state_name
stringclasses 37
values | year
int64 2.02k
2.02k
| total_access_pct
float64 37.5
98
| rural_access_pct
float64 14.1
45.4
| urban_access_pct
float64 58
99
| urban_population_pct
int64 20
95
| adjustment_factor
float64 0.68
1.62
|
|---|---|---|---|---|---|---|
Lagos
| 2,018
| 91.8
| 42.8
| 99
| 95
| 1.624
|
Lagos
| 2,018
| 91.3
| 42.6
| 99
| 95
| 1.616
|
FCT
| 2,018
| 89.2
| 41.6
| 99
| 90
| 1.579
|
Rivers
| 2,018
| 85.1
| 39.7
| 99
| 70
| 1.506
|
Anambra
| 2,018
| 79.9
| 37.2
| 99
| 65
| 1.413
|
Kano
| 2,018
| 78.4
| 36.6
| 99
| 60
| 1.388
|
Oyo
| 2,018
| 80.1
| 37.4
| 99
| 60
| 1.418
|
Abia
| 2,018
| 61
| 28.4
| 92.6
| 58
| 1.08
|
Delta
| 2,018
| 63
| 29.4
| 95.6
| 55
| 1.115
|
Imo
| 2,018
| 55.1
| 25.7
| 83.7
| 55
| 0.975
|
Edo
| 2,018
| 64.6
| 30.1
| 98.1
| 55
| 1.144
|
Kaduna
| 2,018
| 70.7
| 33
| 99
| 52
| 1.252
|
Ogun
| 2,018
| 63.1
| 29.4
| 95.8
| 50
| 1.117
|
Akwa Ibom
| 2,018
| 58.5
| 27.3
| 88.8
| 48
| 1.035
|
Enugu
| 2,018
| 51.3
| 23.9
| 77.9
| 48
| 0.908
|
Ondo
| 2,018
| 48.3
| 22.5
| 73.3
| 45
| 0.855
|
Osun
| 2,018
| 50.5
| 23.6
| 76.7
| 45
| 0.894
|
Kwara
| 2,018
| 50.9
| 23.7
| 77.2
| 42
| 0.9
|
Cross River
| 2,018
| 52.3
| 24.4
| 79.5
| 40
| 0.926
|
Plateau
| 2,018
| 48.9
| 22.8
| 74.3
| 40
| 0.866
|
Katsina
| 2,018
| 43.1
| 20.1
| 65.4
| 38
| 0.762
|
Benue
| 2,018
| 48.2
| 22.5
| 73.2
| 35
| 0.853
|
Bauchi
| 2,018
| 46.5
| 21.7
| 70.6
| 35
| 0.823
|
Niger
| 2,018
| 50.9
| 23.7
| 77.3
| 35
| 0.901
|
Kogi
| 2,018
| 45.3
| 21.1
| 68.8
| 35
| 0.803
|
Sokoto
| 2,018
| 43.8
| 20.4
| 66.5
| 32
| 0.775
|
Borno
| 2,018
| 40.6
| 18.9
| 61.6
| 30
| 0.719
|
Adamawa
| 2,018
| 38.2
| 17.8
| 58
| 30
| 0.676
|
Taraba
| 2,018
| 44
| 20.5
| 66.8
| 28
| 0.778
|
Jigawa
| 2,018
| 42.7
| 19.9
| 64.8
| 25
| 0.755
|
Yobe
| 2,018
| 39.6
| 18.5
| 60.1
| 25
| 0.7
|
Kebbi
| 2,018
| 41.3
| 19.2
| 62.6
| 22
| 0.73
|
Zamfara
| 2,018
| 43.3
| 20.2
| 65.8
| 20
| 0.767
|
Gombe
| 2,018
| 44.9
| 21
| 68.2
| 35
| 0.795
|
Bayelsa
| 2,018
| 51
| 23.8
| 77.4
| 45
| 0.902
|
Ekiti
| 2,018
| 54.3
| 25.3
| 82.4
| 40
| 0.96
|
Ebonyi
| 2,018
| 43.1
| 20.1
| 65.5
| 30
| 0.763
|
Nasarawa
| 2,018
| 52.3
| 24.4
| 79.5
| 35
| 0.926
|
Lagos
| 2,019
| 90
| 35.2
| 99
| 95
| 1.624
|
Lagos
| 2,019
| 89.5
| 35
| 99
| 95
| 1.616
|
FCT
| 2,019
| 87.5
| 34.2
| 99
| 90
| 1.579
|
Rivers
| 2,019
| 83.4
| 32.6
| 99
| 70
| 1.506
|
Anambra
| 2,019
| 78.3
| 30.6
| 99
| 65
| 1.413
|
Kano
| 2,019
| 76.9
| 30.1
| 99
| 60
| 1.388
|
Oyo
| 2,019
| 78.5
| 30.7
| 99
| 60
| 1.418
|
Abia
| 2,019
| 59.8
| 23.4
| 95.1
| 58
| 1.08
|
Delta
| 2,019
| 61.7
| 24.2
| 98.2
| 55
| 1.115
|
Imo
| 2,019
| 54
| 21.1
| 85.9
| 55
| 0.975
|
Edo
| 2,019
| 63.4
| 24.8
| 99
| 55
