNaude, J.M., Ehrlich, R.I., Churchyard, G.J., Pemba, L., Dekker, K.,"; M., White, N.W., Thompson, M.L., & Myers, J.E. (2006). Tuberculosis and silica exposure in South African gold miners. Occupational and Environmental Medicine, 63(3), 187-192.

  3. Rees, D., & Murray, J. (2007). Silica, silicosis and tuberculosis. International Journal of Tuberculosis and Lung Disease, 11(5), 474-484.

License

This dataset is released under the Creative Commons Attribution 4.0 International License (CC-BY-4.0).

Contact

For questions or feedback, please open an issue on the dataset repository or contact Electric Sheep Africa.

Downloads last month
9

Collection including electricsheepafrica/african-mining-occupational-health