text
stringlengths
644
10k
. The plot of land is the fixed factor of production, while the water that the farmer can add to the land is the key variable cost. As the farmer adds water to the land, output increases. However, adding increasingly more water brings smaller increases in output, until at some point the water floods the field and actually reduces output. Diminishing marginal productivity occurs because, with fixed inputs (land in this example), each additional unit of input (e.g. water) contributes less to overall production. Average Total Cost, Average Variable Cost, Marginal Cost The breakdown of total costs into fixed and variable costs can provide a basis for other insights as well. The first five columns of Table 7.10 duplicate the previous table, but the last three columns show average total costs, average variable costs, and marginal costs. These new measures analyze costs on a per-unit (rather than a total) basis and are reflected in the curves in Figure 7.8. Figure 7.8 Cost Curves at the Clip Joint We can also present the information on total costs, fixed cost, and variable cost on a per-unit basis. We calculate average total cost (ATC) by dividing total cost by the total quantity produced. The average total cost curve is typically U-shaped. We calculate average variable cost (AVC) by dividing variable cost by the quantity produced. The average variable cost curve lies below the average total cost curve and is also typically U-shaped. We calculate marginal cost (MC) by taking the change in total cost between two levels of output and dividing by the change in output. The marginal cost curve is upward-sloping. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 169 Labor Quantity Fixed Cost Variable Cost Total Cost Marginal Cost Average Total Cost Average Variable Cost 1 2 3 4 5 6 16 40 60 72 80 84 $160 $160 $160 $160 $160 $160 $80 $160 $240 $320 $400 $480 $240 $15.00 $15.00 $320 $3.33 $400 $4.00 $480 $6.67 $560 $10.00 $640 $20.00 $8.00 $6.67 $6.67 $7.00 $7.62 $5.00 $4.00 $4.00 $4.44 $5.00 $5.71 Table 7.10 Different Types of Costs Average total cost (sometimes referred to simply as average cost) is total cost divided by the quantity of output. Since the total cost of producing 40 haircuts is $320, the average total cost for producing each of 40 haircuts is $320/40, or $8 per haircut. Average cost curves are typically U-shaped, as Figure 7.8 shows. Average total cost starts off relatively high, because at low levels of output total costs are dominated by the fixed cost. Mathematically, the denominator is so small that average total cost is large. Average total cost then declines, as the fixed costs are spread over an increasing quantity of output. In the average cost calculation, the rise in the numerator of total costs is relatively small compared to the rise in the denominator of quantity produced. However, as output expands still further, the average cost begins to rise. At the right side of the average cost curve, total costs begin rising more rapidly as diminishing returns come into effect. We obtain average variable cost when we divide variable cost by quantity of output. For example, the variable cost of producing 80 haircuts is $400, so the average variable cost is $400/80, or $5 per haircut. Note that at any level of output, the average variable cost curve will always lie below the curve for average total cost, as Figure 7.8 shows. The reason is that average total cost includes average variable cost and average fixed cost. Thus, for Q = 80 haircuts, the average total cost is $8 per haircut, while the average variable cost is $5 per haircut. However, as output grows, fixed costs become relatively less important (since they do not rise with output), so average variable cost sneaks closer to average cost. Average total and variable costs measure the average costs of producing some quantity of output. Marginal cost is somewhat different. Marginal cost is the additional cost of producing one more unit of output. It is not the cost per unit of all units produced, but only the next one (or next few). We calculate marginal cost by taking the change in total cost and dividing it by the change in quantity. For example, as quantity produced increases from 40 to 60 haircuts, total costs rise by 400 – 320, or 80. Thus, the marginal cost for each of those marginal 20 units will be 80/20, or $4 per haircut. The marginal cost curve is generally upward-sloping, because diminishing marginal returns implies that additional units are more costly to produce. We can see small range of increasing marginal returns in the figure as a dip in the marginal cost curve before it starts rising. There is a point at which marginal and average costs meet, as the following Clear it Up feature discusses. Where do marginal and average costs meet? The marginal cost line intersects the average cost line exactly at the bottom of the average cost curve—which occurs at a quantity of 72 and cost of $6.60 in Figure 7.8. The reason why the intersection occurs at this point is built into the economic meaning of marginal and average costs. If the marginal cost of production is below the average cost for producing previous units, as it is for the points to the left of where MC crosses ATC, then producing one more additional unit will reduce average costs overall—and the ATC curve will be downwardsloping in this zone. Conversely, if the marginal cost of production for producing an additional unit is above 170 Chapter 7 | Production, Costs, and Industry Structure the average cost for producing the earlier units, as it is for points to the right of where MC crosses ATC, then producing a marginal unit will increase average costs overall—and the ATC curve must be upward-sloping in this zone. The point of transition, between where MC is pulling ATC down and where it is pulling it up, must occur at the minimum point of the ATC curve. This idea of the marginal cost “pulling down” the average cost or “pulling up” the average cost may sound abstract, but think about it in terms of your own grades. If the score on the most recent quiz you take is lower than your average score on previous quizzes, then the marginal quiz pulls down your average. If your score on the most recent quiz is higher than the average on previous quizzes, the marginal quiz pulls up your average. In this same way, low marginal costs of production first pull down average costs and then higher marginal costs pull them up. The numerical calculations behind average cost, average variable cost, and marginal cost will change from firm to firm. However, the general patterns of these curves, and the relationships and economic intuition behind them, will not change. Lessons from Alternative Measures of Costs Breaking down total costs into fixed cost, marginal cost, average total cost, and average variable cost is useful because each statistic offers its own insights for the firm. Whatever the firm’s quantity of production, total revenue must exceed total costs if it is to earn a profit. As explored in the chapter Choice in a World of Scarcity, fixed costs are often sunk costs that a firm cannot recoup. In thinking about what to do next, typically you should ignore sunk costs, since you have already spent this money and cannot make any changes. However, you can change variable costs, so they convey information about the firm’s ability to cut costs in the present and the extent to which costs will increase if production rises. Why are total cost and average cost not on the same graph? Total cost, fixed cost, and variable cost each reflect different aspects of the cost of production over the entire quantity of output produced. We measure these costs in dollars. In contrast, marginal cost, average cost, and average variable cost are costs per unit. In the previous example, we measured them as dollars per haircut. Thus, it would not make sense to put all of these numbers on the same graph, since we measure them in different units ($ versus $ per unit of output). It would be as if the vertical axis measured two different things. In addition, as a practical matter, if they were on the same graph, the lines for marginal cost, average cost, and average variable cost would appear almost flat against the horizontal axis, compared to the values for total cost, fixed cost, and variable cost. Using the figures from the previous example, the total cost of producing 40 haircuts is $320. However, the average cost is $320/40, or $8. If you graphed both total and average cost on the same axes, the average cost would hardly show. Average cost tells a firm whether it can earn profits given the current price in the market. If we divide profit by the quantity of output produced we get average profit, also known as the firm’s profit margin. Expanding the equation for profit gives: average profi = profi quantity produced = total revenue – total cost quantity produced total revenue quantity produced – = total cost quantity produced = average revenue – average cost This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 171 However, note that: Thus: average revenue = price × quantity produced quantity produced = price average profi = price – average cost This is the firm’s profit margin. This definition implies that if the market price is above average cost, average profit, and thus total profit, will be positive. If price is below average cost, then profits will be negative. We can compare this marginal cost of producing an additional unit with the marginal revenue gained by selling that additional unit to reveal whether the additional unit is adding to total profit—or not. Thus, marginal cost helps producers understand how increasing or decreasing production affects profits. A Variety of Cost Patterns The pattern of costs varies among industries and even among firms in the
same industry. Some businesses have high fixed costs, but low marginal costs. Consider, for example, an internet company that provides medical advice to customers. Consumers might pay such a company directly, or perhaps hospitals or healthcare practices might subscribe on behalf of their patients. Setting up the website, collecting the information, writing the content, and buying or leasing the computer space to handle the web traffic are all fixed costs that the company must undertake before the site can work. However, when the website is up and running, it can provide a high quantity of service with relatively low variable costs, like the cost of monitoring the system and updating the information. In this case, the total cost curve might start at a high level, because of the high fixed costs, but then might appear close to flat, up to a large quantity of output, reflecting the low variable costs of operation. If the website is popular, however, a large rise in the number of visitors will overwhelm the website, and increasing output further could require a purchase of additional computer space. For other firms, fixed costs may be relatively low. For example, consider firms that rake leaves in the fall or shovel snow off sidewalks and driveways in the winter. For fixed costs, such firms may need little more than a car to transport workers to homes of customers and some rakes and shovels. Still other firms may find that diminishing marginal returns set in quite sharply. If a manufacturing plant tried to run 24 hours a day, seven days a week, little time remains for routine equipment maintenance, and marginal costs can increase dramatically as the firm struggles to repair and replace overworked equipment. Every firm can gain insight into its task of earning profits by dividing its total costs into fixed and variable costs, and then using these calculations as a basis for average total cost, average variable cost, and marginal cost. However, making a final decision about the profit-maximizing quantity to produce and the price to charge will require combining these perspectives on cost with an analysis of sales and revenue, which in turn requires looking at the market structure in which the firm finds itself. Before we turn to the analysis of market structure in other chapters, we will analyze the firm’s cost structure from a long-run perspective. 7.4 | Production in the Long Run By the end of this section, you will be able to: • Understand how long run production differs from short run production. In the long run, all factors (including capital) are variable, so our production function is Q = f ⎡ ⎦ . ⎣L, K ⎤ Consider a secretarial firm that does typing for hire using typists for labor and personal computers for capital. To start, the firm has just enough business for one typist and one PC to keep busy for a day. Say that’s five documents. Now suppose the firm receives a rush order from a good customer for 10 documents tomorrow. Ideally, the firm would like to use two typists and two PCs to produce twice their normal output of five documents. However, in the short turn, the firm has fixed capital, i.e. only one PC. The table below shows the situation: 172 Chapter 7 | Production, Costs, and Industry Structure # Typists (L) Letters/hr (TP) MP For K = 1PC Table 7.11 Short Run Production Function for Typing In the short run, the only variable factor is labor so the only way the firm can produce more output is by hiring additional workers. What could the second worker do? What can they contribute to the firm? Perhaps they can answer the phone, which is a major impediment to completing the typing assignment. What about a third worker? Perhaps he or she could bring coffee to the first two workers. You can see both total product and marginal product for the firm above. Now here’s something to think about: At what point (e.g. after how many workers) does diminishing marginal productivity kick in, and more importantly, why? In this example, marginal productivity starts to decline after the second worker. This is because capital is fixed. The production process for typing works best with one worker and one PC. If you add more than one typist, you get seriously diminishing marginal productivity. Consider the long run. Suppose the firm’s demand increases to 15 documents per day. What might the firm do to operate more efficiently? If demand has tripled, the firm could acquire two more PCs, which would give us a new short run production function as Table 7.4 below shows. # Typists (L) Letters/hr (TP) MP Letters/hr (TP) MP 1 5 5 5 5 2 6 2 10 5 3 8 1 15 5 4 8 0 17 2 5 8 0 18 1 5 8 0 18 0 For K = 1PC For K = 3PC Table 7.12 Long Run Production Function for Typing With more capital, the firm can hire three workers before diminishing productivity comes into effect. More generally, because all factors are variable, the long run production function shows the most efficient way of producing any level of output. 7.5 | Costs in the Long Run By the end of this section, you will be able to: • Calculate long run total cost • • • Analyze cost and production in the long run and short run Identify economies of scale, diseconomies of scale, and constant returns to scale Interpret graphs of long-run average cost curves and short-run average cost curves The long run is the period of time when all costs are variable. The long run depends on the specifics of the firm in question—it is not a precise period of time. If you have a one-year lease on your factory, then the long run is any period longer than a year, since after a year you are no longer bound by the lease. No costs are fixed in the long run. A firm can build new factories and purchase new machinery, or it can close existing facilities. In planning for the long run, the firm will compare alternative production technologies (or processes). This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 173 In this context, technology refers to all alternative methods of combining inputs to produce outputs. It does not refer to a specific new invention like the tablet computer. The firm will search for the production technology that allows it to produce the desired level of output at the lowest cost. After all, lower costs lead to higher profits—at least if total revenues remain unchanged. Moreover, each firm must fear that if it does not seek out the lowest-cost methods of production, then it may lose sales to competitor firms that find a way to produce and sell for less. Choice of Production Technology A firm can perform many tasks with a range of combinations of labor and physical capital. For example, a firm can have human beings answering phones and taking messages, or it can invest in an automated voicemail system. A firm can hire file clerks and secretaries to manage a system of paper folders and file cabinets, or it can invest in a computerized recordkeeping system that will require fewer employees. A firm can hire workers to push supplies around a factory on rolling carts, it can invest in motorized vehicles, or it can invest in robots that carry materials without a driver. Firms often face a choice between buying a many small machines, which need a worker to run each one, or buying one larger and more expensive machine, which requires only one or two workers to operate it. In short, physical capital and labor can often substitute for each other. Consider the example of local governments hiring a private firm to clean up public parks. Three different combinations of labor and physical capital for cleaning up a single average-sized park appear in Table 7.13. The first production technology is heavy on workers and light on machines, while the next two technologies substitute machines for workers. Since all three of these production methods produce the same thing—one cleaned-up park—a profit-seeking firm will choose the production technology that is least expensive, given the prices of labor and machines. Production technology 1 Production technology 2 Production technology 3 Table 7.13 Three Ways to Clean a Park 10 workers 7 workers 3 workers 2 machines 4 machines 7 machines Production technology 1 uses the most labor and least machinery, while production technology 3 uses the least labor and the most machinery. Table 7.14 outlines three examples of how the total cost will change with each production technology as the cost of labor changes. As the cost of labor rises from example A to B to C, the firm will choose to substitute away from labor and use more machinery. Example A: Workers cost $40, machines cost $80 Labor Cost Machine Cost Total Cost Cost of technology 1 10 × $40 = $400 2 × $80 = $160 Cost of technology 2 7 × $40 = $280 4 × $80 = $320 Cost of technology 3 3 × $40 = $120 7 × $80 = $560 $560 $600 $680 Example B: Workers cost $55, machines cost $80 Labor Cost Machine Cost Total Cost Cost of technology 1 10 × $55 = $550 2 × $80 = $160 Cost of technology 2 7 × $55 = $385 4 × $80 = $320 Cost of technology 3 3 × $55 = $165 7 × $80 = $560 $710 $705 $725 Table 7.14 Total Cost with Rising Labor Costs 174 Chapter 7 | Production, Costs, and Industry Structure Example C: Workers cost $90, machines cost $80 Labor Cost Machine Cost Total Cost Cost of technology 1 10 × $90 = $900 2 × $80 = $160 $1,060 Cost of technology 2 7 × $90 = $630 4 × $80 = $320 Cost of technology 3 3 × $90 = $270 7 × $80 = $560 $950 $830 Table 7.14 Total Cost with Rising Labor Costs Example A shows the firm’s cost calculation when wages are $40 and machines costs are $80. In this case, technology 1 is the low-cost production technology. In example B, wages rise to $55, while the cost of machines does not change, in which case technology 2 is the low-cost production technology. If wages keep rising up to $90, while the cost of machines remains unchanged, then technology 3 clearly becomes the low-cost form of production, as example C shows. This ex
ample shows that as an input becomes more expensive (in this case, the labor input), firms will attempt to conserve on using that input and will instead shift to other inputs that are relatively less expensive. This pattern helps to explain why the demand curve for labor (or any input) slopes down; that is, as labor becomes relatively more expensive, profit-seeking firms will seek to substitute the use of other inputs. When a multinational employer like Coca-Cola or McDonald’s sets up a bottling plant or a restaurant in a high-wage economy like the United States, Canada, Japan, or Western Europe, it is likely to use production technologies that conserve on the number of workers and focuses more on machines. However, that same employer is likely to use production technologies with more workers and less machinery when producing in a lower-wage country like Mexico, China, or South Africa. Economies of Scale Once a firm has determined the least costly production technology, it can consider the optimal scale of production, or quantity of output to produce. Many industries experience economies of scale. Economies of scale refers to the situation where, as the quantity of output goes up, the cost per unit goes down. This is the idea behind “warehouse stores” like Costco or Walmart. In everyday language: a larger factory can produce at a lower average cost than a smaller factory. Figure 7.9 illustrates the idea of economies of scale, showing the average cost of producing an alarm clock falling as the quantity of output rises. For a small-sized factory like S, with an output level of 1,000, the average cost of production is $12 per alarm clock. For a medium-sized factory like M, with an output level of 2,000, the average cost of production falls to $8 per alarm clock. For a large factory like L, with an output of 5,000, the average cost of production declines still further to $4 per alarm clock. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 175 Figure 7.9 Economies of Scale A small factory like S produces 1,000 alarm clocks at an average cost of $12 per clock. A medium factory like M produces 2,000 alarm clocks at a cost of $8 per clock. A large factory like L produces 5,000 alarm clocks at a cost of $4 per clock. Economies of scale exist when the larger scale of production leads to lower average costs. The average cost curve in Figure 7.9 may appear similar to the average cost curves we presented earlier in this chapter, although it is downward-sloping rather than U-shaped. However, there is one major difference. The economies of scale curve is a long-run average cost curve, because it allows all factors of production to change. The short-run average cost curves we presented earlier in this chapter assumed the existence of fixed costs, and only variable costs were allowed to change. One prominent example of economies of scale occurs in the chemical industry. Chemical plants have many pipes. The cost of the materials for producing a pipe is related to the circumference of the pipe and its length. However, the cross-section area of the pipe determines the volume of chemicals that can flow through it. The calculations in Table 7.15 show that a pipe which uses twice as much material to make (as shown by the circumference) can actually carry four times the volume of chemicals because the pipe's cross-section area rises by a factor of four (as the Area column below shows). Circumference ( 2πr ) Area ( πr 2 ) 4-inch pipe 8-inch pipe 16-inch pipe 12.5 inches 25.1 inches 50.2 inches 12.5 square inches 50.2 square inches 201.1 square inches Table 7.15 Comparing Pipes: Economies of Scale in the Chemical Industry A doubling of the cost of producing the pipe allows the chemical firm to process four times as much material. This pattern is a major reason for economies of scale in chemical production, which uses a large quantity of pipes. Of course, economies of scale in a chemical plant are more complex than this simple calculation suggests. However, the chemical engineers who design these plants have long used what they call the “six-tenths rule,” a rule of thumb which holds that increasing the quantity produced in a chemical plant by a certain percentage will increase total cost by only six-tenths as much. Shapes of Long-Run Average Cost Curves While in the short run firms are limited to operating on a single average cost curve (corresponding to the level of fixed costs they have chosen), in the long run when all costs are variable, they can choose to operate on any average cost curve. Thus, the long-run average cost (LRAC) curve is actually based on a group of short-run average cost (SRAC) curves, each of which represents one specific level of fixed costs. More precisely, the long-run average cost curve will be the least expensive average cost curve for any level of output. Figure 7.10 shows how we build the 176 Chapter 7 | Production, Costs, and Industry Structure long-run average cost curve from a group of short-run average cost curves. Five short-run-average cost curves appear on the diagram. Each SRAC curve represents a different level of fixed costs. For example, you can imagine SRAC1 as a small factory, SRAC2 as a medium factory, SRAC3 as a large factory, and SRAC4 and SRAC5 as very large and ultra-large. Although this diagram shows only five SRAC curves, presumably there are an infinite number of other SRAC curves between the ones that we show. Think of this family of short-run average cost curves as representing different choices for a firm that is planning its level of investment in fixed cost physical capital—knowing that different choices about capital investment in the present will cause it to end up with different short-run average cost curves in the future. Figure 7.10 From Short-Run Average Cost Curves to Long-Run Average Cost Curves The five different shortrun average cost (SRAC) curves each represents a different level of fixed costs, from the low level of fixed costs at SRAC1 to the high level of fixed costs at SRAC5. Other SRAC curves, not in the diagram, lie between the ones that are here. The long-run average cost (LRAC) curve shows the lowest cost for producing each quantity of output when fixed costs can vary, and so it is formed by the bottom edge of the family of SRAC curves. If a firm wished to produce quantity Q3, it would choose the fixed costs associated with SRAC3. The long-run average cost curve shows the cost of producing each quantity in the long run, when the firm can choose its level of fixed costs and thus choose which short-run average costs it desires. If the firm plans to produce in the long run at an output of Q3, it should make the set of investments that will lead it to locate on SRAC3, which allows producing q3 at the lowest cost. A firm that intends to produce Q3 would be foolish to choose the level of fixed costs at SRAC2 or SRAC4. At SRAC2 the level of fixed costs is too low for producing Q3 at lowest possible cost, and producing q3 would require adding a very high level of variable costs and make the average cost very high. At SRAC4, the level of fixed costs is too high for producing q3 at lowest possible cost, and again average costs would be very high as a result. The shape of the long-run cost curve, in Figure 7.10, is fairly common for many industries. The left-hand portion of the long-run average cost curve, where it is downward- sloping from output levels Q1 to Q2 to Q3, illustrates the case of economies of scale. In this portion of the long-run average cost curve, larger scale leads to lower average costs. We illustrated this pattern earlier in Figure 7.9. In the middle portion of the long-run average cost curve, the flat portion of the curve around Q3, economies of scale have been exhausted. In this situation, allowing all inputs to expand does not much change the average cost of production. We call this constant returns to scale. In this LRAC curve range, the average cost of production does not change much as scale rises or falls. The following Clear It Up feature explains where diminishing marginal returns fit into this analysis. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 177 How do economies of scale compare to diminishing marginal returns? The concept of economies of scale, where average costs decline as production expands, might seem to conflict with the idea of diminishing marginal returns, where marginal costs rise as production expands. However, diminishing marginal returns refers only to the short-run average cost curve, where one variable input (like labor) is increasing, but other inputs (like capital) are fixed. Economies of scale refers to the long-run average cost curve where all inputs are allowed to increase together. Thus, it is quite possible and common to have an industry that has both diminishing marginal returns when only one input is allowed to change, and at the same time has economies of scale when all inputs change together to produce a larger-scale operation. Finally, the right-hand portion of the long-run average cost curve, running from output level Q4 to Q5, shows a situation where, as the level of output and the scale rises, average costs rise as well. We call this situation diseconomies of scale. A firm or a factory can grow so large that it becomes very difficult to manage, resulting in unnecessarily high costs as many layers of management try to communicate with workers and with each other, and as failures to communicate lead to disruptions in the flow of work and materials. Not many overly large factories exist in the real world, because with their very high production costs, they are unable to compete for long against plants with lower average costs of production. However, in some planned economies, like the economy of the old Soviet Union, plants that were so larg
