Dataset Viewer
Auto-converted to Parquet
farm_id
stringlengths
11
11
crop
stringclasses
12 values
date
stringdate
2022-01-01 00:00:00
2025-03-30 00:00:00
farm_gate_price_ngn_kg
float64
30
1.23k
market_price_ngn_kg
float64
50
1.98k
margin_pct
float64
10
80
FARM-006016
soybean
2022-06-02
30
642.24
52.2
FARM-040866
onion
2022-11-03
684.97
607.89
44.4
FARM-018843
rice
2022-10-01
166.57
599.51
31
FARM-033325
sorghum
2024-06-14
402.58
814.02
52.6
FARM-008010
maize
2023-01-20
499.65
949.56
53.2
FARM-001022
cocoa
2024-07-18
30
272.32
22.4
FARM-031301
cocoa
2024-04-16
452.1
1,138.04
45.1
FARM-031306
groundnut
2024-03-15
311.93
597.79
62.5
FARM-049002
sorghum
2022-01-20
88.79
348.75
51.8
FARM-030331
groundnut
2023-11-27
179.57
480.49
40.7
FARM-049202
cassava
2024-10-07
277
526.78
38.1
FARM-047037
groundnut
2022-09-05
429.41
500.03
53
FARM-040828
onion
2023-05-25
133.06
497.9
66
FARM-014001
tomato
2023-06-10
266.74
88.66
48.8
FARM-015704
tomato
2022-06-23
538.06
359.18
37.1
FARM-000285
groundnut
2025-01-10
353.74
486.53
45.3
FARM-013495
maize
2022-05-25
324.04
573.44
36.7
FARM-033207
soybean
2022-07-13
30
543.42
17.3
FARM-004603
yam
2022-04-17
241.48
830.85
53.8
FARM-033779
yam
2023-09-26
399.66
838.66
35.1
FARM-005499
onion
2022-04-06
579.73
943.35
38.7
FARM-015267
maize
2023-04-26
388.7
614.42
28.1
FARM-009814
oil_palm
2022-09-08
712.2
536.8
55.6
FARM-008340
rice
2022-12-17
572.83
668.22
47.3
FARM-001125
millet
2023-04-18
626.08
313.37
44.5
FARM-007075
cassava
2023-03-15
541.59
1,028.25
56.5
FARM-021277
tomato
2023-06-08
404.2
483.54
25.4
FARM-016652
cassava
2024-04-05
574.63
204.04
31.5
FARM-012222
onion
2024-11-12
389.75
474.42
69.4
FARM-013965
cassava
2023-02-05
30
497.58
63.9
FARM-021174
sorghum
2022-04-06
264.11
468.7
54.3
FARM-049641
millet
2022-04-04
214.53
909.8
26.1
FARM-048071
rice
2022-03-29
283.86
536.9
51.6
FARM-011925
groundnut
2022-06-16
141
762.68
65.7
FARM-028091
millet
2025-01-07
73.4
457.48
67
FARM-038081
rice
2024-06-04
378.16
501.29
48.7
FARM-048108
maize
2025-03-05
284.5
662.61
61.3
FARM-014302
rice
2022-11-03
203.6
478.71
38.2
FARM-015377
oil_palm
2024-05-24
476.55
808.38
50.1
FARM-044240
rice
2025-02-02
188.14
165.15
40.8
FARM-032477
millet
2024-02-22
252.59
225.4
29
FARM-046944
cassava
2022-07-09
243.72
657.99
52.4
FARM-025500
onion
2024-10-03
153.29
1,005.47
51.5
FARM-033115
cocoa
2023-01-20
175.96
852.84
56.8
FARM-019052
onion
2025-03-03
280.04
635.77
45.7
FARM-042649
cocoa
2022-12-25
437.21
704.45
44.2
FARM-033066
onion
2022-06-27
142.58
256.07
23.6
FARM-013481
maize
2024-02-21
254.18
361.51