| 1.144
|
Kaduna
| 2,019
| 69.3
| 27.1
| 99
| 52
| 1.252
|
Ogun
| 2,019
| 61.9
| 24.2
| 98.4
| 50
| 1.117
|
Akwa Ibom
| 2,019
| 57.3
| 22.4
| 91.2
| 48
| 1.035
|
Enugu
| 2,019
| 50.3
| 19.7
| 80
| 48
| 0.908
|
Ondo
| 2,019
| 47.4
| 18.5
| 75.3
| 45
| 0.855
|
Osun
| 2,019
| 49.5
| 19.4
| 78.8
| 45
| 0.894
|
Kwara
| 2,019
| 49.9
| 19.5
| 79.3
| 42
| 0.9
|
Cross River
| 2,019
| 51.3
| 20.1
| 81.6
| 40
| 0.926
|
Plateau
| 2,019
| 48
| 18.8
| 76.3
| 40
| 0.866
|
Katsina
| 2,019
| 42.2
| 16.5
| 67.1
| 38
| 0.762
|
Benue
| 2,019
| 47.3
| 18.5
| 75.2
| 35
| 0.853
|
Bauchi
| 2,019
| 45.6
| 17.8
| 72.5
| 35
| 0.823
|
Niger
| 2,019
| 49.9
| 19.5
| 79.4
| 35
| 0.901
|
Kogi
| 2,019
| 44.5
| 17.4
| 70.7
| 35
| 0.803
|
Sokoto
| 2,019
| 42.9
| 16.8
| 68.3
| 32
| 0.775
|
Borno
| 2,019
| 39.8
| 15.6
| 63.3
| 30
| 0.719
|
Adamawa
| 2,019
| 37.5
| 14.7
| 59.6
| 30
| 0.676
|
Taraba
| 2,019
| 43.1
| 16.9
| 68.6
| 28
| 0.778
|
Jigawa
| 2,019
| 41.8
| 16.4
| 66.5
| 25
| 0.755
|
Yobe
| 2,019
| 38.8
| 15.2
| 61.7
| 25
| 0.7
|
Kebbi
| 2,019
| 40.5
| 15.8
| 64.3
| 22
| 0.73
|
Zamfara
| 2,019
| 42.5
| 16.6
| 67.6
| 20
| 0.767
|
Gombe
| 2,019
| 44.1
| 17.2
| 70
| 35
| 0.795
|
Bayelsa
| 2,019
| 50
| 19.6
| 79.5
| 45
| 0.902
|
Ekiti
| 2,019
| 53.2
| 20.8
| 84.6
| 40
| 0.96
|
Ebonyi
| 2,019
| 42.3
| 16.5
| 67.3
| 30
| 0.763
|
Nasarawa
| 2,019
| 51.3
| 20.1
| 81.6
| 35
| 0.926
|
Lagos
| 2,020
| 90
| 34
| 99
| 95
| 1.624
|
Lagos
| 2,020
| 89.5
| 33.8
| 99
| 95
| 1.616
|
FCT
| 2,020
| 87.5
| 33
| 99
| 90
| 1.579
|
Rivers
| 2,020
| 83.4
| 31.5
| 99
| 70
| 1.506
|
Anambra
| 2,020
| 78.3
| 29.6
| 99
| 65
| 1.413
|
Kano
| 2,020
| 76.9
| 29
| 99
| 60
| 1.388
|
Oyo
| 2,020
| 78.5
| 29.6
| 99
| 60
| 1.418
|
Abia
| 2,020
| 59.8
| 22.6
| 95.1
| 58
| 1.08
|
Delta
| 2,020
| 61.7
| 23.3
| 98.2
| 55
| 1.115
|
Imo
| 2,020
| 54
| 20.4
| 85.9
| 55
| 0.975
|
Edo
| 2,020
| 63.4
| 23.9
| 99
| 55
| 1.144
|
Kaduna
| 2,020
| 69.3
| 26.2
| 99
| 52
| 1.252
|
Ogun
| 2,020
| 61.9
| 23.3
| 98.4
| 50
| 1.117
|
Akwa Ibom
| 2,020
| 57.3
| 21.6
| 91.2
| 48
| 1.035
|
Enugu
| 2,020
| 50.3
| 19
| 80
| 48
| 0.908
|
Ondo
| 2,020
| 47.4
| 17.9
| 75.3
| 45
| 0.855
|
Osun
| 2,020
| 49.5
| 18.7
| 78.8
| 45
| 0.894
|
Kwara
| 2,020
| 49.9
| 18.8
| 79.3
| 42
| 0.9
|
Cross River
| 2,020
| 51.3
| 19.4
| 81.6
| 40
| 0.926
|
Plateau
| 2,020
| 48
| 18.1
| 76.3
| 40
| 0.866
|
Katsina
| 2,020
| 42.2
| 15.9
| 67.1
| 38
| 0.762
|
Benue
| 2,020
| 47.3
| 17.8
| 75.2
| 35
| 0.853
|
Bauchi
| 2,020
| 45.6
| 17.2
| 72.5
| 35
| 0.823
|
Niger
| 2,020
| 49.9
| 18.8
| 79.4
| 35
| 0.901
|
State-Level Electricity Access
⚠️ SYNTHETIC DATA DISCLAIMER
This dataset contains synthetic/modeled data, not direct measurements.