e as to be grossly inefficient were able to continue operating for a long time because government economic planners protected them from competition and ensured that they would not make losses. Diseconomies of scale can also be present across an entire firm, not just a large factory. The leviathan effect can hit firms that become too large to run efficiently, across the entirety of the enterprise. Firms that shrink their operations are often responding to finding itself in the diseconomies region, thus moving back to a lower average cost at a lower output level. Visit this website (http://openstaxcollege.org/l/Toobig) to read an article about the complexity of the belief that banks can be “too-big-to-fail.” The Size and Number of Firms in an Industry The shape of the long-run average cost curve has implications for how many firms will compete in an industry, and whether the firms in an industry have many different sizes, or tend to be the same size. For example, say that the appliance industry sells one million dishwashers every year at a price of $500 each and the long-run average cost curve for dishwashers is in Figure 7.11 (a). In Figure 7.11 (a), the lowest point of the LRAC curve occurs at a quantity of 10,000 produced. Thus, the market for dishwashers will consist of 100 different manufacturing plants of this same size. If some firms built a plant that produced 5,000 dishwashers per year or 25,000 dishwashers per year, the average costs of production at such plants would be well above $500, and the firms would not be able to compete. 178 Chapter 7 | Production, Costs, and Industry Structure Figure 7.11 The LRAC Curve and the Size and Number of Firms (a) Low-cost firms will produce at output level R. When the LRAC curve has a clear minimum point, then any firm producing a different quantity will have higher costs. In this case, a firm producing at a quantity of 10,000 will produce at a lower average cost than a firm producing, say, 5,000 or 20,000 units. (b) Low-cost firms will produce between output levels R and S. When the LRAC curve has a flat bottom, then firms producing at any quantity along this flat bottom can compete. In this case, any firm producing a quantity between 5,000 and 20,000 can compete effectively, although firms producing less than 5,000 or more than 20,000 would face higher average costs and be unable to compete. How can we view cities as examples of economies of scale? Why are people and economic activity concentrated in cities, rather than distributed evenly across a country? The fundamental reason must be related to the idea of economies of scale—that grouping economic activity is more productive in many cases than spreading it out. For example, cities provide a large group of nearby customers, so that businesses can produce at an efficient economy of scale. They also provide a large group of workers and suppliers, so that business can hire easily and purchase whatever specialized inputs they need. Many of the attractions of cities, like sports stadiums and museums, can operate only if they can draw on a large nearby population base. Cities are big enough to offer a wide variety of products, which is what appeals to many shoppers. These factors are not exactly economies of scale in the narrow sense of the production function of a single firm, but they are related to growth in the overall size of population and market in an area. Cities are sometimes called “agglomeration economies.” These agglomeration factors help to explain why every economy, as it develops, has an increasing proportion of its population living in urban areas. In the United States, about 80% of the population now lives in metropolitan areas (which include the suburbs around cities), compared to just 40% in 1900. However, in poorer nations of the world, including much of Africa, the proportion of the population in urban areas is only about 30%. One of the great challenges for these countries as their economies grow will be to manage the growth of the great cities that will arise. If cities offer economic advantages that are a form of economies of scale, then why don’t all or most people live in one giant city? At some point, agglomeration economies must turn into diseconomies. For example, traffic congestion may reach a point where the gains from being geographically nearby are counterbalanced by how long it takes to travel. High densities of people, cars, and factories can mean more garbage and air and water pollution. Facilities like parks or museums may become overcrowded. There may be economies of scale for negative activities like crime, because high densities of people and businesses, combined with the greater impersonality of cities, make it easier for illegal activities as well as legal ones. The future of cities, both in the United States and in other countries around the world, will be determined by their ability to benefit This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 179 from the economies of agglomeration and to minimize or counterbalance the corresponding diseconomies. We illustrate a more common case in Figure 7.11 (b), where the LRAC curve has a flat-bottomed area of constant returns to scale. In this situation, any firm with a level of output between 5,000 and 20,000 will be able to produce at about the same level of average cost. Given that the market will demand one million dishwashers per year at a price of $500, this market might have as many as 200 producers (that is, one million dishwashers divided by firms making 5,000 each) or as few as 50 producers (one million dishwashers divided by firms making 20,000 each). The producers in this market will range in size from firms that make 5,000 units to firms that make 20,000 units. However, firms that produce below 5,000 units or more than 20,000 will be unable to compete, because their average costs will be too high. Thus, if we see an industry where almost all plants are the same size, it is likely that the long-run average cost curve has a unique bottom point as in Figure 7.11 (a). However, if the long-run average cost curve has a wide flat bottom like Figure 7.11 (b), then firms of a variety of different sizes will be able to compete with each other. We can interpret the flat section of the long-run average cost curve in Figure 7.11 (b) in two different ways. One interpretation is that a single manufacturing plant producing a quantity of 5,000 has the same average costs as a single manufacturing plant with four times as much capacity that produces a quantity of 20,000. The other interpretation is that one firm owns a single manufacturing plant that produces a quantity of 5,000, while another firm owns four separate manufacturing plants, which each produce a quantity of 5,000. This second explanation, based on the insight that a single firm may own a number of different manufacturing plants, is especially useful in explaining why the long-run average cost curve often has a large flat segment—and thus why a seemingly smaller firm may be able to compete quite well with a larger firm. At some point, however, the task of coordinating and managing many different plants raises the cost of production sharply, and the long-run average cost curve slopes up as a result. In the examples to this point, the quantity demanded in the market is quite large (one million) compared with the quantity produced at the bottom of the long-run average cost curve (5,000, 10,000 or 20,000). In such a situation, the market is set for competition between many firms. However, what if the bottom of the long-run average cost curve is at a quantity of 10,000 and the total market demand at that price is only slightly higher than that quantity—or even somewhat lower? Return to Figure 7.11 (a), where the bottom of the long-run average cost curve is at 10,000, but now imagine that the total quantity of dishwashers demanded in the market at that price of $500 is only 30,000. In this situation, the total number of firms in the market would be three. We call a handful of firms in a market an “oligopoly,” and the chapter on Monopolistic Competition and Oligopoly will discuss the range of competitive strategies that can occur when oligopolies compete. Alternatively, consider a situation, again in the setting of Figure 7.11 (a), where the bottom of the long-run average cost curve is 10,000, but total demand for the product is only 5,000. (For simplicity, imagine that this demand is highly inelastic, so that it does not vary according to price.) In this situation, the market may well end up with a single firm—a monopoly—producing all 5,000 units. If any firm tried to challenge this monopoly while producing a quantity lower than 5,000 units, the prospective competitor firm would have a higher average cost, and so it would not be able to compete in the longer term without losing money. The chapter on Monopoly discusses the situation of a monopoly firm. Thus, the shape of the long-run average cost curve reveals whether competitors in the market will be different sizes. If the LRAC curve has a single point at the bottom, then the firms in the market will be about the same size, but if the LRAC curve has a flat-bottomed segment of constant returns to scale, then firms in the market may be a variety of different sizes. The relationship between the quantity at the minimum of the long-run average cost curve and the quantity demanded in the market at that price will predict how much competition is likely to exist in the market. If the quantity demanded in the market far exceeds the quantity at the minimum of the LRAC, then many firms will compete. If the quantity demanded in the market is only slightly higher than the quantity at the minimum of the LRAC, a few firms will compete. If the quantity demanded in the market is less than the quantity at the minimum of the LRAC, a singleproducer monopoly is a likely o
utcome. Shifting Patterns of Long-Run Average Cost New developments in production technology can shift the long-run average cost curve in ways that can alter the size distribution of firms in an industry. 180 Chapter 7 | Production, Costs, and Industry Structure For much of the twentieth century, the most common change had been to see alterations in technology, like the assembly line or the large department store, where large-scale producers seemed to gain an advantage over smaller ones. In the long-run average cost curve, the downward-sloping economies of scale portion of the curve stretched over a larger quantity of output. However, new production technologies do not inevitably lead to a greater average size for firms. For example, in recent years some new technologies for generating electricity on a smaller scale have appeared. The traditional coal-burning electricity plants needed to produce 300 to 600 megawatts of power to exploit economies of scale fully. However, high-efficiency turbines to produce electricity from burning natural gas can produce electricity at a competitive price while producing a smaller quantity of 100 megawatts or less. These new technologies create the possibility for smaller companies or plants to generate electricity as efficiently as large ones. Another example of a technology-driven shift to smaller plants may be taking place in the tire industry. A traditional mid-size tire plant produces about six million tires per year. However, in 2000, the Italian company Pirelli introduced a new tire factory that uses many robots. The Pirelli tire plant produced only about one million tires per year, but did so at a lower average cost than a traditional mid-sized tire plant. Controversy has simmered in recent years over whether the new information and communications technologies will lead to a larger or smaller size for firms. On one side, the new technology may make it easier for small firms to reach out beyond their local geographic area and find customers across a state, or the nation, or even across international boundaries. This factor might seem to predict a future with a larger number of small competitors. On the other side, perhaps the new information and communications technology will create “winner-take-all” markets where one large company will tend to command a large share of total sales, as Microsoft has done producing of software for personal computers or Amazon has done in online bookselling. Moreover, improved information and communication technologies might make it easier to manage many different plants and operations across the country or around the world, and thus encourage larger firms. This ongoing battle between the forces of smallness and largeness will be of great interest to economists, businesspeople, and policymakers. Amazon Traditionally, bookstores have operated in retail locations with inventories held either on the shelves or in the back of the store. These retail locations were very pricey in terms of rent. Until recently, Amazon had no retail locations. It only sold online and delivered by mail. Amazon now has retail stores in California, Oregon and Washington State and retail stores are coming to Illinois, Massachusetts, New Jersey, and New York. Amazon offers almost any book in print, convenient purchasing, and prompt delivery by mail. Amazon holds its inventories in huge warehouses in low-rent locations around the world. The warehouses are highly computerized using robots and relatively low-skilled workers, making for low average costs per sale. Amazon demonstrates the significant advantages economies of scale can offer to a firm that exploits those economies. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 181 KEY TERMS accounting profit total revenues minus explicit costs, including depreciation average profit profit divided by the quantity of output produced; also known as profit margin average total cost total cost divided by the quantity of output average variable cost variable cost divided by the quantity of output constant returns to scale expanding all inputs proportionately does not change the average cost of production diminishing marginal productivity general rule that as a firm employs more labor, eventually the amount of additional output produced declines diseconomies of scale the long-run average cost of producing output increases as total output increases economic profit total revenues minus total costs (explicit plus implicit costs) economies of scale the long-run average cost of producing output decreases as total output increases economies of scale the long-run average cost of producing output decreases as total output increases explicit costs out-of-pocket costs for a firm, for example, payments for wages and salaries, rent, or materials factors of production (or inputs) resources that firms use to produce their products, for example, labor and capital firm an organization that combines inputs of labor, capital, land, and raw or finished component materials to produce outputs. fixed cost cost of the fixed inputs; expenditure that a firm must make before production starts and that does not change regardless of the production level fixed inputs factors of production that can’t be easily increased or decreased in a short period of time implicit costs opportunity cost of resources already owned by the firm and used in business, for example, expanding a factory onto land already owned long run period of time during which all of a firm’s inputs are variable long-run average cost (LRAC) curve shows the lowest possible average cost of production, allowing all the inputs to production to vary so that the firm is choosing its production technology marginal cost the additional cost of producing one more unit; mathematically, MC = ΔTC / ΔL marginal product change in a firm’s output when it employees more labor; mathematically, MP = ΔTP / ΔL private enterprise the ownership of businesses by private individuals production the process of combining inputs to produce outputs, ideally of a value greater than the value of the inputs production function mathematical equation that tells how much output a firm can produce with given amounts of the inputs production technologies alternative methods of combining inputs to produce output revenue income from selling a firm’s product; defined as price times quantity sold 182 Chapter 7 | Production, Costs, and Industry Structure short run period of time during which at least one or more of the firm’s inputs is fixed short-run average cost (SRAC) curve the average total cost curve in the short term; shows the total of the average fixed costs and the average variable costs total cost the sum of fixed and variable costs of production total product synonym for a firm’s output variable cost cost of production that increases with the quantity produced; the cost of the variable inputs variable inputs factors of production that a firm can easily increase or decrease in a short period of time KEY CONCEPTS AND SUMMARY 7.1 Explicit and Implicit Costs, and Accounting and Economic Profit Privately owned firms are motivated to earn profits. Profit is the difference between revenues and costs. While accounting profit considers only explicit costs, economic profit considers both explicit and implicit costs. 7.2 Production in the Short Run Production is the process a firm uses to transform inputs (e.g. labor, capital, raw materials, etc.) into outputs. It is not possible to vary fixed inputs (e.g. capital) in a short period of time. Thus, in the short run the only way to change output is to change the variable inputs (e.g. labor). Marginal product is the additional output a firm obtains by employing more labor in production. At some point, employing additional labor leads to diminishing marginal productivity, meaning the additional output obtained is less than for the previous increment to labor. Mathematically, marginal product is the slope of the total product curve. 7.3 Costs in the Short Run For every input (e.g. labor), there is an associated factor payment (e.g. wages and salaries). The cost of production for a given quantity of output is the sum of the amount of each input required to produce that quantity of output times the associated factor payment. In a short-run perspective, we can divide a firm’s total costs into fixed costs, which a firm must incur before producing any output, and variable costs, which the firm incurs in the act of producing. Fixed costs are sunk costs; that is, because they are in the past and the firm cannot alter them, they should play no role in economic decisions about future production or pricing. Variable costs typically show diminishing marginal returns, so that the marginal cost of producing higher levels of output rises. We calculate marginal cost by taking the change in total cost (or the change in variable cost, which will be the same thing) and dividing it by the change in output, for each possible change in output. Marginal costs are typically rising. A firm can compare marginal cost to the additional revenue it gains from selling another unit to find out whether its marginal unit is adding to profit. We calculate average total cost by taking total cost and dividing by total output at each different level of output. Average costs are typically U-shaped on a graph. If a firm’s average cost of production is lower than the market price, a firm will be earning profits. We calculate average variable cost by taking variable cost and dividing by the total output at each level of output. Average variable costs are typically U-shaped. If a firm’s average variable cost of production is lower than the market price, then the firm would be earning profits if fixed costs are left out of the picture. 7.4 Production in the Long Run In the long run, all inputs are variable. Since diminishing marginal productivity is
caused by fixed capital, there are no diminishing returns in the long run. Firms can choose the optimal capital stock to produce their desired level of output. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 183 7.5 Costs in the Long Run A production technology refers to a specific combination of labor, physical capital, and technology that makes up a particular method of production. In the long run, firms can choose their production technology, and so all costs become variable costs. In making this choice, firms will try to substitute relatively inexpensive inputs for relatively expensive inputs where possible, so as to produce at the lowest possible long-run average cost. Economies of scale refers to a situation where as the level of output increases, the average cost decreases. Constant returns to scale refers to a situation where average cost does not change as output increases. Diseconomies of scale refers to a situation where as output increases, average costs also increase. The long-run average cost curve shows the lowest possible average cost of production, allowing all the inputs to production to vary so that the firm is choosing its production technology. A downward-sloping LRAC shows economies of scale; a flat LRAC shows constant returns to scale; an upward-sloping LRAC shows diseconomies of scale. If the long-run average cost curve has only one quantity produced that results in the lowest possible average cost, then all of the firms competing in an industry should be the same size. However, if the LRAC has a flat segment at the bottom, so that a firm can produce a range of different quantities at the lowest average cost, the firms competing in the industry will display a range of sizes. The market demand in conjunction with the long-run average cost curve determines how many firms will exist in a given industry. If the quantity demanded in the market of a certain product is much greater than the quantity found at the bottom of the long-run average cost curve, where the cost of production is lowest, the market will have many firms competing. If the quantity demanded in the market is less than the quantity at the bottom of the LRAC, there will likely be only one firm. SELF-CHECK QUESTIONS 1. A firm had sales revenue of $1 million last year. It spent $600,000 on labor, $150,000 on capital and $200,000 on materials. What was the firm’s accounting profit? 2. Continuing from Exercise 7.1, the firm’s factory sits on land owned by the firm that it could rent for $30,000 per year. What was the firm’s economic profit last year? 3. The WipeOut Ski Company manufactures skis for beginners. Fixed costs are $30. Fill in Table 7.16 for total cost, average variable cost, average total cost, and marginal cost. Quantity Variable Cost Fixed Cost Total Cost Average Variable Cost Average Total Cost Marginal Cost 0 $10 $25 $45 $70 $100 $135 $30 $30 $30 $30 $30 $30 $30 0 1 2 3 4 5 6 Table 7.16 184 Chapter 7 | Production, Costs, and Industry Structure 4. Based on your answers to the WipeOut Ski Company in Exercise 7.3, now imagine a situation where the firm produces a quantity of 5 units that it sells for a price of $25 each. a. What will be the company’s profits or losses? b. How can you tell at a glance whether the company is making or losing money at this price by looking at average cost? c. At the given quantity and price, is the marginal unit produced adding to profits? If two painters can paint 200 square feet of wall in an hour, and three painters can paint 275 square feet, what is 5. the marginal product of the third painter? 6. Return to the problem explained in Table 7.13 and Table 7.14. If the cost of labor remains at $40, but the cost of a machine decreases to $50, what would be the total cost of each method of production? Which method should the firm use, and why? 7. Suppose the cost of machines increases to $55, while the cost of labor stays at $40. How would that affect the total cost of the three methods? Which method should the firm choose now? 8. Automobile manufacturing is an industry subject to significant economies of scale. Suppose there are four domestic auto manufacturers, but the demand for domestic autos is no more than 2.5 times the quantity produced at the bottom of the long-run average cost curve. What do you expect will happen to the domestic auto industry in the long run? REVIEW QUESTIONS 9. What are explicit and implicit costs? 10. Would you consider an interest payment on a loan to a firm an explicit or implicit cost? 20. Are there fixed costs in the long-run? Explain briefly. 21. Are fixed costs also sunk costs? Explain. 11. What is the difference between accounting and economic profit? 22. What are diminishing marginal returns as they relate to costs? 12. What is a production function? 13. What is the difference between a fixed input and a variable input? 14. How do we calculate marginal product? 15. What shapes would you generally expect a total product curve and a marginal product curve to have? 16. What are the factor payments for land, labor, and capital? 17. What is the difference between fixed costs and variable costs? 18. How do we calculate each of the following: marginal cost, average total cost, and average variable cost? 19. What shapes would you generally expect each of the following cost curves to have: fixed costs, variable costs, marginal costs, average total costs, and average variable costs? 23. Which costs are measured on per-unit basis: fixed costs, average cost, average variable cost, variable costs, and marginal cost? 24. What is a production technology? In choosing a production technology, how will if one input becomes relatively more 25. firms react expensive? 26. What is a long-run average cost curve? 27. What is the difference between economies of scale, constant returns to scale, and diseconomies of scale? 28. What shape of a long-run average cost curve illustrates economies of scale, constant returns to scale, and diseconomies of scale? 29. Why will firms in most markets be located at or close to the bottom of the long-run average cost curve? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 7 | Production, Costs, and Industry Structure 185 CRITICAL THINKING QUESTIONS 30. Small “Mom and Pop firms,” like inner city grocery stores, sometimes exist even though they do not earn economic profits. How can you explain this? 31. A common name for fixed cost is “overhead.” If you divide fixed cost by the quantity of output produced, you get average fixed cost. Supposed fixed cost is $1,000. What does the average fixed cost curve look like? Use your response to explain what “spreading the overhead” means. 32. How does fixed cost affect marginal cost? Why is this relationship important? 33. Average cost curves (except for average fixed cost) tend to be U-shaped, decreasing and then increasing. Marginal cost curves have the same shape, though this may be harder to see since most of the marginal cost curve is increasing. Why do you think that average and marginal cost curves have the same general shape? PROBLEMS 39. A firm is considering an investment that will earn a 6% rate of return. If it were to borrow the money, it would have to pay 8% interest on the loan, but it currently has the cash, so it will not need to borrow. Should the firm make the investment? Show your work. 40. Return to Figure 7.7. What is the marginal gain in output from increasing the number of barbers from 4 to 5 and from 5 to 6? Does it continue the pattern of diminishing marginal returns? 41. Compute the average total cost, average variable cost, and marginal cost of producing 60 and 72 haircuts. Draw the graph of the three curves between 60 and 72 haircuts. 34. What is the relationship between marginal product and marginal cost? (Hint: Look at the curves.) Why do you suppose that is? Is this relationship the same in the long run as in the short run? It is clear that businesses operate in the short run, 35. but do they ever operate in the long run? Discuss. 36. Return to Table 7.2. In the top half of the table, at what point does diminishing marginal productivity kick in? What about in the bottom half of the table? How do you explain this? 37. How would an improvement in technology, like the high-efficiency gas turbines or Pirelli tire plant, affect the long-run average cost curve of a firm? Can you draw the old curve and the new one on the same axes? How might such an improvement affect other firms in the industry? 38. Do you think that the taxicab industry in large cities would be subject to significant economies of scale? Why or why not? 42. A small company that shovels sidewalks and driveways has 100 homes signed up for its services this winter. It can use various combinations of capital and labor: intensive labor with hand shovels, less labor with snow blowers, and still less labor with a pickup truck that has a snowplow on front. To summarize, the method choices are: Method 1: 50 units of labor, 10 units of capital Method 2: 20 units of labor, 40 units of capital Method 3: 10 units of labor, 70 units of capital If hiring labor for the winter costs $100/unit and a unit of capital costs $400, what is the best production method? What method should the company use if the cost of labor rises to $200/unit? 186 Chapter 7 | Production, Costs, and Industry Structure This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 187 8 | Perfect Competition Figure 8.1 Depending upon the competition and prices offered, a wheat farmer may choose to grow a different crop. (Credit: modification of work by Daniel X. O'Neil/Flickr Creative Commons) A Dime a Dozen When you were younger did you babysit, deliver papers, or mow the lawn for money? If so, you faced stiff competition from many other competitors who offered identical services. Th
