Dataset Viewer
Auto-converted to Parquet Duplicate
sample_id
stringlengths
15
15
population
stringclasses
7 values
region
stringclasses
5 values
is_SSA
bool
2 classes
is_reference_panel
bool
2 classes
sex
stringclasses
2 values
age
int64
18
85
hiv_status
stringclasses
2 values
has_hiv
bool
2 classes
on_art
bool
2 classes
viral_suppressed
bool
2 classes
viral_load_copies_ml
float64
0
1.03M
diabetes_status
stringclasses
2 values
has_diabetes
bool
2 classes
hypertension_status
stringclasses
2 values
has_hypertension
bool
2 classes
tb_coinfection_status
stringclasses
2 values
CO_SAMPLE_00001
SSA_West
West
true
false
Female
48
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00002
SSA_West
West
true
false
Female
30
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00003
SSA_West
West
true
false
Female
54
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00004
SSA_West
West
true
false
Female
56
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00005
SSA_West
West
true
false
Female
19
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00006
SSA_West
West
true
false
Male
27
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00007
SSA_West
West
true
false
Female
46
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00008
SSA_West
West
true
false
Female
40
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00009
SSA_West
West
true
false
Male
44
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00010
SSA_West
West
true
false
Female
33
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00011
SSA_West
West
true
false
Female
55
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00012
SSA_West
West
true
false
Male
54
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00013
SSA_West
West
true
false
Female
45
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00014
SSA_West
West
true
false
Female
59
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00015
SSA_West
West
true
false
Female
50
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00016
SSA_West
West
true
false
Male
33
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00017
SSA_West
West
true
false
Female
49
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00018
SSA_West
West
true
false
Female
32
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00019
SSA_West
West
true
false
Female
55
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00020
SSA_West
West
true
false
Female
43
Negative
false
false
false
0
Type2
true
No
false
No
CO_SAMPLE_00021
SSA_West
West
true
false
Male
42
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00022
SSA_West
West
true
false
Female
35
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00023
SSA_West
West
true
false
Male
60
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00024
SSA_West
West
true
false
Female
42
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00025
SSA_West
West
true
false
Female
38
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00026
SSA_West
West
true
false
Male
39
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00027
SSA_West
West
true
false
Female
51
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00028
SSA_West
West
true
false
Female
49
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00029
SSA_West
West
true
false
Male
49
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00030
SSA_West
West
true
false
Female
50
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00031
SSA_West
West
true
false
Female
72
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00032
SSA_West
West
true
false
Male
39
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00033
SSA_West
West
true
false
Female
37
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00034
SSA_West
West
true
false
Female
33
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00035
SSA_West
West
true
false
Female
52
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00036
SSA_West
West
true
false
Female
59
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00037
SSA_West
West
true
false
Female
43
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00038
SSA_West
West
true
false
Male
33
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00039
SSA_West
West
true
false
Female
33
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00040
SSA_West
West
true
false
Male
52
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00041
SSA_West
West
true
false
Female
54
Positive
true
true
false
19,236.455298
No
false
Yes
true
No
CO_SAMPLE_00042
SSA_West
West
true
false
Female
51
Negative
false
false
false
0
Type2
true
No
false
No
CO_SAMPLE_00043
SSA_West
West
true
false
Female
35
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00044
SSA_West
West
true
false
Male
47
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00045
SSA_West
West
true
false
Female
46
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00046
SSA_West
West
true
false
Female
47
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00047
SSA_West
West
true
false
Male
55
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00048
SSA_West
West
true
false
Male
47
Negative
false
false
false
0
Type2
true
No
false
No
CO_SAMPLE_00049
SSA_West
West
true
false
Female
53
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00050
SSA_West
West
true
false
Male
45
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00051
SSA_West
West
true
false
Female
48
Negative
false
false
false
0
Type2
true
No
false
No
CO_SAMPLE_00052
SSA_West
West
true
false
Female
52
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00053
SSA_West
West
true
false
Female
25
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00054
SSA_West
West
true
false
Female
40
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00055
SSA_West
West
true
false
Female
38
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00056
SSA_West
West
true
false
Male
36
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00057
SSA_West
West
true
false
Female
40
Negative
false
false
false
0
Type2
true
No
false
No
CO_SAMPLE_00058
SSA_West
West
true
false
Male
63
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00059
SSA_West
West
true
false
Male
33
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00060
SSA_West
West
true
false
Male
57
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00061
SSA_West
West
true
false
Male
22
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00062
SSA_West
West
true
false
Male
40
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00063
SSA_West
West
true
false
Male
46
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00064
SSA_West
West
true
false
Female
52
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00065
SSA_West
West
true
false
Female
53
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00066
SSA_West
West
true
false
Female
54
Positive
true
false
false
19,221.903026
No
false
No
false
No
CO_SAMPLE_00067
SSA_West
West
true
false
Female
39
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00068
SSA_West
West
true
false
Female
38
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00069
SSA_West
West
true
false
Male
55
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00070
SSA_West
West
true
false
Female
42
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00071
SSA_West
West
true
false
Male
27
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00072
SSA_West
West
true
false
Female
29
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00073
SSA_West
West
true
false
Female
32
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00074
SSA_West
West
true
false
Female
50
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00075
SSA_West
West
true
false
Female
46
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00076
SSA_West
West
true
false
Female
53
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00077
SSA_West
West
true
false
Female
38
Negative
false
false
false
0
Type2
true
No
false
No
CO_SAMPLE_00078
SSA_West
West
true
false
Female
46
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00079
SSA_West
West
true
false
Female
52
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00080
SSA_West
West
true
false
Female
40
Negative
false
false
false
0
Type2
true
Yes
true
No
CO_SAMPLE_00081
SSA_West
West
true
false
Female
50
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00082
SSA_West
West
true
false
Female
35
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00083
SSA_West
West
true
false
Female
39
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00084
SSA_West
West
true
false
Female
39
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00085
SSA_West
West
true
false
Female
28
Negative
false
false
false
0
Type2
true
No
false
No
CO_SAMPLE_00086
SSA_West
West
true
false
Female
50
Negative
false
false
false
0
Type2
true
Yes
true
No
CO_SAMPLE_00087
SSA_West
West
true
false
Male
38
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00088
SSA_West
West
true
false
Male
44
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00089
SSA_West
West
true
false
Male
50
Positive
true
true
true
464.417777
No
false
No
false
No
CO_SAMPLE_00090
SSA_West
West
true
false
Female
50
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00091
SSA_West
West
true
false
Female
53
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00092
SSA_West
West
true
false
Female
43
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00093
SSA_West
West
true
false
Male
38
Positive
true
true
false
5,763.721347
No
false
No
false
No
CO_SAMPLE_00094
SSA_West
West
true
false
Male
43
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00095
SSA_West
West
true
false
Male
22
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00096
SSA_West
West
true
false
Male
25
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00097
SSA_West
West
true
false
Female
27
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00098
SSA_West
West
true
false
Male
31
Negative
false
false
false
0
No
false
Yes
true
No
CO_SAMPLE_00099
SSA_West
West
true
false
Male
49
Negative
false
false
false
0
No
false
No
false
No
CO_SAMPLE_00100
SSA_West
West
true
false
Female
32
Negative
false
false
false
0
No
false
No
false
No
End of preview. Expand in Data Studio