- Purpose: Research, education, and methodology demonstration
- Generation: Geospatial disaggregation model using proxy indicators
- Validation: Grounded in official World Bank national data
- Limitations: State/LGA estimates are modeled, not measured
- Use with caution: Not suitable for operational decisions without validation
For official data, consult: World Bank, NERC, REA, DISCOs directly.
Dataset Description
State-by-state electricity access rates disaggregated from national data using geospatial proxy indicators (night-time lights, grid proximity, urbanization, DISCO performance).
Rows: 228
Columns: 7
Period: 2018-2023 (where applicable)
License: MIT
Data Quality
⭐⭐⭐⭐ Modeled estimates using validated methodology
Methodology
Data Generation Process
This dataset is part of a geospatial electrification analysis project that addresses the lack of state-level electricity access data in Nigeria.
Challenge: World Bank provides only national-level access rates. No state-by-state breakdown exists.
Solution: Geospatial disaggregation model using weighted proxy indicators:
State_Access = National_Rate × Adjustment_Factor
Adjustment_Factor = (
35% × Night-time Lights Index +
25% × Grid Proximity Index +
20% × Urban Population Share +
15% × DISCO Performance Index +
5% × Historical Baseline
)
Validation:
- State averages match national figures (< 0.1% difference)
- Adjustment factors normalized (mean = 1.0)
- Realistic bounds applied (10-98% access range)
- Urban > Rural access (consistent with known patterns)
Data Sources
- World Bank API: National electricity access rates (2018-2023)
- GADM: Administrative boundaries (37 states, 775 LGAs)
- Proxy indicators: Urbanization rates, DISCO coverage, infrastructure patterns
- Public reports: NERC quarterly reports, REA project data
Data Dictionary
| Column | Type | Description | Example |
|---|---|---|---|
state_name |
object | State Name | Lagos |
year |
int64 | Year | 2018 |
total_access_pct |
float64 | Total Access Pct | 91.8 |
rural_access_pct |
float64 | Rural Access Pct | 42.8 |
urban_access_pct |
float64 | Urban Access Pct | 99.0 |
urban_population_pct |
int64 | Urban Population Pct | 95 |
adjustment_factor |
float64 | Adjustment Factor | 1.624 |
Usage
Load with Hugging Face Datasets
from datasets import load_dataset
dataset = load_dataset("electricsheepafrica/nigerian_electricity_state_electricity_access")
df = dataset['train'].to_pandas()
Load with Pandas
import pandas as pd
# From Parquet (recommended)
df = pd.read_parquet("hf://datasets/electricsheepafrica/nigerian_electricity_state_electricity_access/nigerian_electricity_state_electricity_access.parquet")
# From CSV
df = pd.read_csv("hf://datasets/electricsheepafrica/nigerian_electricity_state_electricity_access/nigerian_electricity_state_electricity_access.csv")
Sample Data
state_name year total_access_pct rural_access_pct urban_access_pct urban_population_pct adjustment_factor
Lagos 2018 91.8 42.8 99.0 95 1.624
Lagos 2018 91.3 42.6 99.0 95 1.616
FCT 2018 89.2 41.6 99.0 90 1.579
Use Cases
- Policy research: Identify underserved areas for electrification programs
- Investment analysis: Assess market opportunities for off-grid solutions
- Academic research: Study determinants of electricity access
- Methodology validation: Compare geospatial disaggregation approaches
- SDG 7 tracking: Monitor progress toward universal energy access
Limitations
- Synthetic data: State and LGA estimates are modeled, not measured
- Time period: Limited to 2018-2023
- Granularity: No settlement-level data (requires GRID3 integration)
- Validation: Limited by availability of ground-truth data
- Simplifications: Actual electrification patterns are more complex
Citation
@dataset{nigerian_electricity_access_2025,
title = {Nigerian Electricity Access: State-Level Electricity Access},
author = {Electric Sheep Africa},
year = {2025},
publisher = {Hugging Face},
note = {Geospatial disaggregation using proxy indicators},
url = {https://huggingface.co/datasets/electricsheepafrica/nigerian_electricity_state_electricity_access}
}
Collection
Part of the Nigeria Electricity Access collection containing 7 datasets on rural-urban electrification.
Related Datasets
Methodology Documentation
For detailed methodology, see:
Updates
This dataset is versioned. Check the repository for updates and corrections.
Contact
For questions, corrections, or collaboration:
- Organization: Electric Sheep Africa
- Collection: Nigeria Electricity Access
License
MIT License - Free to use with attribution. Please cite appropriately and acknowledge the synthetic nature of the data.
- Downloads last month
- 41