ere was nothing to stop others from also offering their services. All of you charged the “going rate.” If you tried to charge more, your customers would simply buy from someone else. These conditions are very similar to the conditions agricultural growers face. Growing a crop may be more difficult to start than a babysitting or lawn mowing service, but growers face the same fierce competition. In the grand scale of world agriculture, farmers face competition from thousands of others because they sell an identical product. After all, winter wheat is winter wheat, but if they find it hard to make money with that crop, it is relatively easy for farmers to leave the marketplace for another crop. In this case, they do not sell the family farm, they switch crops. Take the case of the upper Midwest region of the United States—for many generations the area was called “King Wheat.” According to the United States Department of Agriculture National Agricultural Statistics Service, statistics by state, in 1997, 11.6 million acres of wheat and 780,000 acres of corn were planted in North Dakota. In the intervening 20 or so years has the mix of crops changed? Since it is relatively easy to switch crops, did farmers change what they planted in response to changes in relative crop prices? We will find out at chapter’s end. In the meantime, let's consider the topic of this chapter—the perfectly competitive market. This is a market in 188 Chapter 8 | Perfect Competition which entry and exit are relatively easy and competitors are “a dime a dozen.” Introduction to Perfect Competition In this chapter, you will learn about: • Perfect Competition and Why It Matters • How Perfectly Competitive Firms Make Output Decisions • Entry and Exit Decisions in the Long Run • Efficiency in Perfectly Competitive Markets Most businesses face two realities: no one is required to buy their products, and even customers who might want those products may buy from other businesses instead. Firms that operate in perfectly competitive markets face this reality. In this chapter, you will learn how such firms make decisions about how much to produce, how much profit they make, whether to stay in business or not, and many others. Industries differ from one another in terms of how many sellers there are in a specific market, how easy or difficult it is for a new firm to enter, and the type of products that they sell. Economists refer to this as an industry's market structure. In this chapter, we focus on perfect competition. However, in other chapters we will examine other industry types: Monopoly and Monopolistic Competition and Oligopoly. 8.1 | Perfect Competition and Why It Matters By the end of this section, you will be able to: • Explain the characteristics of a perfectly competitive market • Discuss how perfectly competitive firms react in the short run and in the long run Firms are in perfect competition when the following conditions occur: (1) many firms produce identical products; (2) many buyers are available to buy the product, and many sellers are available to sell the product; (3) sellers and buyers have all relevant information to make rational decisions about the product that they are buying and selling; and (4) firms can enter and leave the market without any restrictions—in other words, there is free entry and exit into and out of the market. A perfectly competitive firm is known as a price taker, because the pressure of competing firms forces it to accept the prevailing equilibrium price in the market. If a firm in a perfectly competitive market raises the price of its product by so much as a penny, it will lose all of its sales to competitors. When a wheat grower, as we discussed in the Bring It Home feature, wants to know the going price of wheat, he or she has to check on the computer or listen to the radio. Supply and demand in the entire market solely determine the market price, not the individual farmer. A perfectly competitive firm must be a very small player in the overall market, so that it can increase or decrease output without noticeably affecting the overall quantity supplied and price in the market. A perfectly competitive market is a hypothetical extreme; however, producers in a number of industries do face many competitor firms selling highly similar goods, in which case they must often act as price takers. Economists often use agricultural markets as an example. The same crops that different farmers grow are largely interchangeable. According to the United States Department of Agriculture monthly reports, in 2015, U.S. corn farmers received an average price of $6.00 per bushel. A corn farmer who attempted to sell at $7.00 per bushel, would not have found any buyers. A perfectly competitive firm will not sell below the equilibrium price either. Why should they when they can sell all they want at the higher price? Other examples of agricultural markets that operate in close to perfectly competitive markets are small roadside produce markets and small organic farmers. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 189 this website (http://openstaxcollege.org/l/commodities) Visit commodities. that reveals the current value of various This chapter examines how profit-seeking firms decide how much to produce in perfectly competitive markets. Such firms will analyze their costs as we discussed in the chapter on Production, Costs and Industry Structure. In the short run, the perfectly competitive firm will seek the quantity of output where profits are highest or, if profits are not possible, where losses are lowest. In the long run, positive economic profits will attract competition as other firms enter the market. Economic losses will cause firms to exit the market. Ultimately, perfectly competitive markets will attain long-run equilibrium when no new firms want to enter the market and existing firms do not want to leave the market, as economic profits have been driven down to zero. 8.2 | How Perfectly Competitive Firms Make Output Decisions By the end of this section, you will be able to: • Calculate profits by comparing total revenue and total cost Identify profits and losses with the average cost curve • • Explain the shutdown point • Determine the price at which a firm should continue producing in the short run A perfectly competitive firm has only one major decision to make—namely, what quantity to produce. To understand this, consider a different way of writing out the basic definition of profit: Profi = Total revenue − Total cost = (Price)(Quantity produced) − (Average cost)(Quantity produced) Since a perfectly competitive firm must accept the price for its output as determined by the product’s market demand and supply, it cannot choose the price it charges. This is already determined in the profit equation, and so the perfectly competitive firm can sell any number of units at exactly the same price. It implies that the firm faces a perfectly elastic demand curve for its product: buyers are willing to buy any number of units of output from the firm at the market price. When the perfectly competitive firm chooses what quantity to produce, then this quantity—along with the prices prevailing in the market for output and inputs—will determine the firm’s total revenue, total costs, and ultimately, level of profits. Determining the Highest Profit by Comparing Total Revenue and Total Cost A perfectly competitive firm can sell as large a quantity as it wishes, as long as it accepts the prevailing market price. The formula above shows that total revenue depends on the quantity sold and the price charged. If the firm sells a higher quantity of output, then total revenue will increase. If the market price of the product increases, then total revenue also increases whatever the quantity of output sold. As an example of how a perfectly competitive firm decides what quantity to produce, consider the case of a small farmer who produces raspberries and sells them frozen for $4 per pack. Sales of one pack of raspberries will bring in $4, two packs will be $8, three packs will be $12, and 190 Chapter 8 | Perfect Competition so on. If, for example, the price of frozen raspberries doubles to $8 per pack, then sales of one pack of raspberries will be $8, two packs will be $16, three packs will be $24, and so on. Table 8.1 graphically shows total revenue and total costs for the raspberry farm, also appear in Figure 8.2. The horizontal axis shows the quantity of frozen raspberries produced in packs. The vertical axis shows both total revenue and total costs, measured in dollars. The total cost curve intersects with the vertical axis at a value that shows the level of fixed costs, and then slopes upward. All these cost curves follow the same characteristics as the curves that we covered in the Production, Costs and Industry Structure chapter. Figure 8.2 Total Cost and Total Revenue at the Raspberry Farm Total revenue for a perfectly competitive firm is a straight line sloping up. The slope is equal to the price of the good. Total cost also slopes up, but with some curvature. At higher levels of output, total cost begins to slope upward more steeply because of diminishing marginal returns. The maximum profit will occur at the quantity where the difference between total revenue and total cost is largest. Quantity (Q) Total Cost (TC) Total Revenue (TR) Profit 0 10 20 30 40 50 60 70 80 90 $62 $90 $110 $126 $138 $150 $165 $190 $230 $296 $0 $40 $80 $120 $160 $200 $240 $280 $320 $360 Table 8.1 Total Cost and Total Revenue at the Raspberry Farm This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 −$62 −$50 −$30 −$6 $22 $50 $75 $90 $90 $64 Chapter 8 | Perfect Competition 191 Quantity (Q) Total Cost (TC) Total Revenue (TR) Profit 100 110 120 $400 $550 $715 $400 $440 $480 Table 8.1 Total Cost and Total Revenue at the Raspberry Farm $0 $−110 $−235 Based on its total r
evenue and total cost curves, a perfectly competitive firm like the raspberry farm can calculate the quantity of output that will provide the highest level of profit. At any given quantity, total revenue minus total cost will equal profit. One way to determine the most profitable quantity to produce is to see at what quantity total revenue exceeds total cost by the largest amount. Figure 8.2 shows total revenue, total cost and profit using the data from Table 8.1. The vertical gap between total revenue and total cost is profit, for example, at Q = 60, TR = 240 and TC = 165. The difference is 75, which is the height of the profit curve at that output level. The firm doesn’t make a profit at every level of output. In this example, total costs will exceed total revenues at output levels from 0 to approximately 30, and so over this range of output, the firm will be making losses. At output levels from 40 to 100, total revenues exceed total costs, so the firm is earning profits. However, at any output greater than 100, total costs again exceed total revenues and the firm is making increasing losses. Total profits appear in the final column of Table 8.1. Maximum profit occurs at an output between 70 and 80, when profit equals $90. A higher price would mean that total revenue would be higher for every quantity sold. A lower price would mean that total revenue would be lower for every quantity sold. What happens if the price drops low enough so that the total revenue line is completely below the total cost curve; that is, at every level of output, total costs are higher than total revenues? In this instance, the best the firm can do is to suffer losses. However, a profit-maximizing firm will prefer the quantity of output where total revenues come closest to total costs and thus where the losses are smallest. (Later we will see that sometimes it will make sense for the firm to close, rather than stay in operation producing output.) Comparing Marginal Revenue and Marginal Costs The approach that we described in the previous section, using total revenue and total cost, is not the only approach to determining the profit maximizing level of output. In this section, we provide an alternative approach which uses marginal revenue and marginal cost. Firms often do not have the necessary data they need to draw a complete total cost curve for all levels of production. They cannot be sure of what total costs would look like if they, say, doubled production or cut production in half, because they have not tried it. Instead, firms experiment. They produce a slightly greater or lower quantity and observe how it affects profits. In economic terms, this practical approach to maximizing profits means examining how changes in production affect marginal revenue and marginal cost. Figure 8.3 presents the marginal revenue and marginal cost curves based on the total revenue and total cost in Table 8.1. The marginal revenue curve shows the additional revenue gained from selling one more unit. As mentioned before, a firm in perfect competition faces a perfectly elastic demand curve for its product—that is, the firm’s demand curve is a horizontal line drawn at the market price level. This also means that the firm’s marginal revenue curve is the same as the firm’s demand curve: Every time a consumer demands one more unit, the firm sells one more unit and revenue increases by exactly the same amount equal to the market price. In this example, every time the firm sells a pack of frozen raspberries, the firm’s revenue increases by $4. Table 8.2 shows an example of this. This condition only holds for price taking firms in perfect competition where: The formula for marginal revenue is: marginal revenue = price marginal revenue = change in total revenue change in quantity 192 $4 $4 $4 $4 Chapter 8 | Perfect Competition Price Quantity Total Revenue Marginal Revenue 1 2 3 4 $4 $8 $12 $16 - $4 $4 $4 Table 8.2 Notice that marginal revenue does not change as the firm produces more output. That is because under perfect competition, the price is determined through the interaction of supply and demand in the market and does not change as the farmer produces more (keeping in mind that, due to the relative small size of each firm, increasing their supply has no impact on the total market supply where price is determined). Since a perfectly competitive firm is a price taker, it can sell whatever quantity it wishes at the market-determined price. We calculate marginal cost, the cost per additional unit sold, by dividing the change in total cost by the change in quantity. The formula for marginal cost is: marginal cost = change in total cost change in quantity Ordinarily, marginal cost changes as the firm produces a greater quantity. In the raspberry farm example, in Figure 8.3, Figure 8.4 and Table 8.3, marginal cost at first declines as production increases from 10 to 20 to 30 to 40 packs of raspberries—which represents the area of increasing marginal returns that is not uncommon at low levels of production. At some point, though, marginal costs start to increase, displaying the typical pattern of diminishing marginal returns. If the firm is producing at a quantity where MR > MC, like 40 or 50 packs of raspberries, then it can increase profit by increasing output because the marginal revenue is exceeding the marginal cost. If the firm is producing at a quantity where MC > MR, like 90 or 100 packs, then it can increase profit by reducing output because the reductions in marginal cost will exceed the reductions in marginal revenue. The firm’s profit-maximizing choice of output will occur where MR = MC (or at a choice close to that point). This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 193 Figure 8.3 Marginal Revenues and Marginal Costs at the Raspberry Farm: Individual Farmer For a perfectly competitive firm, the marginal revenue (MR) curve is a horizontal line because it is equal to the price of the good, which is determined by the market, as Figure 8.4 illustrates. The marginal cost (MC) curve is sometimes initially downward-sloping, if there is a region of increasing marginal returns at low levels of output, but is eventually upwardsloping at higher levels of output as diminishing marginal returns kick in. Figure 8.4 Marginal Revenues and Marginal Costs at the Raspberry Farm: Raspberry Market The equilibrium price of raspberries is determined through the interaction of market supply and market demand at $4.00. Quantity Total Cost Marginal Cost Total Revenue Marginal Revenue Profit 0 10 20 $62 $90 $110 - $2.80 $2.00 $0 $40 $80 $4 $4 $4 Table 8.3 Marginal Revenues and Marginal Costs at the Raspberry Farm -$62 -$50 -$30 194 Chapter 8 | Perfect Competition Quantity Total Cost Marginal Cost Total Revenue Marginal Revenue Profit 30 40 50 60 70 80 90 100 110 120 $126 $138 $150 $165 $190 $230 $296 $400 $550 $715 $1.60 $1.20 $1.20 $1.50 $2.50 $4.00 $6.60 $10.40 $15.00 $16.50 $120 $160 $200 $240 $280 $320 $360 $400 $440 $480 $4 $4 $4 $4 $4 $4 $4 $4 $4 $4 -$6 $22 $50 $75 $90 $90 $64 $0 -$110 -$235 Table 8.3 Marginal Revenues and Marginal Costs at the Raspberry Farm In this example, the marginal revenue and marginal cost curves cross at a price of $4 and a quantity of 80 produced. If the farmer started out producing at a level of 60, and then experimented with increasing production to 70, marginal revenues from the increase in production would exceed marginal costs—and so profits would rise. The farmer has an incentive to keep producing. At a level of output of 80, marginal cost and marginal revenue are equal so profit doesn’t change. If the farmer then experimented further with increasing production from 80 to 90, he would find that marginal costs from the increase in production are greater than marginal revenues, and so profits would decline. The profit-maximizing choice for a perfectly competitive firm will occur at the level of output where marginal revenue is equal to marginal cost—that is, where MR = MC. This occurs at Q = 80 in the figure. Does Profit Maximization Occur at a Range of Output or a Specific Level of Output? Table 8.1 shows that maximum profit occurs at any output level between 70 and 80 units of output. But MR = MC occurs only at 80 units of output. How can do we explain this slight discrepancy? As long as MR > MC. a profit-seeking firm should keep expanding production. Expanding production into the zone where MR < MC reduces economic profits. It’s true that profit is the same at Q = 70 and Q = 80, but it’s only when the firm goes beyond that that see that profits fall. Thus, MR = MC is the signal to stop expanding, so that is the level of output they should target. Because the marginal revenue received by a perfectly competitive firm is equal to the price P, we can also write the profit-maximizing rule for a perfectly competitive firm as a recommendation to produce at the quantity of output where P = MC. Profits and Losses with the Average Cost Curve Does maximizing profit (producing where MR = MC) imply an actual economic profit? The answer depends on the relationship between price and average total cost, which is the average profit or profit margin. If the market price is higher than the firm's average cost of production for that quantity produced, then the profit margin is positive and the firm will earn profits. Conversely, if the market price is lower than the average cost of production, the profit margin is negative and the firm will suffer losses. You might think that, in this situation, the firm may want to shut This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 195 down immediately. Remember, however, that the firm has already paid for fixed costs, such as equipment, so it may continue to produce for a while and incur a loss. Table 8.3 continues the raspberry farm example. Figure 8.5 illustrates the three possible sc
