Dataset Viewer
Auto-converted to Parquet
state_name
stringclasses
37 values
year
int64
2.02k
2.02k
total_access_pct
float64
37.5
98
rural_access_pct
float64
14.1
45.4
urban_access_pct
float64
58
99
urban_population_pct
int64
20
95
adjustment_factor
float64
0.68
1.62
Lagos
2,018
91.8
42.8
99
95
1.624
Lagos
2,018
91.3
42.6
99
95
1.616
FCT
2,018
89.2
41.6
99
90
1.579
Rivers
2,018
85.1
39.7
99
70
1.506
Anambra
2,018
79.9
37.2
99
65
1.413
Kano
2,018
78.4
36.6
99
60
1.388
Oyo
2,018
80.1
37.4
99
60
1.418
Abia
2,018
61
28.4
92.6
58
1.08
Delta
2,018
63
29.4
95.6
55
1.115
Imo
2,018
55.1
25.7
83.7
55
0.975
Edo
2,018
64.6
30.1
98.1
55
1.144
Kaduna
2,018
70.7
33
99
52
1.252
Ogun
2,018
63.1
29.4
95.8
50
1.117
Akwa Ibom
2,018
58.5
27.3
88.8
48
1.035
Enugu
2,018
51.3
23.9
77.9
48
0.908
Ondo
2,018
48.3
22.5
73.3
45
0.855
Osun
2,018
50.5
23.6
76.7
45
0.894
Kwara
2,018
50.9
23.7
77.2
42
0.9
Cross River
2,018
52.3
24.4
79.5
40
0.926
Plateau
2,018
48.9
22.8
74.3
40
0.866
Katsina
2,018
43.1
20.1
65.4
38
0.762
Benue
2,018
48.2
22.5
73.2
35
0.853
Bauchi
2,018
46.5
21.7
70.6
35
0.823
Niger
2,018
50.9
23.7
77.3
35
0.901
Kogi
2,018
45.3
21.1
68.8
35
0.803
Sokoto
2,018
43.8
20.4
66.5
32
0.775
Borno
2,018
40.6
18.9
61.6
30
0.719
Adamawa
2,018
38.2
17.8
58
30
0.676
Taraba
2,018
44
20.5
66.8
28
0.778
Jigawa
2,018
42.7
19.9
64.8
25
0.755
Yobe
2,018
39.6
18.5
60.1
25
0.7
Kebbi
2,018
41.3
19.2
62.6
22
0.73
Zamfara
2,018
43.3
20.2
65.8
20
0.767
Gombe
2,018
44.9
21
68.2
35
0.795
Bayelsa
2,018
51
23.8
77.4
45
0.902
Ekiti
2,018
54.3
25.3
82.4
40
0.96
Ebonyi
2,018
43.1
20.1
65.5
30
0.763
Nasarawa
2,018
52.3
24.4
79.5
35
0.926
Lagos
2,019
90
35.2
99
95
1.624
Lagos
2,019
89.5
35
99
95
1.616
FCT
2,019
87.5
34.2
99
90
1.579
Rivers
2,019
83.4
32.6
99
70
1.506
Anambra
2,019
78.3
30.6
99
65
1.413
Kano
2,019
76.9
30.1
99
60
1.388
Oyo
2,019
78.5
30.7
99
60
1.418
Abia
2,019
59.8
23.4
95.1
58
1.08
Delta
2,019
61.7
24.2
98.2
55
1.115