40.1
FARM-001031
tomato
2024-04-19
878.66
771.16
45.4
FARM-036157
soybean
2024-11-01
321.97
894.86
34.7
FARM-038461
rice
2023-04-22
309.52
720.71
52.3
FARM-000622
tomato
2022-04-18
926.09
152.28
76.3
FARM-000268
tomato
2023-02-17
433.75
541.54
44.4
FARM-032040
sorghum
2022-03-26
342.35
823.18
37.3
FARM-041547
yam
2023-12-02
187.55
318.84
18.5
FARM-039247
millet
2024-09-25
401.66
98.55
39.5
FARM-028947
rice
2022-12-25
465.86
683.46
60.6
FARM-031874
cassava
2024-09-28
379.11
233.19
58.9
FARM-000301
groundnut
2024-02-15
521.07
637.17
20
FARM-016542
soybean
2024-05-27
120.42
800.73
29.8
FARM-035720
groundnut
2022-11-06
158.88
223.13
66.9
FARM-041791
cocoa
2025-03-19
30
110.35
45.6
FARM-043338
maize
2022-03-27
328.15
808.62
31.9
FARM-012744
onion
2023-03-03
546.47
50
36
FARM-018570
tomato
2022-04-22
344.55
575.28
46.4
FARM-022757
groundnut
2024-02-12
545.32
50
24.8
FARM-017918
cocoa
2023-04-08
287.21
208.46
26.7
FARM-003582
yam
2024-09-24
660.2
313.29
53.9
FARM-040441
tomato
2023-06-10
604.36
577.12
34.2
FARM-009375
millet
2022-01-26
686.41
700.33
24.9
FARM-016544
sorghum
2025-03-25
71.2
392.31
46.5
FARM-025174
cocoa
2024-07-20
165.31
801.76
54
FARM-012555
tomato
2024-01-20
248.99
343.16
52.5
FARM-036984
maize
2023-08-05
466.37
266.07
57.1
FARM-012771
yam
2024-09-11
495.35
827.9
72.7
FARM-009001
cassava
2022-10-04
372.72
605.47
75.7
FARM-005900
onion
2022-10-04
803.62
308.95
45.4
FARM-031456
yam
2023-05-29
56.63
110.06
53.1
FARM-046141
cocoa
2025-03-16
101.5
506.21
49.4
FARM-019056
millet
2025-01-09
622.48
417.65
58.6
FARM-017587
rice
2023-01-03
437.43
197.29
15.7
FARM-045434
cocoa
2023-02-25
107.14
270.05
22.2
FARM-038587
sorghum
2023-08-08
297.48
844.62
15.7
FARM-009597
onion
2022-10-12
344.61
197.85
52.7
FARM-044601
cassava
2024-03-26
410.71
1,076.29
54.9
FARM-018890
tomato
2023-05-09
630.67
947.35
57.4
FARM-012523
tomato
2023-12-11
136.47
864.57
65.1
FARM-042235
groundnut
2024-11-12
212.91
601.34
63.1
FARM-049069
groundnut
2023-01-28
539.35
532.94
47.8
FARM-022400
onion
2023-12-20
307.89
604.65
60.4
FARM-025035
cassava
2025-03-24
740.52
589.35
56.8
FARM-040059
onion
2023-09-14
461.67
937.48
31
FARM-017283
maize
2024-08-26
385.86
1,312.51
72.2
FARM-034599
maize
2023-12-22
408.55
940.21
43.6
FARM-026972
cassava
2024-02-28
181.7
383.96
13.6
FARM-017506
groundnut
2023-10-05
366.13
779.62
50.1
FARM-046270
sorghum
2024-09-07
360.45
592.09
49.5
FARM-040000
cocoa
2025-03-02
325.45
681.36
62.5
FARM-007255
millet
2023-10-24
293.11
396.04
68
FARM-048807
cocoa
2023-02-25
208.67
577.06
35.7
End of preview. Expand in Data Studio