enarios: (a) where price intersects marginal cost at a level above the average cost curve, (b) where price intersects marginal cost at a level equal to the average cost curve, and (c) where price intersects marginal cost at a level below the average cost curve. Figure 8.5 Price and Average Cost at the Raspberry Farm In (a), price intersects marginal cost above the average cost curve. Since price is greater than average cost, the firm is making a profit. In (b), price intersects marginal cost at the minimum point of the average cost curve. Since price is equal to average cost, the firm is breaking even. In (c), price intersects marginal cost below the average cost curve. Since price is less than average cost, the firm is making a loss. First consider a situation where the price is equal to $5 for a pack of frozen raspberries. The rule for a profitmaximizing perfectly competitive firm is to produce the level of output where Price= MR = MC, so the raspberry farmer will produce a quantity of approximately 85, which is labeled as E' in Figure 8.5 (a). Remember that the area of a rectangle is equal to its base multiplied by its height. The farm’s total revenue at this price will be shown by the rectangle from the origin over to a quantity of 85 packs (the base) up to point E' (the height), over to the price of $5, and back to the origin. The average cost of producing 80 packs is shown by point C or about $3.50. Total costs will be the quantity of 85 times the average cost of $3.50, which is shown by the area of the rectangle from the origin to a quantity of 90, up to point C, over to the vertical axis and down to the origin. The difference between total revenues and total costs is profits. Thus, profits will be the blue shaded rectangle on top. 196 Chapter 8 | Perfect Competition We calculate this as: Or, we can calculate it as: profi = total revenue − total cost = (85)($5.00) − (85)($3.50) = $170 profi = (price – average cost) × quantity = ($5.00 – $3.50) × 85 = $170 Now consider Figure 8.5 (b), where the price has fallen to $2.75 for a pack of frozen raspberries. Again, the perfectly competitive firm will choose the level of output where Price = MR = MC, but in this case, the quantity produced will be 75. At this price and output level, where the marginal cost curve is crossing the average cost curve, the price the firm receives is exactly equal to its average cost of production. We call this the break even point. The farm’s total revenue at this price will be shown by the large shaded rectangle from the origin over to a quantity of 75 packs (the base) up to point E (the height), over to the price of $2.75, and back to the origin. The height of the average cost curve at Q = 75, i.e. point E, shows the average cost of producing this quantity. Total costs will be the quantity of 75 times the average cost of $2.75, which is shown by the area of the rectangle from the origin to a quantity of 75, up to point E, over to the vertical axis and down to the origin. It should be clear that the rectangles for total revenue and total cost are the same. Thus, the firm is making zero profit. The calculations are as follows: Or, we can calculate it as: profi = total revenue – total cost = (75)($2.75) – (75)($2.75) = $0 profi = (price – average cost)×quantity = ($2.75 – $2.75)×75 = $0 In Figure 8.5 (c), the market price has fallen still further to $2.00 for a pack of frozen raspberries. At this price, marginal revenue intersects marginal cost at a quantity of 65. The farm’s total revenue at this price will be shown by the large shaded rectangle from the origin over to a quantity of 65 packs (the base) up to point E” (the height), over to the price of $2, and back to the origin. The average cost of producing 65 packs is shown by Point C” or shows the average cost of producing 50 packs is about $2.73. Total costs will be the quantity of 65 times the average cost of $2.73, which the area of the rectangle from the origin to a quantity of 50, up to point C”, over to the vertical axis and down to the origin shows. It should be clear from examining the two rectangles that total revenue is less than total cost. Thus, the firm is losing money and the loss (or negative profit) will be the rose-shaded rectangle. The calculations are: Or: profi = (total revenue – total cost) = (65)($2.00) – (65)($2.73) = –$47.45 profi = (price – average cost) × quantity = ($2.00 – $2.73) × 65 = –$47.45 If the market price that perfectly competitive firm receives leads it to produce at a quantity where the price is greater than average cost, the firm will earn profits. If the price the firm receives causes it to produce at a quantity where price equals average cost, which occurs at the minimum point of the AC curve, then the firm earns zero profits. Finally, if the price the firm receives leads it to produce at a quantity where the price is less than average cost, the firm will earn losses. Table 8.4 summarizes this. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 197 If... Then... Firm earns an economic profit Firm earns zero economic profit Firm earns a loss Price > ATC Price = ATC Price < ATC Table 8.4 Which intersection should a firm choose? At a price of $2, MR intersects MC at two points: Q = 20 and Q = 65. It never makes sense for a firm to choose a level of output on the downward sloping part of the MC curve, because the profit is lower (the loss is bigger). Thus, the correct choice of output is Q = 65. The Shutdown Point The possibility that a firm may earn losses raises a question: Why can the firm not avoid losses by shutting down and not producing at all? The answer is that shutting down can reduce variable costs to zero, but in the short run, the firm has already paid for fixed costs. As a result, if the firm produces a quantity of zero, it would still make losses because it would still need to pay for its fixed costs. Therefore when a firm is experiencing losses, it must face a question: should it continue producing or should it shut down? As an example, consider the situation of the Yoga Center, which has signed a contract to rent space that costs $10,000 per month. If the firm decides to operate, its marginal costs for hiring yoga teachers is $15,000 for the month. If the firm shuts down, it must still pay the rent, but it would not need to hire labor. Table 8.5 shows three possible scenarios. In the first scenario, the Yoga Center does not have any clients, and therefore does not make any revenues, in which case it faces losses of $10,000 equal to the fixed costs. In the second scenario, the Yoga Center has clients that earn the center revenues of $10,000 for the month, but ultimately experiences losses of $15,000 due to having to hire yoga instructors to cover the classes. In the third scenario, the Yoga Center earns revenues of $20,000 for the month, but experiences losses of $5,000. In all three cases, the Yoga Center loses money. In all three cases, when the rental contract expires in the long run, assuming revenues do not improve, the firm should exit this business. In the short run, though, the decision varies depending on the level of losses and whether the firm can cover its variable costs. In scenario 1, the center does not have any revenues, so hiring yoga teachers would increase variable costs and losses, so it should shut down and only incur its fixed costs. In scenario 2, the center’s losses are greater because it does not make enough revenue to offset the increased variable costs, so it should shut down immediately and only incur its fixed costs. If price is below the minimum average variable cost, the firm must shut down. In contrast, in scenario 3 the revenue that the center can earn is high enough that the losses diminish when it remains open, so the center should remain open in the short run. Scenario 1 If the center shuts down now, revenues are zero but it will not incur any variable costs and would only need to pay fixed costs of $10,000. Table 8.5 Should the Yoga Center Shut Down Now or Later? 198 Chapter 8 | Perfect Competition profit = otal revenue–(fi ed costs + variable cost) = 0 –$10,000 = –$10,000 Scenario 2 The center earns revenues of $10,000, and variable costs are $15,000. The center should shut down now. profit = otal revenue – (fi ed costs + variable cost) = $10,000 – ($10,000 + $15,000) = –$15,000 Scenario 3 The center earns revenues of $20,000, and variable costs are $15,000. The center should continue in business. profit = otal revenue – (fi ed costs + variable cost) = $20,000 – ($10,000 + $15,000) = –$5,000 Table 8.5 Should the Yoga Center Shut Down Now or Later? Figure 8.6 illustrates the lesson that remaining open requires the price to exceed the firm’s average variable cost. When the firm is operating below the break-even point, where price equals average cost, it is operating at a loss so it faces two options: continue to produce and lose money or shutdown. Which option is preferable? The one that loses the least money is the best choice. At a price of $2.00 per pack, as Figure 8.6 (a) illustrates, if the farm stays in operation it will produce at a level of 65 packs of raspberries, and it will make losses of $47.45 (as explained earlier). The alternative would be to shutdown and lose all the fixed costs of $62.00. Since losing $47.45 is preferable to losing $62.00, the profit maximizing (or in this case the loss minimizing) choice is to stay in operation. The key reason is because price is above average variable cost. This means that at the current price the farm can pay all its variable costs, and have some revenue left over to pay some of the fixed costs. So the loss represents the part of the fixed costs the farm can’t pay, which is less than the entire fixed costs. However, if the price declined to $1.50 per pack, as Figure 8.6 shows (b), and if the firm applied its rule of producing where P = MR = MC, it would produce a quantity of 6
0. This price is below average variable cost for this level of output. If the farmer cannot pay workers (the variable costs), then it has to shut down. At this price and output, total revenues would be $90 (quantity of 60 times price of $1.50) and total cost would be $165, for overall losses of $75. If the farm shuts down, it must pay only its fixed costs of $62, so shutting down is preferable to selling at a price of $1.50 per pack. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 199 Figure 8.6 The Shutdown Point for the Raspberry Farm In (a), the farm produces at a level of 65. It is making losses of $47.50, but price is above average variable cost, so it continues to operate. In (b), total revenues are $90 and total cost is $165, for overall losses of $75. If the farm shuts down, it must pay only its fixed costs of $62. Shutting down is preferable to selling at a price of $1.50 per pack. Looking at Table 8.6, if the price falls below about $1.65, the minimum average variable cost, the firm must shut down. Quantity Q Average Variable Cost AVC Average Cost AC Marginal Cost MC 0 10 20 30 40 50 60 70 80 90 100 110 120 - $2.80 $2.40 $2.13 $1.90 $1.76 $1.72 $1.83 $2.10 $2.60 $3.38 $4.44 $5.44 - $9.00 $5.50 $4.20 $3.45 $3.00 $2.75 $2.71 $2.88 $3.29 $4.00 $5.00 $5.96 - $2.80 $2.00 $1.60 $1.20 $1.20 $1.50 $2.50 $4.00 $6.60 $10.40 $15.00 $31.50 Table 8.6 Cost of Production for the Raspberry Farm 200 Chapter 8 | Perfect Competition The intersection of the average variable cost curve and the marginal cost curve, which shows the price below which the firm would lack enough revenue to cover its variable costs, is called the shutdown point. If the perfectly competitive firm faces a market price above the shutdown point, then the firm is at least covering its average variable costs. At a price above the shutdown point, the firm is also making enough revenue to cover at least a portion of fixed costs, so it should limp ahead even if it is making losses in the short run, since at least those losses will be smaller than if the firm shuts down immediately and incurs a loss equal to total fixed costs. However, if the firm is receiving a price below the price at the shutdown point, then the firm is not even covering its variable costs. In this case, staying open is making the firm’s losses larger, and it should shut down immediately. To summarize, if: • price < minimum average variable cost, then firm shuts down • price > minimum average variable cost, then firm stays in business Short-Run Outcomes for Perfectly Competitive Firms The average cost and average variable cost curves divide the marginal cost curve into three segments, as Figure 8.7 shows. At the market price, which the perfectly competitive firm accepts as given, the profit-maximizing firm chooses the output level where price or marginal revenue, which are the same thing for a perfectly competitive firm, is equal to marginal cost: P = MR = MC. Figure 8.7 Profit, Loss, Shutdown We can divide marginal cost curve into three zones, based on where it is crossed by the average cost and average variable cost curves. We call the point where MC crosses AC the break even point. If the firm is operating where the market price is at a level higher than the break even point, then price will be greater than average cost and the firm is earning profits. If the price is exactly at the break even point, then the firm is making zero profits. If price falls in the zone between the shutdown point and the break even point, then the firm is making losses but will continue to operate in the short run, since it is covering its variable costs, and more if price is above the shutdown-point price. However, if price falls below the price at the shutdown point, then the firm will shut down immediately, since it is not even covering its variable costs. First consider the upper zone, where prices are above the level where marginal cost (MC) crosses average cost (AC) at the zero profit point. At any price above that level, the firm will earn profits in the short run. If the price falls exactly on the break even point where the MC and AC curves cross, then the firm earns zero profits. If a price falls into the zone between the break even point, where MC crosses AC, and the shutdown point, where MC crosses AVC, the firm will be making losses in the short run—but since the firm is more than covering its variable costs, the losses This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 201 are smaller than if the firm shut down immediately. Finally, consider a price at or below the shutdown point where MC crosses AVC. At any price like this one, the firm will shut down immediately, because it cannot even cover its variable costs. Marginal Cost and the Firm’s Supply Curve For a perfectly competitive firm, the marginal cost curve is identical to the firm’s supply curve starting from the minimum point on the average variable cost curve. To understand why this perhaps surprising insight holds true, first think about what the supply curve means. A firm checks the market price and then looks at its supply curve to decide what quantity to produce. Now, think about what it means to say that a firm will maximize its profits by producing at the quantity where P = MC. This rule means that the firm checks the market price, and then looks at its marginal cost to determine the quantity to produce—and makes sure that the price is greater than the minimum average variable cost. In other words, the marginal cost curve above the minimum point on the average variable cost curve becomes the firm’s supply curve. Watch this video (http://openstaxcollege.org/l/foodprice) that addresses how drought in the United States can impact food prices across the world. (Note that the story on the drought is the second one in the news report. You need to let the video play through the first story in order to watch the story on the drought.) As we discussed in the chapter on Demand and Supply, many of the reasons that supply curves shift relate to underlying changes in costs. For example, a lower price of key inputs or new technologies that reduce production costs cause supply to shift to the right. In contrast, bad weather or added government regulations can add to costs of certain goods in a way that causes supply to shift to the left. We can also interpret these shifts in the firm’s supply curve as shifts of the marginal cost curve. A shift in costs of production that increases marginal costs at all levels of output—and shifts MC upward and to the left—will cause a perfectly competitive firm to produce less at any given market price. Conversely, a shift in costs of production that decreases marginal costs at all levels of output will shift MC downward and to the right and as a result, a competitive firm will choose to expand its level of output at any given price. The following Work It Out feature will walk you through an example. At What Price Should the Firm Continue Producing in the Short Run? To determine the short-run economic condition of a firm in perfect competition, follow the steps outlined below. Use the data in Table 8.7. 202 Chapter 8 | Perfect Competition Q P TFC TVC TC AVC ATC MC TR Profits 0 1 2 3 4 5 $28 $28 $28 $28 $28 $28 Table 8.7 $20 $20 $20 $20 $20 $20 $0 $20 $25 $35 $52 $80 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - Step 1. Determine the cost structure for the firm. For a given total fixed costs and variable costs, calculate total cost, average variable cost, average total cost, and marginal cost. Follow the formulas given in the Production, Costs, and Industry Structure chapter. These calculations are in Table 8.8. Q P TFC TVC TC (TFC+TVC) AVC (TVC/Q) ATC (TC/Q) MC (TC2−TC1)/ (Q2−Q1) 0 1 2 3 4 5 $28 $20 $0 $20+$0=$20 - - - $28 $20 $20 $20+$20=$40 $20/1=$20.00 $40/1=$40.00 $28 $20 $25 $20+$25=$45 $25/2=$12.50 $45/2=$22.50 $28 $20 $35 $20+$35=$55 $35/3=$11.67 $55/3=$18.33 $28 $20 $52 $20+$52=$72 $52/4=$13.00 $72/4=$18.00 $28 $20 $80 $20+$80=$100 $80/5=$16.00 $100/5=$20.00 ($40−$20)/ (1−0)= $20 ($45−$40)/ (2−1)= $5 ($55−$45)/ (3−2)= $10 ($72−$55)/ (4−3)= $17 ($100−$72)/ (5−4)= $28 Table 8.8 Step 2. Determine the market price that the firm receives for its product. Since the firm in perfect competition is a price taker, the market price is constant With the given price, calculate total revenue as equal to price multiplied by quantity for all output levels produced. In this example, the given price is $28. You can see that in the second column of Table 8.9. Quantity Price Total Revenue (P × Q) 0 Table 8.9 $28 $28×0=$0 This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 203 Quantity Price Total Revenue (P × Q) 1 2 3 4 5 Table 8.9 $28 $28 $28 $28 $28 $28×1=$28 $28×2=$56 $28×3=$84 $28×4=$112 $28×5=$140 Step 3. Calculate profits as total cost subtracted from total revenue, as Table 8.10 shows. Quantity Total Revenue Total Cost Profits (TR−TC) 0 1 2 3 4 5 Table 8.10 $0 $28 $56 $84 $112 $140 $20 $40 $45 $55 $72 $100 $0−$20=−$20 $28−$40=−$12 $56−$45=$11 $84−$55=$29 $112−$72=$40 $140−$100=$40 Step 4. To find the profit-maximizing output level, look at the Marginal Cost column (at every output level produced), as Table 8.11 shows, and determine where it is equal to the market price. The output level where price equals the marginal cost is the output level that maximizes profits. Q P TFC TVC TC AVC ATC MC TR Profits 0 1 2 3 4 5 $28 $28 $28 $28 $28 $28 Table 8.11 $20 $20 $20 $20 $20 $20 $0 $20 $25 $35 $52 $80 $20 $40 $45 $55 $72 - - $20.00 $40.00 $12.50 $22.50 $11.67 $18.33 $13.00 $18.00 $100 $16.40 $20.40 - $20 $5 $10 $17 $28 $0 $28 $56 $84 $112 $140 −$20 −$12 $11 $29 $40 $40 Step 5. Once you have determined the profit-maximizing output level (in this case, output quantity 5), you can look at the amount of profits made
(in this case, $40). Step 6. If the firm is making economic losses, the firm needs to determine whether it produces the output level where price equals marginal revenue and equals marginal cost or it shuts down and only incurs its fixed costs. 204 Chapter 8 | Perfect Competition Step 7. For the output level where marginal revenue is equal to marginal cost, check if the market price is greater than the average variable cost of producing that output level. • • If P > AVC but P < ATC, then the firm continues to produce in the short-run, making economic losses. If P < AVC, then the firm stops producing and only incurs its fixed costs. In this example, the price of $28 is greater than the AVC ($16.40) of producing 5 units of output, so the firm continues producing. 8.3 | Entry and Exit Decisions in the Long Run By the end of this section, you will be able to: • Explain how entry and exit lead to zero profits in the long run • Discuss the long-run adjustment process It is impossible to precisely define the line between the short run and the long run with a stopwatch, or even with a calendar. It varies according to the specific business. Therefore, the distinction between the short run and the long run is more technical: in the short run, firms cannot change the usage of fixed inputs, while in the long run, the firm can adjust all factors of production. In a competitive market, profits are a red cape that incites businesses to charge. If a business is making a profit in the short run, it has an incentive to expand existing factories or to build new ones. New firms may start production, as well. When new firms enter the industry in response to increased industry profits it is called entry. Losses are the black thundercloud that causes businesses to flee. If a business is making losses in the short run, it will either keep limping along or just shut down, depending on whether its revenues are covering its variable costs. But in the long run, firms that are facing losses will cease production altogether. The long-run process of reducing production in response to a sustained pattern of losses is called exit. The following Clear It Up feature discusses where some of these losses might come from, and the reasons why some firms go out of business. Why do firms cease to exist? Can we say anything about what causes a firm to exit an industry? Profits are the measurement that determines whether a business stays operating or not. Individuals start businesses with the purpose of making profits. They invest their money, time, effort, and many other resources to produce and sell something that they hope will give them something in return. Unfortunately, not all businesses are successful, and many new startups soon realize that their “business venture” must eventually end. In the model of perfectly competitive firms, those that consistently cannot make money will “exit,” which is a nice, bloodless word for a more painful process. When a business fails, after all, workers lose their jobs, investors lose their money, and owners and managers can lose their dreams. Many businesses fail. The U.S. Small Business Administration indicates that in 2011, 534,907 new firms "entered," and 575,691 firms failed. Sometimes a business fails because of poor management or workers who are not very productive, or because of tough domestic or foreign competition. Businesses also fail from a variety of causes. For example, conditions of demand and supply in the market may shift in an unexpected way, so that the prices that a business charges for outputs fall or the prices for inputs rise. With millions of businesses in the U.S. economy, even a small fraction of them failing will affect many people—and business failures can be very hard on the workers and managers directly involved. However, from the standpoint of the overall economic system, business exits are sometimes a necessary evil if a market-oriented system is going to offer a flexible mechanism for satisfying customers, keeping costs low, and inventing new products. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 205 How Entry and Exit Lead to Zero Profits in the Long Run No perfectly competitive firm acting alone can affect the market price. However, the combination of many firms entering or exiting the market will affect overall supply in the market. In turn, a shift in supply for the market as a whole will affect the market price. Entry and exit to and from the market are the driving forces behind a process that, in the long run, pushes the price down to minimum average total costs so that all firms are earning a zero profit. To understand how short-run profits for a perfectly competitive firm will evaporate in the long run, imagine the following situation. The market is in long-run equilibrium, where all firms earn zero economic profits producing the output level where P = MR = MC and P = AC. No firm has the incentive to enter or leave the market. Let’s say that the product’s demand increases, and with that, the market price goes up. The existing firms in the industry are now facing a higher price than before, so they will increase production to the new output level where P = MR = MC. This will temporarily make the market price rise above the minimum point on the average cost curve, and therefore, the existing firms in the market will now be earning economic profits. However, these economic profits attract other firms to enter the market. Entry of many new firms causes the market supply curve to shift to the right. As the supply curve shifts to the right, the market price starts decreasing, and with that, economic profits fall for new and existing firms. As long as there are still profits in the market, entry will continue to shift supply to the right. This will stop whenever the market price is driven down to the zero-profit level, where no firm is earning economic profits. Short-run losses will fade away by reversing this process. Say that the market is in long-run equilibrium. This time, instead, demand decreases, and with that, the market price starts falling. The existing firms in the industry are now facing a lower price than before, and as it will be below the average cost curve, they will now be making economic losses. Some firms will continue producing where the new P = MR = MC, as long as they are able to cover their average variable costs. Some firms will have to shut down immediately as they will not be able to cover their average variable costs, and will then only incur their fixed costs, minimizing their losses. Exit of many firms causes the market supply curve to shift to the left. As the supply curve shifts to the left, the market price starts rising, and economic losses start to be lower. This process ends whenever the market price rises to the zero-profit level, where the existing firms are no longer losing money and are at zero profits again. Thus, while a perfectly competitive firm can earn profits in the short run, in the long run the process of entry will push down prices until they reach the zero-profit level. Conversely, while a perfectly competitive firm may earn losses in the short run, firms will not continually lose money. In the long run, firms making losses are able to escape from their fixed costs, and their exit from the market will push the price back up to the zero-profit level. In the long run, this process of entry and exit will drive the price in perfectly competitive markets to the zero-profit point at the bottom of the AC curve, where marginal cost crosses average cost. The Long-Run Adjustment and Industry Types Whenever there are expansions in an industry, costs of production for the existing and new firms could either stay the same, increase, or even decrease. Therefore, we can categorize an industry as being (1) a constant cost industry (as demand increases, the cost of production for firms stays the same), (2) an increasing cost industry (as demand increases, the cost of production for firms increases), or (3) a decreasing cost industry (as demand increases the costs of production for the firms decreases). For a constant cost industry, whenever there is an increase in market demand and price, then the supply curve shifts to the right with new firms’ entry and stops at the point where the new long-run equilibrium intersects at the same market price as before. This is the case of constant returns to scale, which we discussed earlier in the chapter on Production, Costs, and Industry Structure. However, why will costs remain the same? In this type of industry, the supply curve is very elastic. Firms can easily supply any quantity that consumers demand. In addition, there is a perfectly elastic supply of inputs—firms can easily increase their demand for employees, for example, with no increase to wages. Tying in to our Bring it Home discussion, an increased demand for ethanol in recent years has caused the demand for corn to increase. Consequently, many farmers switched from growing wheat to growing corn. Agricultural markets are generally good examples of constant cost industries. For an increasing cost industry, as the market expands, the old and new firms experience increases in their costs of production, which makes the new zero-profit level intersect at a higher price than before. Here companies may have to deal with limited inputs, such as skilled labor. As the demand for these workers rise, wages rise and this increases the cost of production for all firms. The industry supply curve in this type of industry is more inelastic. For a decreasing cost industry, as the market expands, the old and new firms experience lower costs of production, which makes the new zero-profit level intersect at a lower price than before. In this case, the industry and all the 206 Chapter 8 | Perfect Competition firms in it are experiencing falling average total costs. This can be due to an improvement in t