Imo
2,019
54
21.1
85.9
55
0.975
Edo
2,019
63.4
24.8
99
55
1.144
Kaduna
2,019
69.3
27.1
99
52
1.252
Ogun
2,019
61.9
24.2
98.4
50
1.117
Akwa Ibom
2,019
57.3
22.4
91.2
48
1.035
Enugu
2,019
50.3
19.7
80
48
0.908
Ondo
2,019
47.4
18.5
75.3
45
0.855
Osun
2,019
49.5
19.4
78.8
45
0.894
Kwara
2,019
49.9
19.5
79.3
42
0.9
Cross River
2,019
51.3
20.1
81.6
40
0.926
Plateau
2,019
48
18.8
76.3
40
0.866
Katsina
2,019
42.2
16.5
67.1
38
0.762
Benue
2,019
47.3
18.5
75.2
35
0.853
Bauchi
2,019
45.6
17.8
72.5
35
0.823
Niger
2,019
49.9
19.5
79.4
35
0.901
Kogi
2,019
44.5
17.4
70.7
35
0.803
Sokoto
2,019
42.9
16.8
68.3
32
0.775
Borno
2,019
39.8
15.6
63.3
30
0.719
Adamawa
2,019
37.5
14.7
59.6
30
0.676
Taraba
2,019
43.1
16.9
68.6
28
0.778
Jigawa
2,019
41.8
16.4
66.5
25
0.755
Yobe
2,019
38.8
15.2
61.7
25
0.7
Kebbi
2,019
40.5
15.8
64.3
22
0.73
Zamfara
2,019
42.5
16.6
67.6
20
0.767
Gombe
2,019
44.1
17.2
70
35
0.795
Bayelsa
2,019
50
19.6
79.5
45
0.902
Ekiti
2,019
53.2
20.8
84.6
40
0.96
Ebonyi
2,019
42.3
16.5
67.3
30
0.763
Nasarawa
2,019
51.3
20.1
81.6
35
0.926
Lagos
2,020
90
34
99
95
1.624
Lagos
2,020
89.5
33.8
99
95
1.616
FCT
2,020
87.5
33
99
90
1.579
Rivers
2,020
83.4
31.5
99
70
1.506
Anambra
2,020
78.3
29.6
99
65
1.413
Kano
2,020
76.9
29
99
60
1.388
Oyo
2,020
78.5
29.6
99
60
1.418
Abia
2,020
59.8
22.6
95.1
58
1.08
Delta
2,020
61.7
23.3
98.2
55
1.115
Imo
2,020
54
20.4
85.9
55
0.975
Edo
2,020
63.4
23.9
99
55
1.144
Kaduna
2,020
69.3
26.2
99
52
1.252
Ogun
2,020
61.9
23.3
98.4
50
1.117
Akwa Ibom
2,020
57.3
21.6
91.2
48
1.035
Enugu
2,020
50.3
19
80
48
0.908
Ondo
2,020
47.4
17.9
75.3
45
0.855
Osun
2,020
49.5
18.7
78.8
45
0.894
Kwara
2,020
49.9
18.8
79.3
42
0.9
Cross River
2,020
51.3
19.4
81.6
40
0.926
Plateau
2,020
48
18.1
76.3
40
0.866
Katsina
2,020
42.2
15.9
67.1
38
0.762
Benue
2,020
47.3
17.8
75.2
35
0.853
Bauchi
2,020
45.6
17.2
72.5
35
0.823
Niger
2,020
49.9
18.8
79.4
35
0.901
End of preview. Expand in Data Studio

