Dataset Viewer
Auto-converted to Parquet
state
stringclasses
37 values
commodity
stringclasses
8 values
month
stringdate
2022-01-01 00:00:00
2025-01-01 00:00:00
price_index
float64
80
300
inflation_yoy_pct
float64
-5
47.9
Abia
onion
2024-01
217.01
21
Ebonyi
rice
2022-06
229.91
18
Benue
yam
2023-06
158.31
22.3
Enugu
cassava
2025-01
184.05
18.7
Enugu
sorghum
2025-01
183.92
7.2
Edo
sorghum
2025-01
96.99
29.9
Kogi
millet
2022-06
153.47
14
Ondo
cassava
2024-06
123.05
20.4
Taraba
millet
2024-06
186.97
17.8
Plateau
onion
2024-01
119.64
12
Ondo
tomato
2022-01
141.75
18.9
Edo
onion
2023-01
203.91
18.6
Imo
yam
2022-01
180.22
3.8
Ondo
millet
2023-01
162.49
20.8
Katsina
tomato
2023-01
214.42
16.6
Sokoto
tomato
2023-06
211.82
23.9
Plateau
cassava
2023-01
155.35
9.8
Ondo
rice
2025-01
186.29
24.2
Akwa Ibom
maize
2024-06
147.63
15
Lagos
cassava
2023-01
186.99
22.2
Benue
millet
2024-01
80
8.6
Lagos
cassava
2022-01
108.8
27.9
Delta
sorghum
2023-06
114.07
-0.1
Ondo
onion
2022-01
121.17
3.1
Delta
sorghum
2024-06
118.29
8.7
Zamfara
yam
2025-01
188.76
21.8
Ekiti
cassava
2024-06
182.48
44.7
Akwa Ibom
maize
2022-06
114.12
7
Ebonyi
rice
2023-06
143.98
23.1
Kogi
sorghum
2022-06
190.36
17.1
Ogun
onion
2024-06
177.22
18.9
Zamfara
onion
2022-06
103
16.4
Borno
cassava
2022-06
117.94
19.8
Sokoto
onion
2022-01
118.88
25.3
Adamawa
cassava
2023-06
191.37
21.7
Ekiti
tomato
2024-06
113.02
22.1
Rivers
tomato
2023-06
144.26
3.2
Kebbi
yam
2024-01
207.77
22.2
Ondo
yam
2024-01
167.02
8.9
Imo
tomato
2022-01
106.8
24
Ekiti
maize
2023-01
112.63
23.1
Oyo
millet
2024-06
80
23.8
Lagos
yam
2025-01
151
21.7
Cross River
cassava
2024-01
186.7
14.5
Adamawa
maize
2024-06
80
14.9
Katsina
maize
2023-01
106.93
17.1
Taraba
cassava
2024-01
140.83
9.3
Abia
maize
2022-06
168.53
20.3
Plateau
tomato
2024-01
88.08
29.8
Bayelsa
maize
2023-01
236.02
34.9
Cross River
millet
2022-06
178.31
9.2
Benue
millet
2024-01
93.11
16.5
Zamfara
sorghum
2022-01
176.47
20.1
Edo
millet
2024-01
80
5.8
Kaduna
tomato
2023-06
161.56
15
Enugu
cassava
2022-01
138
17.6
Rivers
rice
2024-06
188.88
19.9
Zamfara
millet
2023-06
150.84
12.8
Nasarawa
sorghum
2023-01
95.89
22.2
Imo
onion
2023-06
102.62
9.2
Ebonyi
tomato
2022-01
80
26.2
Lagos
sorghum
2022-06
137.4
19
Bayelsa
rice
2023-06
159.31
22.5
Sokoto
sorghum
2024-01
195.91
13.8
Lagos
yam
2023-06
191.06
6.2
Lagos
tomato
2023-06
164.88
19.2
Yobe
rice
2024-01
204.47
11.9
Ebonyi
tomato
2022-06
80
10.7
Ebonyi
yam
2022-01
178.44
24.8
Plateau
sorghum
2024-06
184.84
28
Nasarawa
sorghum
2022-01
125.22
29.1
Ekiti
cassava
2023-01
172.27
27.1
Taraba
onion
2023-01
80
17.6
Plateau
yam
2022-06
203.02
16.2
Abia
sorghum
2024-01
225.6
17.2
Delta
tomato
2022-06
134.44
15.1
Osun
maize
2023-01
208.1
8.8
Anambra
cassava
2023-01
123.53
22.6
Ekiti
onion
2024-01
131.88
23.6
Kwara
tomato
2025-01
90.52
18.7
Ondo
onion
2023-06
180.17
16.6
Ondo
cassava
2023-06
159.44
30.1
Osun
maize
2023-06
103.92
27.5
Yobe
millet
2022-06
113.62
9.1
Anambra
rice
2023-06
176.82
21.4
Lagos
rice
2023-01
143.35
29.4
Taraba
tomato
2023-06
117.08
20.2
Enugu
millet
2024-01
138.49
26.5
FCT
maize
2024-01
80
16.2
Kaduna
sorghum
2024-06
104.59
7.2
Imo
cassava
2022-06
196.22
30.5
Kano
maize
2024-01
190.44
24.2
Kano
sorghum
2025-01
206.2
24.6
Anambra
yam
2024-06
195.43
5.3
Cross River
maize
2024-06
116.96
14.3
Katsina
sorghum
2022-01
158.57
18
Bauchi
maize
2022-06
157.22
8.1
Imo
rice
2022-01
145.73
36.7
Jigawa
onion
2023-06
162.84
18.3
Osun
onion
2022-06
123.22
27.8
End of preview. Expand in Data Studio