echnology in the entire industry or an increase in the education of employees. High tech industries may be a good example of a decreasing cost market. Figure 8.8 (a) presents the case of an adjustment process in a constant cost industry. Whenever there are output expansions in this type of industry, the long-run outcome implies more output produced at exactly the same original price. Note that supply was able to increase to meet the increased demand. When we join the before and after long-run equilibriums, the resulting line is the long run supply (LRS) curve in perfectly competitive markets. In this case, it is a flat curve. Figure 8.8 (b) and Figure 8.8 (c) present the cases for an increasing cost and decreasing cost industry, respectively. For an increasing cost industry, the LRS is upward sloping, while for a decreasing cost industry, the LRS is downward sloping. Figure 8.8 Adjustment Process in a Constant-Cost Industry In (a), demand increased and supply met it. Notice that the supply increase is equal to the demand increase. The result is that the equilibrium price stays the same as quantity sold increases. In (b), notice that sellers were not able to increase supply as much as demand. Some inputs were scarce, or wages were rising. The equilibrium price rises. In (c), sellers easily increased supply in response to the demand increase. Here, new technology or economies of scale caused the large increase in supply, resulting in declining equilibrium price. 8.4 | Efficiency in Perfectly Competitive Markets By the end of this section, you will be able to: • Apply concepts of productive efficiency and allocative efficiency to perfectly competitive markets • Compare the model of perfect competition to real-world markets When profit-maximizing firms in perfectly competitive markets combine with utility-maximizing consumers, something remarkable happens: the resulting quantities of outputs of goods and services demonstrate both productive and allocative efficiency (terms that we first introduced in (Choice in a World of Scarcity) . Productive efficiency means producing without waste, so that the choice is on the production possibility frontier. In the long run in a perfectly competitive market, because of the process of entry and exit, the price in the market is equal to the minimum of the long-run average cost curve. In other words, firms produce and sell goods at the lowest possible average cost. Allocative efficiency means that among the points on the production possibility frontier, the chosen point is socially preferred—at least in a particular and specific sense. In a perfectly competitive market, price will be equal to the marginal cost of production. Think about the price that one pays for a good as a measure of the social benefit one receives for that good; after all, willingness to pay conveys what the good is worth to a buyer. Then think about the marginal cost of producing the good as representing not just the cost for the firm, but more broadly as the social cost of producing that good. When perfectly competitive firms follow the rule that profits are maximized by producing at the quantity where price is equal to marginal cost, they are thus ensuring that the social benefits they receive from producing a good are in line with the social costs of production. To explore what economists mean by allocative efficiency, it is useful to walk through an example. Begin by assuming This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 207 that the market for wholesale flowers is perfectly competitive, and so P = MC. Now, consider what it would mean if firms in that market produced a lesser quantity of flowers. At a lesser quantity, marginal costs will not yet have increased as much, so that price will exceed marginal cost; that is, P > MC. In that situation, the benefit to society as a whole of producing additional goods, as measured by the willingness of consumers to pay for marginal units of a good, would be higher than the cost of the inputs of labor and physical capital needed to produce the marginal good. In other words, the gains to society as a whole from producing additional marginal units will be greater than the costs. Conversely, consider what it would mean if, compared to the level of output at the allocatively efficient choice when P = MC, firms produced a greater quantity of flowers. At a greater quantity, marginal costs of production will have increased so that P < MC. In that case, the marginal costs of producing additional flowers is greater than the benefit to society as measured by what people are willing to pay. For society as a whole, since the costs are outstripping the benefits, it will make sense to produce a lower quantity of such goods. When perfectly competitive firms maximize their profits by producing the quantity where P = MC, they also assure that the benefits to consumers of what they are buying, as measured by the price they are willing to pay, is equal to the costs to society of producing the marginal units, as measured by the marginal costs the firm must pay—and thus that allocative efficiency holds. We should view the statements that a perfectly competitive market in the long run will feature both productive and allocative efficiency with a degree of skepticism about its truth. Remember, economists are using the concept of “efficiency” in a particular and specific sense, not as a synonym for “desirable in every way.” For one thing, consumers’ ability to pay reflects the income distribution in a particular society. Thus, a homeless person may have no ability to pay for housing because he or she has insufficient income. Perfect competition, in the long run, is a hypothetical benchmark. For market structures such as monopoly, monopolistic competition, and oligopoly, which are more frequently observed in the real world than perfect competition, firms will not always produce at the minimum of average cost, nor will they always set price equal to marginal cost. Thus, these other competitive situations will not produce productive and allocative efficiency. Moreover, real-world markets include many issues that are assumed away in the model of perfect competition, including pollution, inventions of new technology, poverty which may make some people unable to pay for basic necessities of life, government programs like national defense or education, discrimination in labor markets, and buyers and sellers who must deal with imperfect and unclear information. We explore these issues in other chapters. However, the theoretical efficiency of perfect competition does provide a useful benchmark for comparing the issues that arise from these real-world problems. A Dime a Dozen A quick glance at Table 8.12 reveals the dramatic increase in North Dakota corn production—more than double. Taking into consideration that corn typically yields two to three times as many bushels per acre as wheat, it is obvious there has been a significant increase in bushels of corn. Why the increase in corn acreage? Converging prices. Year Corn (millions of acres) Wheat (millions of acres) 2014 91.6 56.82 Table 8.12 (Source: USDA National Agricultural Statistics Service) Historically, wheat prices have been higher than corn prices, offsetting wheat’s lower yield per acre. However, in recent years wheat and corn prices have been converging. In April 2013, Agweek reported the gap was just 71 cents per bushel. As the difference in price narrowed, switching to the production of higher yield per acre of corn simply made good business sense. Erik Younggren, president of the National Association of Wheat Growers said in the Agweek article, “I don't think we're going to see mile after mile of waving amber fields [of 208 Chapter 8 | Perfect Competition wheat] anymore." (Until wheat prices rise, we will probably be seeing field after field of tasseled corn.) This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 209 KEY TERMS break even point level of output where the marginal cost curve intersects the average cost curve at the minimum point of AC; if the price is at this point, the firm is earning zero economic profits entry the long-run process of firms entering an industry in response to industry profits exit the long-run process of firms reducing production and shutting down in response to industry losses long-run equilibrium where all firms earn zero economic profits producing the output level where P = MR = MC and P = AC marginal revenue the additional revenue gained from selling one more unit market structure the conditions in an industry, such as number of sellers, how easy or difficult it is for a new firm to enter, and the type of products that are sold perfect competition each firm faces many competitors that sell identical products price taker a firm in a perfectly competitive market that must take the prevailing market price as given shutdown point level of output where the marginal cost curve intersects the average variable cost curve at the minimum point of AVC; if the price is below this point, the firm should shut down immediately KEY CONCEPTS AND SUMMARY 8.1 Perfect Competition and Why It Matters A perfectly competitive firm is a price taker, which means that it must accept the equilibrium price at which it sells goods. If a perfectly competitive firm attempts to charge even a tiny amount more than the market price, it will be unable to make any sales. In a perfectly competitive market there are thousands of sellers, easy entry, and identical products. A short-run production period is when firms are producing with some fixed inputs. Long-run equilibrium in a perfectly competitive industry occurs after all firms have entered and exited the industry and seller profits are driven to zero. Perfect competition means that there are many sellers, there is easy entry and exiting of firms, products are
identical from one seller to another, and sellers are price takers. 8.2 How Perfectly Competitive Firms Make Output Decisions As a perfectly competitive firm produces a greater quantity of output, its total revenue steadily increases at a constant rate determined by the given market price. Profits will be highest (or losses will be smallest) at the quantity of output where total revenues exceed total costs by the greatest amount (or where total revenues fall short of total costs by the smallest amount). Alternatively, profits will be highest where marginal revenue, which is price for a perfectly competitive firm, is equal to marginal cost. If the market price faced by a perfectly competitive firm is above average cost at the profit-maximizing quantity of output, then the firm is making profits. If the market price is below average cost at the profit-maximizing quantity of output, then the firm is making losses. If the market price is equal to average cost at the profit-maximizing level of output, then the firm is making zero profits. We call the point where the marginal cost curve crosses the average cost curve, at the minimum of the average cost curve, the “zero profit point.” If the market price that a perfectly competitive firm faces is below average variable cost at the profit-maximizing quantity of output, then the firm should shut down operations immediately. If the market price that a perfectly competitive firm faces is above average variable cost, but below average cost, then the firm should continue producing in the short run, but exit in the long run. We call the point where the marginal cost curve crosses the average variable cost curve the shutdown point. 210 Chapter 8 | Perfect Competition 8.3 Entry and Exit Decisions in the Long Run In the long run, firms will respond to profits through a process of entry, where existing firms expand output and new firms enter the market. Conversely, firms will react to losses in the long run through a process of exit, in which existing firms cease production altogether. Through the process of entry in response to profits and exit in response to losses, the price level in a perfectly competitive market will move toward the zero-profit point, where the marginal cost curve crosses the AC curve at the minimum of the average cost curve. The long-run supply curve shows the long-run output supplied by firms in three different types of industries: constant cost, increasing cost, and decreasing cost. 8.4 Efficiency in Perfectly Competitive Markets Long-run equilibrium in perfectly competitive markets meets two important conditions: allocative efficiency and productive efficiency. These two conditions have important implications. First, resources are allocated to their best alternative use. Second, they provide the maximum satisfaction attainable by society. SELF-CHECK QUESTIONS 1. Firms in a perfectly competitive market are said to be “price takers”—that is, once the market determines an equilibrium price for the product, firms must accept this price. If you sell a product in a perfectly competitive market, but you are not happy with its price, would you raise the price, even by a cent? 2. Would independent trucking fit the characteristics of a perfectly competitive industry? 3. Look at Table 8.13. What would happen to the firm’s profits if the market price increases to $6 per pack of raspberries? Quantity Total Cost Fixed Cost Variable Cost Total Revenue Profit 0 10 20 30 40 50 60 70 80 90 100 Table 8.13 $62 $90 $110 $126 $144 $166 $192 $224 $264 $324 $404 $62 $62 $62 $62 $62 $62 $62 $62 $62 $62 $62 - $28 $48 $64 $82 $104 $130 $162 $202 $262 $342 $0 $60 $120 $180 $240 $300 $360 $420 $480 $540 $600 −$62 −$30 $10 $54 $96 $134 $168 $196 $216 $216 $196 This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 211 4. Suppose that the market price increases to $6, as Table 8.14 shows. What would happen to the profit-maximizing output level? Quantity Total Cost Fixed Cost Variable Cost Marginal Cost Total Revenue Marginal Revenue $62 $90 $110 $126 $144 $166 $192 $224 $264 $324 $404 $62 $62 $62 $62 $62 $62 $62 $62 $62 $62 $62 0 10 20 30 40 50 60 70 80 90 100 Table 8.14 - $28 $48 $64 $82 $104 $130 $162 $202 $262 $342 - $2.80 $2.00 $1.60 $1.80 $2.20 $2.60 $3.20 $4.00 $6.00 $8.00 $0 $60 $120 $180 $240 $300 $360 $420 $480 $540 $600 - $6.00 $6.00 $6.00 $6.00 $6.00 $6.00 $6.00 $6.00 $6.00 $6.00 5. Explain in words why a profit-maximizing firm will not choose to produce at a quantity where marginal cost exceeds marginal revenue. 6. A firm’s marginal cost curve above the average variable cost curve is equal to the firm’s individual supply curve. This means that every time a firm receives a price from the market it will be willing to supply the amount of output where the price equals marginal cost. What happens to the firm’s individual supply curve if marginal costs increase? If new technology in a perfectly competitive market brings about a substantial reduction in costs of production, 7. how will this affect the market? 8. A market in perfect competition is in long-run equilibrium. What happens to the market if labor unions are able to increase wages for workers? 9. Productive efficiency and allocative efficiency are two concepts achieved in the long run in a perfectly competitive market. These are the two reasons why we call them “perfect.” How would you use these two concepts to analyze other market structures and label them “imperfect?” 10. Explain how the profit-maximizing rule of setting P = MC leads a perfectly competitive market to be allocatively efficient. REVIEW QUESTIONS 11. A single firm in a perfectly competitive market is relatively small compared to the rest of the market. What does this mean? How “small” is “small”? 12. What are the four basic assumptions of perfect competition? Explain in words what they imply for a perfectly competitive firm. 13. What is a “price taker” firm? 212 Chapter 8 | Perfect Competition 14. How does a perfectly competitive firm decide what price to charge? 21. Should a firm shut down immediately if it is making losses? 22. How does the average variable cost curve help a firm know whether it should shut down immediately? 23. What two lines on a cost curve diagram intersect at the shutdown point? 24. Why does entry occur? 25. Why does exit occur? 26. Do entry and exit occur in the short run, the long run, both, or neither? 27. What price will a perfectly competitive firm end up charging in the long run? Why? 28. Will a perfectly competitive market display productive efficiency? Why or why not? 29. Will a perfectly competitive market display allocative efficiency? Why or why not? 34. Many firms in the United States file for bankruptcy every year, yet they still continue operating. Why would they do this instead of completely shutting down? 35. Why will profits competitive industry tend to vanish in the long run? firms in a perfectly for 36. Why will losses for firms in a perfectly competitive industry tend to vanish in the long run? 37. Assuming that the market for cigarettes is in perfect competition, what does allocative and productive efficiency imply in this case? What does it not imply? 38. In the argument for why perfect competition is allocatively efficient, the price that people are willing to pay represents the gains to society and the marginal cost to the firm represents the costs to society. Can you think of some social costs or issues that are not included in the marginal cost to the firm? Or some social gains that are not included in what people pay for a good? 15. What prevents a perfectly competitive firm from seeking higher profits by increasing the price that it charges? 16. How does a perfectly competitive firm calculate total revenue? 17. Briefly explain the reason for the shape of a marginal revenue curve for a perfectly competitive firm. 18. What two rules does a perfectly competitive firm apply to determine its profit-maximizing quantity of output? 19. How does the average cost curve help to show whether a firm is making profits or losses? 20. What two lines on a cost curve diagram intersect at the zero-profit point? CRITICAL THINKING QUESTIONS 30. Finding a life partner is a complicated process that may take many years. It is hard to think of this process as being part of a very complex market, with a demand and a supply for partners. Think about how this market works and some of its characteristics, such as search costs. Would you consider it a perfectly competitive market? Can you name five examples of perfectly 31. competitive markets? Why or why not? 32. Your company operates in a perfectly competitive market. You have been told that advertising can help you increase your sales in the short run. Would you create an aggressive advertising campaign for your product? 33. Since a perfectly competitive firm can sell as much as it wishes at the market price, why can the firm not simply increase its profits by selling an extremely high quantity? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 8 | Perfect Competition 213 PROBLEMS 39. The AAA Aquarium Co. sells aquariums for $20 each. Fixed costs of production are $20. The total variable costs are $20 for one aquarium, $25 for two units, $35 for the three units, $50 for four units, and $80 for five units. In the form of a table, calculate total revenue, marginal revenue, total cost, and marginal cost for each output level (one to five units). What is the profit-maximizing quantity of output? On one diagram, sketch the total revenue and total cost curves. On another diagram, sketch the marginal revenue and marginal cost curves. 40. Perfectly competitive firm Doggies Paradise Inc. sells winter coats for dogs. Dog coats sell for $72 each. The fixed costs of production are $100. The total variable costs are $64 for one unit, $84 for two units, $114 for three units, $184 for four units, a
nd $270 for five units. In the form of a table, calculate total revenue, marginal revenue, total cost and marginal cost for each output level (one to five units). On one diagram, sketch the total revenue and total cost curves. On another diagram, sketch the marginal revenue and marginal cost curves. What is the profit maximizing quantity? 41. A computer company produces affordable, easyto-use home computer systems and has fixed costs of $250. The marginal cost of producing computers is $700 for the first computer, $250 for the second, $300 for the third, $350 for the fourth, $400 for the fifth, $450 for the sixth, and $500 for the seventh. a. Create a table that shows the company’s output, total cost, marginal cost, average cost, variable cost, and average variable cost. b. At what price is the zero-profit point? At what c. d. price is the shutdown point? If the company sells the computers for $500, is it making a profit or a loss? How big is the profit or loss? Sketch a graph with AC, MC, and AVC curves to illustrate your answer and show the profit or loss. If the firm sells the computers for $300, is it making a profit or a loss? How big is the profit or loss? Sketch a graph with AC, MC, and AVC curves to illustrate your answer and show the profit or loss. 214 Chapter 8 | Perfect Competition This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 215 9 | Monopoly Figure 9.1 Political Power from a Cotton Monopoly In the mid-nineteenth century, the United States, specifically the Southern states, had a near monopoly in the cotton that they supplied to Great Britain. These states attempted to leverage this economic power into political power—trying to sway Great Britain to formally recognize the Confederate States of America. (Credit: modification of work by “ashleylovespizza”/Flickr Creative Commons) The Rest is History Many of the opening case studies have focused on current events. This one steps into the past to observe how monopoly, or near monopolies, have helped shape history. In spring 1773, the East India Company, a firm that, in its time, was designated “too big to fail,” was experiencing financial difficulties. To help shore up the failing firm, the British Parliament authorized the Tea Act. The act continued the tax on teas and made the East India Company the sole legal supplier of tea to the American colonies. By November, the citizens of Boston had had enough. They refused to permit the unloading of tea, citing their main complaint: “No taxation without representation.” Several newspapers, including The Massachusetts Gazette, warned arriving tea-bearing ships, “We are prepared, and shall not fail to pay them an unwelcome visit by The Mohawks.” Step forward in time to 1860—the eve of the American Civil War—to another near monopoly supplier of historical significance: the U.S. cotton industry. At that time, the Southern states provided the majority of the cotton Britain imported. The South, wanting to secede from the Union, hoped to leverage Britain’s high dependency on its cotton into formal diplomatic recognition of the Confederate States of America. This leads us to this chapter's topic: a firm that controls all (or nearly all) of the supply of a good or service—a monopoly. How do monopoly firms behave in the marketplace? Do they have “power?” Does this power potentially have unintended consequences? We’ll return to this case at the end of the chapter to see how the tea and cotton monopolies influenced U.S. history. 216 Chapter 9 | Monopoly Introduction to a Monopoly In this chapter, you will learn about: • How Monopolies form: Barriers to Entry • How a Profit-Maximizing Monopoly Chooses Output and Price Many believe that top executives at firms are the strongest supporters of market competition, but this belief is far from the truth. Think about it this way: If you very much wanted to win an Olympic gold medal, would you rather be far better than everyone else, or locked in competition with many athletes just as good as you? Similarly, if you would like to attain a very high level of profits, would you rather manage a business with little or no competition, or struggle against many tough competitors who are trying to sell to your customers? By now, you might have read the chapter on Perfect Competition. In this chapter, we explore the opposite extreme: monopoly. If perfect competition is a market where firms have no market power and they simply respond to the market price, monopoly is a market with no competition at all, and firms have a great deal of market power. In the case of monopoly, one firm produces all of the output in a market. Since a monopoly faces no significant competition, it can charge any price it wishes, subject to the demand curve. While a monopoly, by definition, refers to a single firm, in practice people often use the term to describe a market in which one firm merely has a very high market share. This tends to be the definition that the U.S. Department of Justice uses. Even though there are very few true monopolies in existence, we do deal with some of those few every day, often without realizing it: The U.S. Postal Service, your electric, and garbage collection companies are a few examples. Some new drugs are produced by only one pharmaceutical firm—and no close substitutes for that drug may exist. From the mid-1990s until 2004, the U.S. Department of Justice prosecuted the Microsoft Corporation for including Internet Explorer as the default web browser with its operating system. The Justice Department’s argument was that, since Microsoft possessed an extremely high market share in the industry for operating systems, the inclusion of a free web browser constituted unfair competition to other browsers, such as Netscape Navigator. Since nearly everyone was using Windows, including Internet Explorer eliminated the incentive for consumers to explore other browsers and made it impossible for competitors to gain a foothold in the market. In 2013, the Windows system ran on more than 90% of the most commonly sold personal computers. In 2015, a U.S. federal court tossed out antitrust charges that Google had an agreement with mobile device makers to set Google as the default search engine. This chapter begins by describing how monopolies are protected from competition, including laws that prohibit competition, technological advantages, and certain configurations of demand and supply. It then discusses how a monopoly will choose its profit-maximizing quantity to produce and what price to charge. While a monopoly must be concerned about whether consumers will purchase its products or spend their money on something altogether different, the monopolist need not worry about the actions of other competing firms producing its products. As a result, a monopoly is not a price taker like a perfectly competitive firm, but instead exercises some power to choose its market price. 9.1 | How Monopolies Form: Barriers to Entry By the end of this section, you will be able to: • Distinguish between a natural monopoly and a legal monopoly. • Explain how economies of scale and the control of natural resources led to the necessary formation of legal monopolies • Analyze the importance of trademarks and patents in promoting innovation • Identify examples of predatory pricing Because of the lack of competition, monopolies tend to earn significant economic profits. These profits should attract vigorous competition as we described in Perfect Competition, and yet, because of one particular characteristic of monopoly, they do not. Barriers to entry are the legal, technological, or market forces that discourage or prevent potential competitors from entering a market. Barriers to entry can range from the simple and easily surmountable, This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 217 such as the cost of renting retail space, to the extremely restrictive. For example, there are a finite number of radio frequencies available for broadcasting. Once an entrepreneur or firm has purchased the rights to all of them, no new competitors can enter the market. In some cases, barriers to entry may lead to monopoly. In other cases, they may limit competition to a few firms. Barriers may block entry even if the firm or firms currently in the market are earning profits. Thus, in markets with significant barriers to entry, it is not necessarily true that abnormally high profits will attract new firms, and that this entry of new firms will eventually cause the price to decline so that surviving firms earn only a normal level of profit in the long run. There are two types of monopoly, based on the types of barriers to entry they exploit. One is natural monopoly, where the barriers to entry are something other than legal prohibition. The other is legal monopoly, where laws prohibit (or severely limit) competition. Natural Monopoly Economies of scale can combine with the size of the market to limit competition. (We introduced this theme in Production, Cost and Industry Structure). Figure 9.2 presents a long-run average cost curve for the airplane manufacturing industry. It shows economies of scale up to an output of 8,000 planes per year and a price of P0, then constant returns to scale from 8,000 to 20,000 planes per year, and diseconomies of scale at a quantity of production greater than 20,000 planes per year. Now consider the market demand curve in the diagram, which intersects the long-run average cost (LRAC) curve at an output level of 5,000 planes per year and at a price P1, which is higher than P0. In this situation, the market has room for only one producer. If a second firm attempts to enter the market at a smaller size, say by producing a quantity of 4,000 planes, then its average costs will be higher than those of the existing firm, and it will be unable to compete. If the second firm attempts to enter the market at a