State-Level Electricity Access

⚠️ SYNTHETIC DATA DISCLAIMER

This dataset contains synthetic/modeled data, not direct measurements.

  • Purpose: Research, education, and methodology demonstration
  • Generation: Geospatial disaggregation model using proxy indicators
  • Validation: Grounded in official World Bank national data
  • Limitations: State/LGA estimates are modeled, not measured
  • Use with caution: Not suitable for operational decisions without validation

For official data, consult: World Bank, NERC, REA, DISCOs directly.

Dataset Description

State-by-state electricity access rates disaggregated from national data using geospatial proxy indicators (night-time lights, grid proximity, urbanization, DISCO performance).

Rows: 228
Columns: 7
Period: 2018-2023 (where applicable)
License: MIT

Data Quality

⭐⭐⭐⭐ Modeled estimates using validated methodology

Methodology

Data Generation Process

This dataset is part of a geospatial electrification analysis project that addresses the lack of state-level electricity access data in Nigeria.

Challenge: World Bank provides only national-level access rates. No state-by-state breakdown exists.

Solution: Geospatial disaggregation model using weighted proxy indicators:

State_Access = National_Rate × Adjustment_Factor

Adjustment_Factor = (
    35% × Night-time Lights Index +
    25% × Grid Proximity Index +
    20% × Urban Population Share +
    15% × DISCO Performance Index +
    5% × Historical Baseline
)

Validation:

  • State averages match national figures (< 0.1% difference)
  • Adjustment factors normalized (mean = 1.0)
  • Realistic bounds applied (10-98% access range)
  • Urban > Rural access (consistent with known patterns)

Data Sources

  • World Bank API: National electricity access rates (2018-2023)
  • GADM: Administrative boundaries (37 states, 775 LGAs)
  • Proxy indicators: Urbanization rates, DISCO coverage, infrastructure patterns
  • Public reports: NERC quarterly reports, REA project data

Data Dictionary

Column Type Description Example
state_name object State Name Lagos
year int64 Year 2018
total_access_pct float64 Total Access Pct 91.8
rural_access_pct float64 Rural Access Pct 42.8
urban_access_pct float64 Urban Access Pct 99.0
urban_population_pct int64 Urban Population Pct 95
adjustment_factor float64 Adjustment Factor 1.624

Usage

Load with Hugging Face Datasets

from datasets import load_dataset

dataset = load_dataset("electricsheepafrica/nigerian_electricity_state_electricity_access")
df = dataset['train'].to_pandas()

Load with Pandas

import pandas as pd

# From Parquet (recommended)
df = pd.read_parquet("hf://datasets/electricsheepafrica/nigerian_electricity_state_electricity_access/nigerian_electricity_state_electricity_access.parquet")

# From CSV
df = pd.read_csv("hf://datasets/electricsheepafrica/nigerian_electricity_state_electricity_access/nigerian_electricity_state_electricity_access.csv")

Sample Data

state_name  year  total_access_pct  rural_access_pct  urban_access_pct  urban_population_pct  adjustment_factor
     Lagos  2018              91.8              42.8              99.0                    95              1.624
     Lagos  2018              91.3              42.6              99.0                    95              1.616
       FCT  2018              89.2              41.6              99.0                    90              1.579

Use Cases

  • Policy research: Identify underserved areas for electrification programs
  • Investment analysis: Assess market opportunities for off-grid solutions
  • Academic research: Study determinants of electricity access
  • Methodology validation: Compare geospatial disaggregation approaches
  • SDG 7 tracking: Monitor progress toward universal energy access

Limitations

  • Synthetic data: State and LGA estimates are modeled, not measured
  • Time period: Limited to 2018-2023
  • Granularity: No settlement-level data (requires GRID3 integration)
  • Validation: Limited by availability of ground-truth data
  • Simplifications: Actual electrification patterns are more complex

Citation

@dataset{nigerian_electricity_access_2025,
  title = {Nigerian Electricity Access: State-Level Electricity Access},
  author = {Electric Sheep Africa},
  year = {2025},
  publisher = {Hugging Face},
  note = {Geospatial disaggregation using proxy indicators},
  url = {https://huggingface.co/datasets/electricsheepafrica/nigerian_electricity_state_electricity_access}
}

Collection

Part of the Nigeria Electricity Access collection containing 7 datasets on rural-urban electrification.

Related Datasets

Methodology Documentation

For detailed methodology, see:

Updates

This dataset is versioned. Check the repository for updates and corrections.

Contact

For questions, corrections, or collaboration:

License

MIT License - Free to use with attribution. Please cite appropriately and acknowledge the synthetic nature of the data.

Downloads last month
41

Collection including electricsheepafrica/nigerian_electricity_state_electricity_access