SSA Comorbidities Dataset (Adults, Multi-ancestry, Synthetic)

Dataset summary

This dataset provides a synthetic adult cohort (18–85 years) with key infectious and chronic comorbidities relevant to cancer and NCD risk in sub-Saharan Africa (SSA) and reference populations.

Included conditions:

  • HIV prevalence with ART status and viral load distributions.
  • Diabetes prevalence (Type 2 diabetes).
  • Hypertension prevalence.
  • Tuberculosis (TB) co-infection rates among people living with HIV.

Parameters are qualitatively anchored to UNAIDS (HIV/viral suppression), IDF Diabetes Atlas / WHO AFRO (diabetes), hypertension reviews in SSA, and TB–HIV integration literature, but all individuals are fully synthetic.

Cohort design

Sample size and populations

  • Total N: 10,000 synthetic adults.

  • Populations:

    • SSA_West: 2,000
    • SSA_East: 2,000
    • SSA_Central: 1,500
    • SSA_Southern: 1,500
    • AAW (African American reference): 1,500
    • EUR (European reference): 1,000
    • EAS (East Asian reference): 500
  • Sex:

    • Female, Male (~55% vs 45% overall).
  • Age:

    • 18–85 years.
    • Slightly older mean ages in AAW, EUR, and EAS vs SSA clusters.

Population labels align with other Electric Sheep Africa synthetic datasets (risk factors, cardiovascular metrics, surgical outcomes, etc.).

Comorbidity variables

HIV and viral load

Variables:

  • hiv_status – Negative or Positive.
  • has_hiv – boolean flag.
  • on_art – on antiretroviral therapy.
  • viral_suppressed – suppression indicator based on the ART/suppression model.
  • viral_load_copies_ml – HIV RNA copies/mL (continuous, log-normal).

Patterns reflect:

  • HIV prevalence highest in SSA_Southern, followed by SSA_East and SSA_Central, lower in SSA_West, and much lower in AAW, EUR, and EAS.
  • ART coverage among people living with HIV (PLHIV) in SSA around 80–90%.
  • Viral load suppression among those on ART in the 80–90% range, consistent with progress toward the UNAIDS 95–95–95 targets.