larger size, like 8,000 planes per year, then it could produce at a lower average cost—but it could not sell all 8,000 planes that it produced because of insufficient demand in the market. Figure 9.2 Economies of Scale and Natural Monopoly In this market, the demand curve intersects the long-run average cost (LRAC) curve at its downward-sloping part. A natural monopoly occurs when the quantity demanded is less than the minimum quantity it takes to be at the bottom of the long-run average cost curve. Economists call this situation, when economies of scale are large relative to the quantity demanded in the market, a natural monopoly. Natural monopolies often arise in industries where the marginal cost of adding an additional customer is very low, once the fixed costs of the overall system are in place. This results in situations where there are substantial economies of scale. For example, once a water company lays the main water pipes through a neighborhood, the marginal cost of providing water service to another home is fairly low. Once the electric company 218 Chapter 9 | Monopoly installs lines in a new subdivision, the marginal cost of providing additional electrical service to one more home is minimal. It would be costly and duplicative for a second water company to enter the market and invest in a whole second set of main water pipes, or for a second electricity company to enter the market and invest in a whole new set of electrical wires. These industries offer an example where, because of economies of scale, one producer can serve the entire market more efficiently than a number of smaller producers that would need to make duplicate physical capital investments. A natural monopoly can also arise in smaller local markets for products that are difficult to transport. For example, cement production exhibits economies of scale, and the quantity of cement demanded in a local area may not be much larger than what a single plant can produce. Moreover, the costs of transporting cement over land are high, and so a cement plant in an area without access to water transportation may be a natural monopoly. Control of a Physical Resource Another type of natural monopoly occurs when a company has control of a scarce physical resource. In the U.S. economy, one historical example of this pattern occurred when ALCOA—the Aluminum Company of America—controlled most of the supply of bauxite, a key mineral used in making aluminum. Back in the 1930s, when ALCOA controlled most of the bauxite, other firms were simply unable to produce enough aluminum to compete. As another example, the majority of global diamond production is controlled by DeBeers, a multi-national company that has mining and production operations in South Africa, Botswana, Namibia, and Canada. It also has exploration activities on four continents, while directing a worldwide distribution network of rough cut diamonds. Although in recent years they have experienced growing competition, their impact on the rough diamond market is still considerable. Legal Monopoly For some products, the government erects barriers to entry by prohibiting or limiting competition. Under U.S. law, no organization but the U.S. Postal Service is legally allowed to deliver first-class mail. Many states or cities have laws or regulations that allow households a choice of only one electric company, one water company, and one company to pick up the garbage. Most legal monopolies are utilities—products necessary for everyday life—that are socially beneficial. As a consequence, the government allows producers to become regulated monopolies, to insure that customers have access to an appropriate amount of these products or services. Additionally, legal monopolies are often subject to economies of scale, so it makes sense to allow only one provider. Promoting Innovation Innovation takes time and resources to achieve. Suppose a company invests in research and development and finds the cure for the common cold. In this world of near ubiquitous information, other companies could take the formula, produce the drug, and because they did not incur the costs of research and development (R&D), undercut the price of the company that discovered the drug. Given this possibility, many firms would choose not to invest in research and development, and as a result, the world would have less innovation. To prevent this from happening, the Constitution of the United States specifies in Article I, Section 8: “The Congress shall have Power . . . to Promote the Progress of Science and Useful Arts, by securing for limited Times to Authors and Inventors the Exclusive Right to their Writings and Discoveries.” Congress used this power to create the U.S. Patent and Trademark Office, as well as the U.S. Copyright Office. A patent gives the inventor the exclusive legal right to make, use, or sell the invention for a limited time. In the United States, exclusive patent rights last for 20 years. The idea is to provide limited monopoly power so that innovative firms can recoup their investment in R&D, but then to allow other firms to produce the product more cheaply once the patent expires. A trademark is an identifying symbol or name for a particular good, like Chiquita bananas, Chevrolet cars, or the Nike “swoosh” that appears on shoes and athletic gear. Roughly 1.9 million trademarks are registered with the U.S. government. A firm can renew a trademark repeatedly, as long as it remains in active use. ‘original works of authorship’ A copyright, according to the U.S. Copyright Office, “is a form of protection provided by the laws of the United States for including literary, dramatic, musical, architectural, cartographic, choreographic, pantomimic, pictorial, graphic, sculptural, and audiovisual creations.” No one can reproduce, display, or perform a copyrighted work without the author's permission. Copyright protection ordinarily lasts for the life of the author plus 70 years. Roughly speaking, patent law covers inventions and copyright protects books, songs, and art. However, in certain This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 219 areas, like the invention of new software, it has been unclear whether patent or copyright protection should apply. There is also a body of law known as trade secrets. Even if a company does not have a patent on an invention, competing firms are not allowed to steal their secrets. One famous trade secret is the formula for Coca-Cola, which is not protected under copyright or patent law, but is simply kept secret by the company. Taken together, we call this combination of patents, trademarks, copyrights, and trade secret law intellectual property, because it implies ownership over an idea, concept, or image, not a physical piece of property like a house or a car. Countries around the world have enacted laws to protect intellectual property, although the time periods and exact provisions of such laws vary across countries. There are ongoing negotiations, both through the World Intellectual Property Organization (WIPO) and through international treaties, to bring greater harmony to the intellectual property laws of different countries to determine the extent to which those in other countries will respect patents and copyrights of those in other countries. Government limitations on competition used to be more common in the United States. For most of the twentieth century, only one phone company—AT&T—was legally allowed to provide local and long distance service. From the 1930s to the 1970s, one set of federal regulations limited which destinations airlines could choose to fly to and what fares they could charge. Another set of regulations limited the interest rates that banks could pay to depositors; yet another specified how much trucking firms could charge customers. What products we consider utilities depends, in part, on the available technology. Fifty years ago, telephone companies provided local and long distance service over wires. It did not make much sense to have many companies building multiple wiring systems across towns and the entire country. AT&T lost its monopoly on long distance service when the technology for providing phone service changed from wires to microwave and satellite transmission, so that multiple firms could use the same transmission mechanism. The same thing happened to local service, especially in recent years, with the growth in cellular phone systems. The combination of improvements in production technologies and a general sense that the markets could provide services adequately led to a wave of deregulation, starting in the late 1970s and continuing into the 1990s. This wave eliminated or reduced government restrictions on the firms that could enter, the prices that they could charge, and the quantities that many industries could produce, including telecommunications, airlines, trucking, banking, and electricity. Around the world, from Europe to Latin America to Africa and Asia, many governments continue to control and limit competition in what those governments perceive to be key industries, including airlines, banks, steel companies, oil companies, and telephone companies. Vist this website (http://openstaxcollege.org/l/patents) for examples of some pretty bizarre patents. Intimidating Potential Competition Businesses have developed a number of schemes for creating barriers to entry by deterring potential competitors from entering the market. One method is known as predatory pricing, in which a firm uses the threat of sharp price cuts to discourage competition. Predatory pricing is a violation of U.S. antitrust law, but it is difficult to prove. Consider a large airline that provides most of the flights between two particular cities. A new, small start-up airline decides to offer service between these two cities. The large airline immediately slashes prices on this route to the bone, so that the new
entrant cannot make any money. After the new entrant has gone out of business, the incumbent 220 Chapter 9 | Monopoly firm can raise prices again. After the company repeats this pattern once or twice, potential new entrants may decide that it is not wise to try to compete. Small airlines often accuse larger airlines of predatory pricing: in the early 2000s, for example, ValuJet accused Delta of predatory pricing, Frontier accused United, and Reno Air accused Northwest. In 2015, the Justice Department ruled against American Express and Mastercard for imposing restrictions on retailers that encouraged customers to use lower swipe fees on credit transactions. In some cases, large advertising budgets can also act as a way of discouraging the competition. If the only way to launch a successful new national cola drink is to spend more than the promotional budgets of Coca-Cola and Pepsi Cola, not too many companies will try. A firmly established brand name can be difficult to dislodge. Summing Up Barriers to Entry Table 9.1 lists the barriers to entry that we have discussed. This list is not exhaustive, since firms have proved to be highly creative in inventing business practices that discourage competition. When barriers to entry exist, perfect competition is no longer a reasonable description of how an industry works. When barriers to entry are high enough, monopoly can result. Barrier to Entry Government Role? Example Natural monopoly Government often responds with regulation (or ownership) Water and electric companies Control of a physical resource No Legal monopoly Yes Patent, trademark, and copyright Yes, through protection of intellectual property Intimidating potential competitors Somewhat Table 9.1 Barriers to Entry DeBeers for diamonds Post office, past regulation of airlines and trucking New drugs or software Predatory pricing; well-known brand names 9.2 | How a Profit-Maximizing Monopoly Chooses Output and Price By the end of this section, you will be able to: • Explain the perceived demand curve for a perfect competitor and a monopoly • Analyze a demand curve for a monopoly and determine the output that maximizes profit and revenue • Calculate marginal revenue and marginal cost • Explain allocative efficiency as it pertains to the efficiency of a monopoly Consider a monopoly firm, comfortably surrounded by barriers to entry so that it need not fear competition from other producers. How will this monopoly choose its profit-maximizing quantity of output, and what price will it charge? Profits for the monopolist, like any firm, will be equal to total revenues minus total costs. We can analyze the pattern of costs for the monopoly within the same framework as the costs of a perfectly competitive firm—that is, by using total cost, fixed cost, variable cost, marginal cost, average cost, and average variable cost. However, because a monopoly faces no competition, its situation and its decision process will differ from that of a perfectly competitive firm. (The Clear It Up feature discusses how hard it is sometimes to define “market” in a monopoly situation.) This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 221 Demand Curves Perceived by a Perfectly Competitive Firm and by a Monopoly A perfectly competitive firm acts as a price taker, so we calculate total revenue taking the given market price and multiplying it by the quantity of output that the firm chooses. The demand curve as it is perceived by a perfectly competitive firm appears in Figure 9.3 (a). The flat perceived demand curve means that, from the viewpoint of the perfectly competitive firm, it could sell either a relatively low quantity like Ql or a relatively high quantity like Qh at the market price P. Figure 9.3 The Perceived Demand Curve for a Perfect Competitor and a Monopolist firm perceives the demand curve that it faces to be flat. The flat shape means that the firm can sell either a low quantity (Ql) or a high quantity (Qh) at exactly the same price (P). (b) A monopolist perceives the demand curve that it faces to be the same as the market demand curve, which for most goods is downward-sloping. Thus, if the monopolist chooses a high level of output (Qh), it can charge only a relatively low price (PI). Conversely, if the monopolist chooses a low level of output (Ql), it can then charge a higher price (Ph). The challenge for the monopolist is to choose the combination of price and quantity that maximizes profits. (a) A perfectly competitive What defines the market? A monopoly is a firm that sells all or nearly all of the goods and services in a given market. However, what defines the “market”? In a famous 1947 case, the federal government accused the DuPont company of having a monopoly in the cellophane market, pointing out that DuPont produced 75% of the cellophane in the United States. DuPont countered that even though it had a 75% market share in cellophane, it had less than a 20% share of the “flexible packaging materials,” which includes all other moisture-proof papers, films, and foils. In 1956, after years of legal appeals, the U.S. Supreme Court held that the broader market definition was more appropriate, and it dismissed the case against DuPont. Questions over how to define the market continue today. True, Microsoft in the 1990s had a dominant share of the software for computer operating systems, but in the total market for all computer software and services, including everything from games to scientific programs, the Microsoft share was only about 14% in 2014. The Greyhound bus company may have a near-monopoly on the market for intercity bus transportation, but it is only a small share of the market for intercity transportation if that market includes private cars, airplanes, and railroad service. DeBeers has a monopoly in diamonds, but it is a much smaller share of the total market for precious gemstones and an even smaller share of the total market for jewelry. A small town in the country may have only one gas station: is this gas station a “monopoly,” or does it compete with gas stations that might be 222 Chapter 9 | Monopoly five, 10, or 50 miles away? In general, if a firm produces a product without close substitutes, then we can consider the firm a monopoly producer in a single market. However, if buyers have a range of similar—even if not identical—options available from other firms, then the firm is not a monopoly. Still, arguments over whether substitutes are close or not close can be controversial. While a monopolist can charge any price for its product, nonetheless the demand for the firm’s product constrains the price. No monopolist, even one that is thoroughly protected by high barriers to entry, can require consumers to purchase its product. Because the monopolist is the only firm in the market, its demand curve is the same as the market demand curve, which is, unlike that for a perfectly competitive firm, downward-sloping. Figure 9.3 illustrates this situation. The monopolist can either choose a point like R with a low price (Pl) and high quantity (Qh), or a point like S with a high price (Ph) and a low quantity (Ql), or some intermediate point. Setting the price too high will result in a low quantity sold, and will not bring in much revenue. Conversely, setting the price too low may result in a high quantity sold, but because of the low price, it will not bring in much revenue either. The challenge for the monopolist is to strike a profit-maximizing balance between the price it charges and the quantity that it sells. However, why isn’t the perfectly competitive firm’s demand curve also the market demand curve? See the following Clear It Up feature for the answer to this question. What is the difference between perceived demand and market demand? The demand curve as perceived by a perfectly competitive firm is not the overall market demand curve for that product. However, the firm’s demand curve as perceived by a monopoly is the same as the market demand curve. The reason for the difference is that each perfectly competitive firm perceives the demand for its products in a market that includes many other firms. In effect, the demand curve perceived by a perfectly competitive firm is a tiny slice of the entire market demand curve. In contrast, a monopoly perceives demand for its product in a market where the monopoly is the only producer. Total Cost and Total Revenue for a Monopolist We can illustrate profits for a monopolist with a graph of total revenues and total costs, with the example of the hypothetical HealthPill firm in Figure 9.4. The total cost curve has its typical shape that we learned about in Production, Costs and Industry Structure, and that we used in Perfect Competition; that is, total costs rise and the curve grows steeper as output increases, as the final column of Table 9.2 shows. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 223 Figure 9.4 Total Revenue and Total Cost for the HealthPill Monopoly Total revenue for the monopoly firm called HealthPill first rises, then falls. Low levels of output bring in relatively little total revenue, because the quantity is low. High levels of output bring in relatively less revenue, because the high quantity pushes down the market price. The total cost curve is upward-sloping. Profits will be highest at the quantity of output where total revenue is most above total cost. The profit-maximizing level of output is not the same as the revenue-maximizing level of output, which should make sense, because profits take costs into account and revenues do not. Quantity Q Price P Total Revenue TR Total Cost TC 1 2 3 4 5 6 7 8 1,200 1,100 1,000 900 800 700 600 500 1,200 2,200 3,000 3,600 4,000 4,200 4,200 4,000 500 750 1,000 1,250 1,650 2,500 4,000 6,400 Table 9.2 Total Costs and Total Revenues of HealthPill Total revenue, though, is different. Since a monopolist faces a d
ownward sloping demand curve, the only way it can sell more output is by reducing its price. Selling more output raises revenue, but lowering price reduces it. Thus, the shape of total revenue isn’t clear. Let’s explore this using the data in Table 9.2, which shows quantities along the demand curve and the price at each quantity demanded, and then calculates total revenue by multiplying price times quantity at each level of output. (In this example, we give the output as 1, 2, 3, 4, and so on, for the sake of simplicity. If you prefer a dash of greater realism, you can imagine that the pharmaceutical company measures the pharmaceutical company measures these output levels and the corresponding prices per 1,000 or 10,000 pills.) As the figure illustrates, total revenue for a monopolist has the shape of a hill, first rising, next flattening out, and then falling. In this example, total revenue is highest at a quantity of 6 or 7. However, the monopolist is not seeking to maximize revenue, but instead to earn the highest possible profit. In the 224 Chapter 9 | Monopoly HealthPill example in Figure 9.4, the highest profit will occur at the quantity where total revenue is the farthest above total cost. This looks to be somewhere in the middle of the graph, but where exactly? It is easier to see the profit maximizing level of output by using the marginal approach, to which we turn next. Marginal Revenue and Marginal Cost for a Monopolist In the real world, a monopolist often does not have enough information to analyze its entire total revenues or total costs curves. After all, the firm does not know exactly what would happen if it were to alter production dramatically. However, a monopolist often has fairly reliable information about how changing output by small or moderate amounts will affect its marginal revenues and marginal costs, because it has had experience with such changes over time and because modest changes are easier to extrapolate from current experience. A monopolist can use information on marginal revenue and marginal cost to seek out the profit-maximizing combination of quantity and price. Table 9.3 expands Table 9.2 using the figures on total costs and total revenues from the HealthPill example to calculate marginal revenue and marginal cost. This monopoly faces typical upward-sloping marginal cost and downward sloping marginal revenue curves, as Figure 9.5 shows. Notice that marginal revenue is zero at a quantity of 7, and turns negative at quantities higher than 7. It may seem counterintuitive that marginal revenue could ever be zero or negative: after all, doesn't an increase in quantity sold not always mean more revenue? For a perfect competitor, each additional unit sold brought a positive marginal revenue, because marginal revenue was equal to the given market price. However, a monopolist can sell a larger quantity and see a decline in total revenue. When a monopolist increases sales by one unit, it gains some marginal revenue from selling that extra unit, but also loses some marginal revenue because it must now sell every other unit at a lower price. As the quantity sold becomes higher, at some point the drop in price is proportionally more than the increase in greater quantity of sales, causing a situation where more sales bring in less revenue. In other words, marginal revenue is negative. Figure 9.5 Marginal Revenue and Marginal Cost for the HealthPill Monopoly For a monopoly like HealthPill, marginal revenue decreases as it sells additional units of output. The marginal cost curve is upward-sloping. The profit-maximizing choice for the monopoly will be to produce at the quantity where marginal revenue is equal to marginal cost: that is, MR = MC. If the monopoly produces a lower quantity, then MR > MC at those levels of output, and the firm can make higher profits by expanding output. If the firm produces at a greater quantity, then MC > MR, and the firm can make higher profits by reducing its quantity of output. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 225 Quantity Q Total Revenue TR Marginal Revenue MR Total Cost TC Marginal Cost MC 1 2 3 4 5 6 7 8 1,200 2,200 3,000 3,600 4,000 4,200 4,200 4,000 1,200 1,000 800 600 400 200 0 –200 Table 9.3 Costs and Revenues of HealthPill 500 775 1,000 1,250 1,650 2,500 4,000 6,400 500 275 225 250 400 850 1,500 2,400 A monopolist can determine its profit-maximizing price and quantity by analyzing the marginal revenue and marginal costs of producing an extra unit. If the marginal revenue exceeds the marginal cost, then the firm should produce the extra unit. For example, at an output of 4 in Figure 9.5, marginal revenue is 600 and marginal cost is 250, so producing this unit will clearly add to overall profits. At an output of 5, marginal revenue is 400 and marginal cost is 400, so producing this unit still means overall profits are unchanged. However, expanding output from 5 to 6 would involve a marginal revenue of 200 and a marginal cost of 850, so that sixth unit would actually reduce profits. Thus, the monopoly can tell from the marginal revenue and marginal cost that of the choices in the table, the profit-maximizing level of output is 5. The monopoly could seek out the profit-maximizing level of output by increasing quantity by a small amount, calculating marginal revenue and marginal cost, and then either increasing output as long as marginal revenue exceeds marginal cost or reducing output if marginal cost exceeds marginal revenue. This process works without any need to calculate total revenue and total cost. Thus, a profit-maximizing monopoly should follow the rule of producing up to the quantity where marginal revenue is equal to marginal cost—that is, MR = MC. This quantity is easy to identify graphically, where MR and MC intersect. Maximizing Profits If you find it counterintuitive that producing where marginal revenue equals marginal cost will maximize profits, working through the numbers will help. Step 1. Remember, we define marginal cost as the change in total cost from producing a small amount of additional output. MC = change in total cost change in quantity produced Step 2. Note that in Table 9.3, as output increases from 1 to 2 units, total cost increases from $1500 to $1800. As a result, the marginal cost of the second unit will be: MC = $775 – $500 1 = $275 226 Chapter 9 | Monopoly Step 3. Remember that, similarly, marginal revenue is the change in total revenue from selling a small amount of additional output. MR = change in total revenue change in quantity sold Step 4. Note that in Table 9.3, as output increases from 1 to 2 units, total revenue increases from $1200 to $2200. As a result, the marginal revenue of the second unit will be: MR = $2200 – $1200 1 = $1000 Quantity Q Marginal Revenue MR Marginal Cost MC Marginal Profit MP Total Profit ,200 1,000 800 600 400 200 0 −200 500 275 225 250 400 850 1,500 2,400 700 725 575 350 0 −650 −1,500 −2,600 700 1,425 2,000 2,350 2,350 1,700 200 −2,400 Table 9.4 Marginal Revenue, Marginal Cost, Marginal and Total Profit Table 9.4 repeats the marginal cost and marginal revenue data from Table 9.3, and adds two more columns: Marginal profit is the profitability of each additional unit sold. We define it as marginal revenue minus marginal cost. Finally, total profit is the sum of marginal profits. As long as marginal profit is positive, producing increase total profits. When marginal profit turns negative, producing more output will more output will decrease total profits. Total profit is maximized where marginal revenue equals marginal cost. In this example, maximum profit occurs at 5 units of output. A perfectly competitive firm will also find its profit-maximizing level of output where MR = MC. The key difference with a perfectly competitive firm is that in the case of perfect competition, marginal revenue is equal to price (MR = P), while for a monopolist, marginal revenue is not equal to the price, because changes in quantity of output affect the price. Illustrating Monopoly Profits It is straightforward to calculate profits of given numbers for total revenue and total cost. However, the size of monopoly profits can also be illustrated graphically with Figure 9.6, which takes the marginal cost and marginal revenue curves from the previous exhibit and adds an average cost curve and the monopolist’s perceived demand curve. Table 9.5 shows the data for these curves. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 227 Quantity Q Demand P Marginal Revenue MR Marginal Cost MC Average Cost AC 1 2 3 4 5 6 7 8 Table 9.5 1,200 1,100 1,000 900 800 700 600 500 1,200 1,000 800 600 400 200 0 –200 500 275 225 250 400 850 1,500 2,400 500 388 333 313 330 417 571 800 Figure 9.6 Illustrating Profits at the HealthPill Monopoly This figure begins with the same marginal revenue and marginal cost curves from the HealthPill monopoly from Figure 9.5. It then adds an average cost curve and the demand curve that the monopolist faces. The HealthPill firm first chooses the quantity where MR = MC. In this example, the quantity is 5. The monopolist then decides what price to charge by looking at the demand curve it faces. The large box, with quantity on the horizontal axis and demand (which shows the price) on the vertical axis, shows total revenue for the firm. The lighter-shaded box, which is quantity on the horizontal axis and average cost of production on the vertical axis shows the firm's total costs. The large total revenue box minus the smaller total cost box leaves the darkly shaded box that shows total profits. Since the price charged is above average cost, the firm is earning positive profits. Figure 9.7 illustrates the three-step process where a monopolist: selects the profit-maximizing quantity to produce; decides what price to charge; determines total revenue, total cost, and profit. Step 1: The M