Nigeria Agriculture – Farm Gate Prices

Dataset Description

Farmer prices vs market prices, middleman margins.

Category: Agricultural Markets & Pricing
Rows: 140,000
Format: CSV, Parquet
License: MIT
Synthetic: Yes (generated using reference data from FAO, NBS, NiMet, FMARD)

Dataset Structure

Schema

  • farm_id: string
  • crop: string
  • date: string
  • farm_gate_price_ngn_kg: float
  • market_price_ngn_kg: float
  • margin_pct: float

Sample Data

| farm_id     | crop    | date       |   farm_gate_price_ngn_kg |   market_price_ngn_kg |   margin_pct |
|:------------|:--------|:-----------|-------------------------:|----------------------:|-------------:|
| FARM-006016 | soybean | 2022-06-02 |                    30    |                642.24 |         52.2 |
| FARM-040866 | onion   | 2022-11-03 |                   684.97 |                607.89 |         44.4 |
| FARM-018843 | rice    | 2022-10-01 |                   166.57 |                599.51 |         31   |
| FARM-033325 | sorghum | 2024-06-14 |                   402.58 |                814.02 |         52.6 |
| FARM-008010 | maize   | 2023-01-20 |                   499.65 |                949.56 |         53.2 |

Data Generation Methodology

This dataset was synthetically generated using:

  1. Reference Sources:

    • FAO (Food and Agriculture Organization) - crop yields, production data
    • NBS (National Bureau of Statistics, Nigeria) - farm characteristics, surveys
    • NiMet (Nigerian Meteorological Agency) - weather patterns
    • FMARD (Federal Ministry of Agriculture and Rural Development) - extension guides
    • IITA (International Institute of Tropical Agriculture) - agronomic research
  2. Domain Constraints:

    • Crop calendars and phenology (planting/harvest windows)
    • Agro-ecological zone characteristics (Sahel, Sudan Savanna, Guinea Savanna, Rainforest)
    • Nigeria-specific realities (smallholder dominance, market dynamics, conflict zones)
    • Statistical distributions matching national agricultural patterns
  3. Quality Assurance:

    • Distribution testing (KS test, chi-square)
    • Correlation validation (rainfall-yield, fertilizer-yield, yield-price)
    • Causal consistency (DAG-based generation)
    • Multi-scale coherence (farm → state aggregations)
    • Ethical considerations (representative, unbiased)

See QUALITY_ASSURANCE.md in the repository for full methodology.

Use Cases

  • Machine Learning: Yield prediction, price forecasting, pest detection, supply chain optimization
  • Policy Analysis: Agricultural program evaluation, subsidy impact assessment, food security planning
  • Research: Climate-agriculture interactions, market dynamics, technology adoption patterns
  • Education: Teaching agricultural economics, data science applications in agriculture

Limitations

  • Synthetic data: While grounded in real distributions, individual records are not real observations
  • Simplified dynamics: Some complex interactions (e.g., multi-generational pest populations) are simplified
  • Temporal scope: Covers 2022-2025; may not reflect longer-term trends or future climate scenarios
  • Spatial resolution: State/LGA level; does not capture micro-level heterogeneity within localities

Citation

If you use this dataset, please cite:

@dataset{nigeria_agriculture_2025,
  title = {Nigeria Agriculture – Farm Gate Prices},
  author = {Electric Sheep Africa},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/electricsheepafrica/nigerian_agriculture_farm_gate_prices}
}

Related Datasets

This dataset is part of the Nigeria Agriculture & Food Systems collection:

Contact

For questions, feedback, or collaboration:

Changelog

Version 1.0.0 (October 2025)

  • Initial release
  • 140,000 synthetic records
  • Quality-assured using FAO/NBS/NiMet reference data
Downloads last month
23

Collection including electricsheepafrica/nigerian_agriculture_farm_gate_prices