Nigeria Agriculture – Food Price Inflation

Dataset Description

CPI food components, regional variations, staple foods.

Category: Agricultural Markets & Pricing
Rows: 20,000
Format: CSV, Parquet
License: MIT
Synthetic: Yes (generated using reference data from FAO, NBS, NiMet, FMARD)

Dataset Structure

Schema

  • state: string
  • commodity: string
  • month: string
  • price_index: float
  • inflation_yoy_pct: float

Sample Data

| state   | commodity   | month   |   price_index |   inflation_yoy_pct |
|:--------|:------------|:--------|--------------:|--------------------:|
| Abia    | onion       | 2024-01 |        217.01 |                21   |
| Ebonyi  | rice        | 2022-06 |        229.91 |                18   |
| Benue   | yam         | 2023-06 |        158.31 |                22.3 |
| Enugu   | cassava     | 2025-01 |        184.05 |                18.7 |
| Enugu   | sorghum     | 2025-01 |        183.92 |                 7.2 |

Data Generation Methodology

This dataset was synthetically generated using:

  1. Reference Sources:

    • FAO (Food and Agriculture Organization) - crop yields, production data
    • NBS (National Bureau of Statistics, Nigeria) - farm characteristics, surveys
    • NiMet (Nigerian Meteorological Agency) - weather patterns
    • FMARD (Federal Ministry of Agriculture and Rural Development) - extension guides
    • IITA (International Institute of Tropical Agriculture) - agronomic research
  2. Domain Constraints:

    • Crop calendars and phenology (planting/harvest windows)
    • Agro-ecological zone characteristics (Sahel, Sudan Savanna, Guinea Savanna, Rainforest)
    • Nigeria-specific realities (smallholder dominance, market dynamics, conflict zones)
    • Statistical distributions matching national agricultural patterns
  3. Quality Assurance:

    • Distribution testing (KS test, chi-square)
    • Correlation validation (rainfall-yield, fertilizer-yield, yield-price)
    • Causal consistency (DAG-based generation)
    • Multi-scale coherence (farm → state aggregations)
    • Ethical considerations (representative, unbiased)

See QUALITY_ASSURANCE.md in the repository for full methodology.

Use Cases

  • Machine Learning: Yield prediction, price forecasting, pest detection, supply chain optimization
  • Policy Analysis: Agricultural program evaluation, subsidy impact assessment, food security planning
  • Research: Climate-agriculture interactions, market dynamics, technology adoption patterns
  • Education: Teaching agricultural economics, data science applications in agriculture

Limitations

  • Synthetic data: While grounded in real distributions, individual records are not real observations
  • Simplified dynamics: Some complex interactions (e.g., multi-generational pest populations) are simplified
  • Temporal scope: Covers 2022-2025; may not reflect longer-term trends or future climate scenarios
  • Spatial resolution: State/LGA level; does not capture micro-level heterogeneity within localities

Citation

If you use this dataset, please cite:

@dataset{nigeria_agriculture_2025,
  title = {Nigeria Agriculture – Food Price Inflation},
  author = {Electric Sheep Africa},
  year = {2025},
  publisher = {Hugging Face},
  url = {https://huggingface.co/datasets/electricsheepafrica/nigerian_agriculture_food_price_inflation}
}

Related Datasets

This dataset is part of the Nigeria Agriculture & Food Systems collection:

Contact

For questions, feedback, or collaboration:

Changelog

Version 1.0.0 (October 2025)

  • Initial release
  • 20,000 synthetic records
  • Quality-assured using FAO/NBS/NiMet reference data
Downloads last month
22

Collection including electricsheepafrica/nigerian_agriculture_food_price_inflation