onopolist Determines Its Profit-Maximizing Level of Output The firm can use the points on the demand curve D to calculate total revenue, and then, based on total revenue, 228 Chapter 9 | Monopoly calculate its marginal revenue curve. The profit-maximizing quantity will occur where MR = MC—or at the last possible point before marginal costs start exceeding marginal revenue. On Figure 9.6, MR = MC occurs at an output of 5. Step 2: The Monopolist Decides What Price to Charge The monopolist will charge what the market is willing to pay. A dotted line drawn straight up from the profitmaximizing quantity to the demand curve shows the profit-maximizing price which, in Figure 9.6, is $800. This price is above the average cost curve, which shows that the firm is earning profits. Step 3: Calculate Total Revenue, Total Cost, and Profit Total revenue is the overall shaded box, where the width of the box is the quantity sold and the height is the price. In Figure 9.6, this is 5 x $800 = $4000. In Figure 9.6, the bottom part of the shaded box, which is shaded more lightly, shows total costs; that is, quantity on the horizontal axis multiplied by average cost on the vertical axis or 5 x $330 = $1650. The larger box of total revenues minus the smaller box of total costs will equal profits, which the darkly shaded box shows. Using the numbers gives $4000 - $1650 = $2350. In a perfectly competitive market, the forces of entry would erode this profit in the long run. However, a monopolist is protected by barriers to entry. In fact, one obvious sign of a possible monopoly is when a firm earns profits year after year, while doing more or less the same thing, without ever seeing increased competition eroding those profits. Figure 9.7 How a Profit-Maximizing Monopoly Decides Price In Step 1, the monopoly chooses the profitmaximizing level of output Q1, by choosing the quantity where MR = MC. In Step 2, the monopoly decides how much to charge for output level Q1 by drawing a line straight up from Q1 to point R on its perceived demand curve. Thus, the monopoly will charge a price (P1). In Step 3, the monopoly identifies its profit. Total revenue will be Q1 multiplied by P1. Total cost will be Q1 multiplied by the average cost of producing Q1, which point S shows on the average cost curve to be P2. Profits will be the total revenue rectangle minus the total cost rectangle, which the shaded zone in the figure shows. Why is a monopolist’s marginal revenue always less than the price? The marginal revenue curve for a monopolist always lies beneath the market demand curve. To understand why, think about increasing the quantity along the demand curve by one unit, so that you take one step down This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 229 the demand curve to a slightly higher quantity but a slightly lower price. A demand curve is not sequential: It is not that first we sell Q1 at a higher price, and then we sell Q2 at a lower price. Rather, a demand curve is conditional: If we charge the higher price, we would sell Q1. If, instead, we charge a lower price (on all the units that we sell), we would sell Q2. When we think about increasing the quantity sold by one unit, marginal revenue is affected in two ways. First, we sell one additional unit at the new market price. Second, all the previous units, which we sold at the higher price, now sell for less. Because of the lower price on all units sold, the marginal revenue of selling a unit is less than the price of that unit—and the marginal revenue curve is below the demand curve. Tip: For a straight-line demand curve, MR and demand have the same vertical intercept. As output increases, marginal revenue decreases twice as fast as demand, so that the horizontal intercept of MR is halfway to the horizontal intercept of demand. You can see this in the Figure 9.8. Figure 9.8 The Monopolist’s Marginal Revenue Curve versus Demand Curve Because the market demand curve is conditional, the marginal revenue curve for a monopolist lies beneath the demand curve. The Inefficiency of Monopoly Most people criticize monopolies because they charge too high a price, but what economists object to is that monopolies do not supply enough output to be allocatively efficient. To understand why a monopoly is inefficient, it is useful to compare it with the benchmark model of perfect competition. Allocative efficiency is an economic concept regarding efficiency at the social or societal level. It refers to producing the optimal quantity of some output, the quantity where the marginal benefit to society of one more unit just equals the marginal cost. The rule of profit maximization in a world of perfect competition was for each firm to produce the quantity of output where P = MC, where the price (P) is a measure of how much buyers value the good and the marginal cost (MC) is a measure of what marginal units cost society to produce. Following this rule assures allocative efficiency. If P > MC, then the marginal benefit to society (as measured by P) is greater than the marginal cost to society of producing additional units, and a greater quantity should be produced. However, in the case of monopoly, price is always greater than marginal cost at the profit-maximizing level of output, as you can see by looking back at Figure 9.6. Thus, consumers will suffer from a monopoly because it will sell a lower quantity in the market, at a higher price, than would have been the case in a perfectly competitive market. The problem of inefficiency for monopolies often runs even deeper than these issues, and also involves incentives for efficiency over longer periods of time. There are counterbalancing incentives here. On one side, firms may strive for new inventions and new intellectual property because they want to become monopolies and earn high profits—at least for a few years until the competition catches up. In this way, monopolies may come to exist because of competitive pressures on firms. However, once a barrier to entry is in place, a monopoly that does not need to fear competition can just produce the same old products in the same old way—while still ringing up a healthy rate of profit. John Hicks, who won the Nobel Prize for economics in 1972, wrote in 1935: “The best of all monopoly profits is a quiet life.” He did not mean the comment in a complimentary way. He meant that monopolies may bank their profits and slack off on trying to please their customers. 230 Chapter 9 | Monopoly When AT&T provided all of the local and long-distance phone service in the United States, along with manufacturing most of the phone equipment, the payment plans and types of phones did not change much. The old joke was that you could have any color phone you wanted, as long as it was black. However, in 1982, government litigation split up AT&T into a number of local phone companies, a long-distance phone company, and a phone equipment manufacturer. An explosion of innovation followed. Services like call waiting, caller ID, three-way calling, voice mail through the phone company, mobile phones, and wireless connections to the internet all became available. Companies offered a wide range of payment plans, as well. It was no longer true that all phones were black. Instead, phones came in a wide variety of shapes and colors. The end of the telephone monopoly brought lower prices, a greater quantity of services, and also a wave of innovation aimed at attracting and pleasing customers. The Rest is History In the opening case, we presented the East India Company and the Confederate States as a monopoly or near monopoly provider of a good. Nearly every American schoolchild knows the result of the “unwelcome visit” the “Mohawks” bestowed upon Boston Harbor’s tea-bearing ships—the Boston Tea Party. Regarding the cotton industry, we also know Great Britain remained neutral during the Civil War, taking neither side during the conflict. these business have unintended and historical consequences? Might Did the monopoly nature of the American Revolution have been deterred, if the East India Company had sailed the tea-bearing ships back to England? Might the southern states have made different decisions had they not been so confident “King Cotton” would force diplomatic recognition of the Confederate States of America? Of course, it is not possible to definitively answer these questions. We cannot roll back the clock and try a different scenario. We can, however, consider the monopoly nature of these businesses and the roles they played and hypothesize about what might have occurred under different circumstances. Perhaps if there had been legal free tea trade, the colonists would have seen things differently. There was smuggled Dutch tea in the colonial market. If the colonists had been able to freely purchase Dutch tea, they would have paid lower prices and avoided the tax. What about the cotton monopoly? With one in five jobs in Great Britain depending on Southern cotton and the Confederate States as nearly the sole provider of that cotton, why did Great Britain remain neutral during the Civil War? At the beginning of the war, Britain simply drew down massive stores of cotton. These stockpiles lasted until near the end of 1862. Why did Britain not recognize the Confederacy at that point? Two reasons: The Emancipation Proclamation and new sources of cotton. Having outlawed slavery throughout the United Kingdom in 1833, it was politically impossible for Great Britain, empty cotton warehouses or not, to recognize, diplomatically, the Confederate States. In addition, during the two years it took to draw down the stockpiles, Britain expanded cotton imports from India, Egypt, and Brazil. Monopoly sellers often see no threats to their superior marketplace position. In these examples did the power of the monopoly blind the decision makers to other possibilities? Perhaps. As a result of their actions, this is how
history unfolded. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly KEY TERMS 231 allocative efficiency producing the optimal quantity of some output; the quantity where the marginal benefit to society of one more unit just equals the marginal cost barriers to entry the legal, technological, or market forces that may discourage or prevent potential competitors from entering a market copyright a form of legal protection to prevent copying, for commercial purposes, original works of authorship, including books and music deregulation removing government controls over setting prices and quantities in certain industries intellectual property the body of law including patents, trademarks, copyrights, and trade secret law that protect the right of inventors to produce and sell their inventions legal monopoly legal prohibitions against competition, such as regulated monopolies and intellectual property protection marginal profit profit of one more unit of output, computed as marginal revenue minus marginal cost monopoly a situation in which one firm produces all of the output in a market natural monopoly economic conditions in the industry, for example, economies of scale or control of a critical resource, that limit effective competition patent a government rule that gives the inventor the exclusive legal right to make, use, or sell the invention for a limited time predatory pricing when an existing firm uses sharp but temporary price cuts to discourage new competition trade secrets methods of production kept secret by the producing firm trademark an identifying symbol or name for a particular good and can only be used by the firm that registered that trademark KEY CONCEPTS AND SUMMARY 9.1 How Monopolies Form: Barriers to Entry Barriers to entry prevent or discourage competitors from entering the market. These barriers include: economies of scale that lead to natural monopoly; control of a physical resource; legal restrictions on competition; patent, trademark and copyright protection; and practices to intimidate the competition like predatory pricing. Intellectual property refers to legally guaranteed ownership of an idea, rather than a physical item. The laws that protect intellectual property include patents, copyrights, trademarks, and trade secrets. A natural monopoly arises when economies of scale persist over a large enough range of output that if one firm supplies the entire market, no other firm can enter without facing a cost disadvantage. 9.2 How a Profit-Maximizing Monopoly Chooses Output and Price A monopolist is not a price taker, because when it decides what quantity to produce, it also determines the market price. For a monopolist, total revenue is relatively low at low quantities of output, because it is not selling much. Total revenue is also relatively low at very high quantities of output, because a very high quantity will sell only at a low price. Thus, total revenue for a monopolist will start low, rise, and then decline. The marginal revenue for a monopolist from selling additional units will decline. Each additional unit a monopolist sells will push down the overall market price, and as it sells more units, this lower price applies to increasingly more units. 232 Chapter 9 | Monopoly The monopolist will select the profit-maximizing level of output where MR = MC, and then charge the price for that quantity of output as determined by the market demand curve. If that price is above average cost, the monopolist earns positive profits. Monopolists are not productively efficient, because they do not produce at the minimum of the average cost curve. Monopolists are not allocatively efficient, because they do not produce at the quantity where P = MC. As a result, monopolists produce less, at a higher average cost, and charge a higher price than would a combination of firms in a perfectly competitive industry. Monopolists also may lack incentives for innovation, because they need not fear entry. SELF-CHECK QUESTIONS 1. Classify the following as a government-enforced barrier to entry, a barrier to entry that is not governmentenforced, or a situation that does not involve a barrier to entry. a. A patented invention b. A popular but easily copied restaurant recipe c. An industry where economies of scale are very small compared to the size of demand in the market d. A well-established reputation for slashing prices in response to new entry e. A well-respected brand name that has been carefully built up over many years 2. Classify the following as a government-enforced barrier to entry, a barrier to entry that is not governmentenforced, or a situation that does not involve a barrier to entry. a. A city passes a law on how many licenses it will issue for taxicabs b. A city passes a law that all taxicab drivers must pass a driving safety test and have insurance c. A well-known trademark d. Owning a spring that offers very pure water e. An industry where economies of scale are very large compared to the size of demand in the market 3. Suppose the local electrical utility, a legal monopoly based on economies of scale, was split into four firms of equal size, with the idea that eliminating the monopoly would promote competitive pricing of electricity. What do you anticipate would happen to prices? If Congress reduced the period of patent protection from 20 years to 10 years, what would likely happen to the 4. amount of private research and development? 5. Suppose demand for a monopoly’s product falls so that its profit-maximizing price is below average variable cost. How much output should the firm supply? Hint: Draw the graph. Imagine a monopolist could charge a different price to every customer based on how much he or she were willing 6. to pay. How would this affect monopoly profits? REVIEW QUESTIONS How is monopoly 7. competition? different from perfect 13. What property? legal mechanisms protect intellectual 8. What is a barrier to entry? Give some examples. 14. In what sense is a natural monopoly “natural”? 9. What is a natural monopoly? 10. What is a legal monopoly? 11. What is predatory pricing? 12. How is intellectual property different from other property? 15. How is the demand curve perceived by a perfectly competitive firm different from the demand curve perceived by a monopolist? 16. How does the demand curve perceived by a monopolist compare with the market demand curve? 17. Is a monopolist a price taker? Explain briefly. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 9 | Monopoly 233 18. What is the usual shape of a total revenue curve for a monopolist? Why? 19. What is the usual shape of a marginal revenue curve for a monopolist? Why? 20. How can a monopolist identify the profitmaximizing level of output if it knows its total revenue and total cost curves? 21. How can a monopolist identify the profitmaximizing level of output if it knows its marginal revenue and marginal costs? CRITICAL THINKING QUESTIONS 25. ALCOA does not have the monopoly power it once had. How do you suppose their barriers to entry were weakened? 26. Why are generic pharmaceuticals significantly cheaper than name brand ones? 27. For many years, the Justice Department has tried to break up large firms like IBM, Microsoft, and most recently Google, on the grounds that their large market share made them essentially monopolies. In a global market, where U.S. firms compete with firms from other countries, would this policy make the same sense as it might in a purely domestic context? PROBLEMS 31. Return to Figure 9.2. Suppose P0 is $10 and P1 is $11. Suppose a new firm with the same LRAC curve as the incumbent tries to break into the market by selling 4,000 units of output. Estimate from the graph what the new firm’s average cost of producing output would be. If the incumbent continues to produce 6,000 units, how much output would the two firms supply to the market? Estimate what would happen to the market price as a result of the supply of both the incumbent firm and the new entrant. Approximately how much profit would each firm earn? 22. When a monopolist identifies its profit-maximizing quantity of output, how does it decide what price to charge? Is a monopolist allocatively efficient? Why or why 23. not? 24. How does the quantity produced and price charged by a monopolist compare to that of a perfectly competitive firm? 28. Intellectual property laws are intended to promote innovation, but some economists, such as Milton Friedman, have argued that such laws are not desirable. In the United States, there is no intellectual property protection for food recipes or for fashion designs. Considering the state of these two industries, and bearing in mind the discussion of the inefficiency of monopolies, can you think of any reasons why intellectual property laws might hinder innovation in some cases? 29. Imagine that you are managing a small firm and thinking about entering the market of a monopolist. The monopolist is currently charging a high price, and you have calculated that you can make a nice profit charging 10% less than the monopolist. Before you go ahead and challenge the monopolist, what possibility should you consider for how the monopolist might react? 30. If a monopoly firm is earning profits, how much would you expect these profits to be diminished by entry in the long run? 32. Draw the demand curve, marginal revenue, and marginal cost curves from Figure 9.6, and identify the quantity of output the monopoly wishes to supply and the price it will charge. Suppose demand for the monopoly’s product increases dramatically. Draw the new demand curve. What happens to the marginal revenue as a result of the increase in demand? What happens to the marginal cost curve? Identify the new profit-maximizing quantity and price. Does the answer make sense to you? 234 Chapter 9 | Monopoly 33. Draw a monopolist’s demand curve, marginal Identify
the revenue, and marginal cost curves. monopolist’s profit-maximizing output level. Now, think about a slightly higher level of output (say Q0 + 1). According to the graph, is there any consumer willing to pay more than the marginal cost of that new level of output? If so, what does this mean? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 235 10 | Monopolistic Competition and Oligopoly Figure 10.1 Competing Brands? The laundry detergent market is one that is characterized neither as perfect competition nor monopoly. (Credit: modification of work by Pixel Drip/Flickr Creative Commons) The Temptation to Defy the Law Laundry detergent and bags of ice—products of industries that seem pretty mundane, maybe even boring. Hardly! Both have been the center of clandestine meetings and secret deals worthy of a spy novel. In France, between 1997 and 2004, the top four laundry detergent producers (Proctor & Gamble, Henkel, Unilever, and Colgate-Palmolive) controlled about 90 percent of the French soap market. Officials from the soap firms were meeting secretly, in out-of-the-way, small cafés around Paris. Their goals: Stamp out competition and set prices. Around the same time, the top five Midwest ice makers (Home City Ice, Lang Ice, Tinley Ice, Sisler’s Dairy, and Products of Ohio) had similar goals in mind when they secretly agreed to divide up the bagged ice market. If both groups could meet their goals, it would enable each to act as though they were a single firm—in essence, a monopoly—and enjoy monopoly-size profits. The problem? In many parts of the world, including the European Union and the United States, it is illegal for firms to divide markets and set prices collaboratively. These two cases provide examples of markets that are characterized neither as perfect competition nor monopoly. Instead, these firms are competing in market structures that lie between the extremes of monopoly 236 Chapter 10 | Monopolistic Competition and Oligopoly and perfect competition. How do they behave? Why do they exist? We will revisit this case later, to find out what happened. Introduction to Monopolistic Competition and Oligopoly In this chapter, you will learn about: • Monopolistic Competition • Oligopoly Perfect competition and monopoly are at opposite ends of the competition spectrum. A perfectly competitive market has many firms selling identical products, who all act as price takers in the face of the competition. If you recall, price takers are firms that have no market power. They simply have to take the market price as given. Monopoly arises when a single firm sells a product for which there are no close substitutes. We consider Microsoft, for instance, as a monopoly because it dominates the operating systems market. What about the vast majority of real world firms and organizations that fall between these extremes, firms that we could describe as imperfectly competitive? What determines their behavior? They have more influence over the price they charge than perfectly competitive firms, but not as much as a monopoly. What will they do? One type of imperfectly competitive market is monopolistic competition. Monopolistically competitive markets feature a large number of competing firms, but the products that they sell are not identical. Consider, as an example, the Mall of America in Minnesota, the largest shopping mall in the United States. In 2010, the Mall of America had 24 stores that sold women’s “ready-to-wear” clothing (like Ann Taylor and Urban Outfitters), another 50 stores that sold clothing for both men and women (like Banana Republic, J. Crew, and Nordstrom’s), plus 14 more stores that sold women’s specialty clothing (like Motherhood Maternity and Victoria’s Secret). Most of the markets that consumers encounter at the retail level are monopolistically competitive. The other type of imperfectly competitive market is oligopoly. Oligopolistic markets are those which a small number of firms dominate. Commercial aircraft provides a good example: Boeing and Airbus each produce slightly less than 50% of the large commercial aircraft in the world. Another example is the U.S. soft drink industry, which Coca-Cola and Pepsi dominate. We characterize oligopolies by high barriers to entry with firms choosing output, pricing, and other decisions strategically based on the decisions of the other firms in the market. In this chapter, we first explore how monopolistically competitive firms will choose their profit-maximizing level of output. We will then discuss oligopolistic firms, which face two conflicting temptations: to collaborate as if they were a single monopoly, or to individually compete to gain profits by expanding output levels and cutting prices. Oligopolistic markets and firms can also take on elements of monopoly and of perfect competition. 