Viral load modeling:

  • Suppressed individuals: log10 viral load ~ N(1.6, 0.3²), i.e., median tens of copies/mL, mostly <1,000 copies/mL.
  • Unsuppressed individuals: log10 viral load ~ N(4.5, 0.6²), typically tens of thousands of copies/mL.
  • viral_suppressed is sampled according to population-specific suppression probabilities informed by care cascade literature.

Diabetes

Variables:

  • diabetes_status – No or Type2.
  • has_diabetes – boolean flag.

Prevalence is set using IDF Diabetes Atlas estimates for the Africa region (~4–6% adults) and higher burdens in high-income reference groups:

  • SSA clusters: Type 2 diabetes prevalence typically 4–9%, slightly higher in southern African settings.
  • AAW/EUR/EAS: higher prevalence (8–12%), reflecting known burdens in African American, European, and East Asian populations.

Hypertension

Variables:

  • hypertension_status – No or Yes.
  • has_hypertension – boolean flag.

Calibrated using systematic and narrative reviews placing adult hypertension prevalence in SSA around 30–31%:

  • SSA clusters: hypertension prevalence ~30–35%.
  • AAW/EUR/EAS: slightly higher prevalences (mid-30s to ~40%), consistent with global high-burden NCD settings.

TB co-infection among PLHIV

Variable:

  • tb_coinfection_status – No or Active_TB.

Modeling assumptions:

  • Only HIV-positive individuals are at risk for Active_TB in this synthetic dataset (TB independent of HIV is not modeled here).
  • TB co-infection probabilities are higher in southern and eastern SSA and lower in reference populations, reflecting high TB–HIV overlap in high-burden countries.

This structure is inspired by reviews of TB–HIV treatment integration and WHO TB/HIV burden reports.

File and schema

comorbidities_data.parquet / comorbidities_data.csv

Each row represents one adult individual:

  • Demographics

    • sample_id
    • population
    • region
    • is_SSA
    • is_reference_panel
    • sex
    • age
  • HIV / ART / viral load

    • hiv_status
    • has_hiv
    • on_art
    • viral_suppressed
    • viral_load_copies_ml
  • Diabetes

    • diabetes_status
    • has_diabetes
  • Hypertension

    • hypertension_status
    • has_hypertension
  • TB

    • tb_coinfection_status

Generation

The dataset is generated using:

  • comorbidities/scripts/generate_comorbidities.py

with configuration in:

  • comorbidities/configs/comorbidities_config.yaml

and literature inventory in:

  • comorbidities/docs/LITERATURE_INVENTORY.csv

Key steps:

  1. Sample generation – multi-ancestry adult cohort with age and sex distributions by population.
  2. HIV module – sample hiv_status by population and sex, then assign on_art, viral_suppressed, and viral_load_copies_ml using population-specific coverage and suppression parameters.
  3. Diabetes and hypertension – sample diabetes_status and hypertension_status by population and sex, consistent with IDF/WHO and hypertension review ranges.
  4. TB co-infection – among PLHIV, assign tb_coinfection_status using region-specific probabilities reflecting higher burden in southern and eastern SSA.

Validation

Validation is performed with:

  • comorbidities/scripts/validate_comorbidities.py

and summarized in:

  • comorbidities/output/validation_report.md

Checks include:

  • C01–C02 – Sample size and population counts vs config.
  • C03 – HIV prevalence by population and sex.
  • C04 – Viral suppression among HIV-positive on ART.
  • C05 – Diabetes prevalence by population and sex.
  • C06 – Hypertension prevalence by population and sex.
  • C07 – TB co-infection prevalence among PLHIV.
  • C08 – Missingness in key variables.

For the released version, all checks fall within the configured tolerance, yielding an overall validation status of PASS.

Intended use

This dataset is intended for:

  • Joint modeling of communicable and non-communicable comorbidities in SSA.
  • Simulation studies of multi-morbidity burden and intervention scenarios (e.g., improving viral suppression or hypertension control).
  • Educational use in epidemiology, public health, and global health analytics.

It is not suitable for:

  • Estimating real-world prevalence in any specific country or clinic.
  • Clinical decision-making, risk counselling, or program evaluation without real-world data.

All data are synthetic.

Ethical considerations

  • No real patient data are used; all records are simulated.
  • Population differences are modeled for methodological realism and should not be over-interpreted or used to stigmatize communities.
  • Users should contextualize any analysis with up-to-date surveillance and peer-reviewed data.

License

  • License: CC BY-NC 4.0.
  • Free to use for non-commercial research, methods development, and teaching with attribution.

Citation

If you use this dataset, please cite:

Electric Sheep Africa. "SSA Comorbidities Dataset (Adults, Multi-ancestry, Synthetic)." Hugging Face Datasets.

and, as appropriate, foundational sources such as UNAIDS HIV fact sheets, IDF Diabetes Atlas, hypertension reviews in sub-Saharan Africa, and TB–HIV integration literature.

Downloads last month
26