10.1 | Monopolistic Competition By the end of this section, you will be able to: • Explain the significance of differentiated products • Describe how a monopolistic competitor chooses price and quantity • Discuss entry, exit, and efficiency as they pertain to monopolistic competition • Analyze how advertising can impact monopolistic competition Monopolistic competition involves many firms competing against each other, but selling products that are distinctive in some way. Examples include stores that sell different styles of clothing; restaurants or grocery stores that sell a variety of food; and even products like golf balls or beer that may be at least somewhat similar but differ in public perception because of advertising and brand names. There are over 600,000 restaurants in the United States. When products are distinctive, each firm has a mini-monopoly on its particular style or flavor or brand name. However, firms producing such products must also compete with other styles and flavors and brand names. The term “monopolistic competition” captures this mixture of mini-monopoly and tough competition, and the following Clear It Up feature This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 237 introduces its derivation. Who invented the theory of imperfect competition? Two economists independently but simultaneously developed the theory of imperfect competition in 1933. The first was Edward Chamberlin of Harvard University who published The Economics of Monopolistic Competition. The second was Joan Robinson of Cambridge University who published The Economics of Imperfect Competition. Robinson subsequently became interested in macroeconomics and she became a prominent Keynesian, and later a post-Keynesian economist. (See the Welcome to Economics! and The Keynesian Perspective (http://cnx.org/content/m63849/latest/) chapters for more on Keynes.) Differentiated Products A firm can try to make its products different from those of its competitors in several ways: physical aspects of the product, location from which it sells the product, intangible aspects of the product, and perceptions of the product. We call products that are distinctive in one of these ways differentiated products. Physical aspects of a product include all the phrases you hear in advertisements: unbreakable bottle, nonstick surface, freezer-to-microwave, non-shrink, extra spicy, newly redesigned for your comfort. A firm's location can also create a difference between producers. For example, a gas station located at a heavily traveled intersection can probably sell more gas, because more cars drive by that corner. A supplier to an automobile manufacturer may find that it is an advantage to locate close to the car factory. Intangible aspects can differentiate a product, too. Some intangible aspects may be promises like a guarantee of satisfaction or money back, a reputation for high quality, services like free delivery, or offering a loan to purchase the product. Finally, product differentiation may occur in the minds of buyers. For example, many people could not tell the difference in taste between common varieties of ketchup or mayonnaise if they were blindfolded but, because of past habits and advertising, they have strong preferences for certain brands. Advertising can play a role in shaping these intangible preferences. The concept of differentiated products is closely related to the degree of variety that is available. If everyone in the economy wore only blue jeans, ate only white bread, and drank only tap water, then the markets for clothing, food, and drink would be much closer to perfectly competitive. The variety of styles, flavors, locations, and characteristics creates product differentiation and monopolistic competition. Perceived Demand for a Monopolistic Competitor A monopolistically competitive firm perceives a demand for its goods that is an intermediate case between monopoly and competition. Figure 10.2 offers a reminder that the demand curve that a perfectly competitive firm faces is perfectly elastic or flat, because the perfectly competitive firm can sell any quantity it wishes at the prevailing market price. In contrast, the demand curve, as faced by a monopolist, is the market demand curve, since a monopolist is the only firm in the market, and hence is downward sloping. 238 Chapter 10 | Monopolistic Competition and Oligopoly Figure 10.2 Perceived Demand for Firms in Different Competitive Settings The demand curve that a perfectly competitive firm faces is perfectly elastic, meaning it can sell all the output it wishes at the prevailing market price. The demand curve that a monopoly faces is the market demand. It can sell more output only by decreasing the price it charges. The demand curve that a monopolistically competitive firm faces falls in between. The demand curve as a monopolistic competitor faces is not flat, but rather downward-sloping, which means that the monopolistic competitor can raise its price without losin
g all of its customers or lower the price and gain more customers. Since there are substitutes, the demand curve facing a monopolistically competitive firm is more elastic than that of a monopoly where there are no close substitutes. If a monopolist raises its price, some consumers will choose not to purchase its product—but they will then need to buy a completely different product. However, when a monopolistic competitor raises its price, some consumers will choose not to purchase the product at all, but others will choose to buy a similar product from another firm. If a monopolistic competitor raises its price, it will not lose as many customers as would a perfectly competitive firm, but it will lose more customers than would a monopoly that raised its prices. At a glance, the demand curves that a monopoly and a monopolistic competitor face look similar—that is, they both slope down. However, the underlying economic meaning of these perceived demand curves is different, because a monopolist faces the market demand curve and a monopolistic competitor does not. Rather, a monopolistically competitive firm’s demand curve is but one of many firms that make up the “before” market demand curve. Are you following? If so, how would you categorize the market for golf balls? Take a swing, then see the following Clear It Up feature. Are golf balls really differentiated products? Monopolistic competition refers to an industry that has more than a few firms, each offering a product which, from the consumer’s perspective, is different from its competitors. The U.S. Golf Association runs a laboratory that tests 20,000 golf balls a year. There are strict rules for what makes a golf ball legal. A ball's weight cannot exceed 1.620 ounces and its diameter cannot be less than 1.680 inches (which is a weight of 45.93 grams and a diameter of 42.67 millimeters, in case you were wondering). The Association also tests the balls by hitting them at different speeds. For example, the distance test involves having a mechanical golfer hit the ball with a titanium driver and a swing speed of 120 miles per hour. As the testing center explains: “The USGA system then uses an array of sensors that accurately measure the flight of a golf ball during a short, indoor trajectory from a ball launcher. From this flight data, a computer calculates the lift and drag forces that are generated by the speed, spin, and dimple pattern of the ball. ... The distance limit is 317 yards.” Over 1800 golf balls made by more than 100 companies meet the USGA standards. The balls do differ in various ways, such as the pattern of dimples on the ball, the types of plastic on the cover and in the cores, and other factors. Since all balls need to conform to the USGA tests, they are much more alike than different. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 239 In other words, golf ball manufacturers are monopolistically competitive. However, retail sales of golf balls are about $500 million per year, which means that many large companies have a powerful incentive to persuade players that golf balls are highly differentiated and that it makes a huge difference which one you choose. Sure, Tiger Woods can tell the difference. For the average amateur golfer who plays a few times a summer—and who loses many golf balls to the woods and lake and needs to buy new ones—most golf balls are pretty much indistinguishable. How a Monopolistic Competitor Chooses Price and Quantity The monopolistically competitive firm decides on its profit-maximizing quantity and price in much the same way as a monopolist. A monopolistic competitor, like a monopolist, faces a downward-sloping demand curve, and so it will choose some combination of price and quantity along its perceived demand curve. As an example of a profit-maximizing monopolistic competitor, consider the Authentic Chinese Pizza store, which serves pizza with cheese, sweet and sour sauce, and your choice of vegetables and meats. Although Authentic Chinese Pizza must compete against other pizza businesses and restaurants, it has a differentiated product. The firm’s perceived demand curve is downward sloping, as Figure 10.3 shows and the first two columns of Table 10.1. Figure 10.3 How a Monopolistic Competitor Chooses its Profit Maximizing Output and Price To maximize profits, the Authentic Chinese Pizza shop would choose a quantity where marginal revenue equals marginal cost, or Q where MR = MC. Here it would choose a quantity of 40 and a price of $16. Quantity Price Total Revenue Marginal Revenue Total Cost Marginal Cost Average Cost 10 20 30 40 $23 $20 $18 $16 $230 $400 $540 $640 $23 $17 $14 $10 Table 10.1 Revenue and Cost Schedule $340 $400 $480 $580 $34 $6 $8 $10 $34 $20 $16 $14.50 240 Chapter 10 | Monopolistic Competition and Oligopoly Quantity Price Total Revenue Marginal Revenue 50 60 70 80 $14 $12 $10 $8 $700 $720 $700 $640 $6 $2 –$2 –$6 Table 10.1 Revenue and Cost Schedule Total Cost $700 $840 $1,020 $1,280 Marginal Cost Average Cost $12 $14 $18 $26 $14 $14 $14.57 $16 We can multiply the combinations of price and quantity at each point on the demand curve to calculate the total revenue that the firm would receive, which is in the third column of Table 10.1. We calculate marginal revenue, in the fourth column, as the change in total revenue divided by the change in quantity. The final columns of Table 10.1 show total cost, marginal cost, and average cost. As always, we calculate marginal cost by dividing the change in total cost by the change in quantity, while we calculate average cost by dividing total cost by quantity. The following Work It Out feature shows how these firms calculate how much of their products to supply at what price. How a Monopolistic Competitor Determines How Much to Produce and at What Price The process by which a monopolistic competitor chooses its profit-maximizing quantity and price resembles closely how a monopoly makes these decisions process. First, the firm selects the profit-maximizing quantity to produce. Then the firm decides what price to charge for that quantity. Step 1. The monopolistic competitor determines its profit-maximizing level of output. In this case, the Authentic Chinese Pizza company will determine the profit-maximizing quantity to produce by considering its marginal revenues and marginal costs. Two scenarios are possible: • • If the firm is producing at a quantity of output where marginal revenue exceeds marginal cost, then the firm should keep expanding production, because each marginal unit is adding to profit by bringing in more revenue than its cost. In this way, the firm will produce up to the quantity where MR = MC. If the firm is producing at a quantity where marginal costs exceed marginal revenue, then each marginal unit is costing more than the revenue it brings in, and the firm will increase its profits by reducing the quantity of output until MR = MC. In this example, MR and MC intersect at a quantity of 40, which is the profit-maximizing level of output for the firm. Step 2. The monopolistic competitor decides what price to charge. When the firm has determined its profitmaximizing quantity of output, it can then look to its perceived demand curve to find out what it can charge for that quantity of output. On the graph, we show this process as a vertical line reaching up through the profitmaximizing quantity until it hits the firm’s perceived demand curve. For Authentic Chinese Pizza, it should charge a price of $16 per pizza for a quantity of 40. Once the firm has chosen price and quantity, it’s in a position to calculate total revenue, total cost, and profit. At a quantity of 40, the price of $16 lies above the average cost curve, so the firm is making economic profits. From Table 10.1 we can see that, at an output of 40, the firm’s total revenue is $640 and its total cost is $580, so profits are $60. In Figure 10.3, the firm’s total revenues are the rectangle with the quantity of 40 on the horizontal axis and the price of $16 on the vertical axis. The firm’s total costs are the light shaded rectangle with the same quantity of 40 on the horizontal axis but the average cost of $14.50 on the vertical axis. Profits are total revenues minus total costs, which is the shaded area above the average cost curve. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 241 Although the process by which a monopolistic competitor makes decisions about quantity and price is similar to the way in which a monopolist makes such decisions, two differences are worth remembering. First, although both a monopolist and a monopolistic competitor face downward-sloping demand curves, the monopolist’s perceived demand curve is the market demand curve, while the perceived demand curve for a monopolistic competitor is based on the extent of its product differentiation and how many competitors it faces. Second, a monopolist is surrounded by barriers to entry and need not fear entry, but a monopolistic competitor who earns profits must expect the entry of firms with similar, but differentiated, products. Monopolistic Competitors and Entry If one monopolistic competitor earns positive economic profits, other firms will be tempted to enter the market. A gas station with a great location must worry that other gas stations might open across the street or down the road—and perhaps the new gas stations will sell coffee or have a carwash or some other attraction to lure customers. A successful restaurant with a unique barbecue sauce must be concerned that other restaurants will try to copy the sauce or offer their own unique recipes. A laundry detergent with a great reputation for quality must take note that other competitors may seek to build their own reputations. The entry of other firms into the same general market (like gas, restaur
ants, or detergent) shifts the demand curve that a monopolistically competitive firm faces. As more firms enter the market, the quantity demanded at a given price for any particular firm will decline, and the firm’s perceived demand curve will shift to the left. As a firm’s perceived demand curve shifts to the left, its marginal revenue curve will shift to the left, too. The shift in marginal revenue will change the profit-maximizing quantity that the firm chooses to produce, since marginal revenue will then equal marginal cost at a lower quantity. Figure 10.4 (a) shows a situation in which a monopolistic competitor was earning a profit with its original perceived demand curve (D0). The intersection of the marginal revenue curve (MR0) and marginal cost curve (MC) occurs at point S, corresponding to quantity Q0, which is associated on the demand curve at point T with price P0. The combination of price P0 and quantity Q0 lies above the average cost curve, which shows that the firm is earning positive economic profits. Figure 10.4 Monopolistic Competition, Entry, and Exit (a) At P0 and Q0, the monopolistically competitive firm in this figure is making a positive economic profit. This is clear because if you follow the dotted line above Q0, you can see that price is above average cost. Positive economic profits attract competing firms to the industry, driving the original firm’s demand down to D1. At the new equilibrium quantity (P1, Q1), the original firm is earning zero economic profits, and entry into the industry ceases. In (b) the opposite occurs. At P0 and Q0, the firm is losing money. If you follow the dotted line above Q0, you can see that average cost is above price. Losses induce firms to leave the industry. When they do, demand for the original firm rises to D1, where once again the firm is earning zero economic profit. Unlike a monopoly, with its high barriers to entry, a monopolistically competitive firm with positive economic profits will attract competition. When another competitor enters the market, the original firm’s perceived demand curve shifts to the left, from D0 to D1, and the associated marginal revenue curve shifts from MR0 to MR1. The new profit- 242 Chapter 10 | Monopolistic Competition and Oligopoly maximizing output is Q1, because the intersection of the MR1 and MC now occurs at point U. Moving vertically up from that quantity on the new demand curve, the optimal price is at P1. As long as the firm is earning positive economic profits, new competitors will continue to enter the market, reducing the original firm’s demand and marginal revenue curves. The long-run equilibrium is in the figure at point Y, where the firm’s perceived demand curve touches the average cost curve. When price is equal to average cost, economic profits are zero. Thus, although a monopolistically competitive firm may earn positive economic profits in the short term, the process of new entry will drive down economic profits to zero in the long run. Remember that zero economic profit is not equivalent to zero accounting profit. A zero economic profit means the firm’s accounting profit is equal to what its resources could earn in their next best use. Figure 10.4 (b) shows the reverse situation, where a monopolistically competitive firm is originally losing money. The adjustment to long-run equilibrium is analogous to the previous example. The economic losses lead to firms exiting, which will result in increased demand for this particular firm, and consequently lower losses. Firms exit up to the point where there are no more losses in this market, for example when the demand curve touches the average cost curve, as in point Z. Monopolistic competitors can make an economic profit or loss in the short run, but in the long run, entry and exit will drive these firms toward a zero economic profit outcome. However, the zero economic profit outcome in monopolistic competition looks different from the zero economic profit outcome in perfect competition in several ways relating both to efficiency and to variety in the market. Monopolistic Competition and Efficiency The long-term result of entry and exit in a perfectly competitive market is that all firms end up selling at the price level determined by the lowest point on the average cost curve. This outcome is why perfect competition displays productive efficiency: goods are produced at the lowest possible average cost. However, in monopolistic competition, the end result of entry and exit is that firms end up with a price that lies on the downward-sloping portion of the average cost curve, not at the very bottom of the AC curve. Thus, monopolistic competition will not be productively efficient. In a perfectly competitive market, each firm produces at a quantity where price is set equal to marginal cost, both in the short and long run. This outcome is why perfect competition displays allocative efficiency: the social benefits of additional production, as measured by the marginal benefit, which is the same as the price, equal the marginal costs to society of that production. In a monopolistically competitive market, the rule for maximizing profit is to set MR = MC—and price is higher than marginal revenue, not equal to it because the demand curve is downward sloping. When P > MC, which is the outcome in a monopolistically competitive market, the benefits to society of providing additional quantity, as measured by the price that people are willing to pay, exceed the marginal costs to society of producing those units. A monopolistically competitive firm does not produce more, which means that society loses the net benefit of those extra units. This is the same argument we made about monopoly, but in this case the allocative inefficiency will be smaller. Thus, a monopolistically competitive industry will produce a lower quantity of a good and charge a higher price for it than would a perfectly competitive industry. See the following Clear It Up feature for more detail on the impact of demand shifts. Why does a shift in perceived demand cause a shift in marginal revenue? We use the combinations of price and quantity at each point on a firm’s perceived demand curve to calculate total revenue for each combination of price and quantity. We then use this information on total revenue to calculate marginal revenue, which is the change in total revenue divided by the change in quantity. A change in perceived demand will change total revenue at every quantity of output and in turn, the change in total revenue will shift marginal revenue at each quantity of output. Thus, when entry occurs in a monopolistically competitive industry, the perceived demand curve for each firm will shift to the left, because a smaller quantity will be demanded at any given price. Another way of interpreting this shift in demand is to notice that, for each quantity sold, the firm will charge a lower price. Consequently, the marginal revenue will be lower for This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 243 each quantity sold—and the marginal revenue curve will shift to the left as well. Conversely, exit causes the perceived demand curve for a monopolistically competitive firm to shift to the right and the corresponding marginal revenue curve to shift right, too. A monopolistically competitive industry does not display productive or allocative efficiency in either the short run, when firms are making economic profits and losses, nor in the long run, when firms are earning zero profits. The Benefits of Variety and Product Differentiation Even though monopolistic competition does not provide productive efficiency or allocative efficiency, it does have benefits of its own. Product differentiation is based on variety and innovation. Most people would prefer to live in an economy with many kinds of clothes, foods, and car styles; not in a world of perfect competition where everyone will always wear blue jeans and white shirts, eat only spaghetti with plain red sauce, and drive an identical model of car. Most people would prefer to live in an economy where firms are struggling to figure out ways of attracting customers by methods like friendlier service, free delivery, guarantees of quality, variations on existing products, and a better shopping experience. Economists have struggled, with only partial success, to address the question of whether a market-oriented economy produces the optimal amount of variety. Critics of market-oriented economies argue that society does not really need dozens of different athletic shoes or breakfast cereals or automobiles. They argue that much of the cost of creating such a high degree of product differentiation, and then of advertising and marketing this differentiation, is socially wasteful—that is, most people would be just as happy with a smaller range of differentiated products produced and sold at a lower price. Defenders of a market-oriented economy respond that if people do not want to buy differentiated products or highly advertised brand names, no one is forcing them to do so. Moreover, they argue that consumers benefit substantially when firms seek short-term profits by providing differentiated products. This controversy may never be fully resolved, in part because deciding on the optimal amount of variety is very difficult, and in part because the two sides often place different values on what variety means for consumers. Read the following Clear It Up feature for a discussion on the role that advertising plays in monopolistic competition. How does advertising impact monopolistic competition? The U.S. economy spent about $180.12 billion on advertising in 2014, according to eMarketer.com. Roughly one third of this was television advertising, and another third was divided roughly equally between internet, newspapers, and radio. The remaining third was divided between direct mail, magazines,
telephone directory yellow pages, and billboards. Mobile devices are increasing the opportunities for advertisers. Advertising is all about explaining to people, or making people believe, that the products of one firm are differentiated from another firm's products. In the framework of monopolistic competition, there are two ways to conceive of how advertising works: either advertising causes a firm’s perceived demand curve to become more inelastic (that is, it causes the perceived demand curve to become steeper); or advertising causes demand for the firm’s product to increase (that is, it causes the firm’s perceived demand curve to shift to the right). In either case, a successful advertising campaign may allow a firm to sell either a greater quantity or to charge a higher price, or both, and thus increase its profits. However, economists and business owners have also long suspected that much of the advertising may only offset other advertising. Economist A. C. Pigou wrote the following back in 1920 in his book, The Economics of Welfare: It may happen that expenditures on advertisement made by competing monopolists [that is, what we now call monopolistic competitors] will simply neutralise one another, and leave the industrial position exactly as it would have been if neither had expended anything. For, clearly, if each of two rivals makes equal efforts to attract the favour of the public away from the other, the total result is the same as it would have been if neither had made any effort at all. 244 Chapter 10 | Monopolistic Competition and Oligopoly 10.2 | Oligopoly By the end of this section, you will be able to: • Explain why and how oligopolies exist • Contrast collusion and competition • • Evaluate the tradeoffs of imperfect competition Interpret and analyze the prisoner’s dilemma diagram Many purchases that individuals make at the retail level are produced in markets that are neither perfectly competitive, monopolies, nor monopolistically competitive. Rather, they are oligopolies. Oligopoly arises when a small number of large firms have all or most of the sales in an industry. Examples of oligopoly abound and include the auto industry, cable television, and commercial air travel. Oligopolistic firms are like cats in a bag. They can either scratch each other to pieces or cuddle up and get comfortable with one another. If oligopolists compete hard, they may end up acting very much like perfect competitors, driving down costs and leading to zero profits for all. If oligopolists collude with each other, they may effectively act like a monopoly and succeed in pushing up prices and earning consistently high levels of profit. We typically characterize oligopolies by mutual interdependence where various decisions such as output, price, and advertising depend on other firm(s)' decisions. Analyzing the choices of oligopolistic firms about pricing and quantity produced involves considering the pros and cons of competition versus collusion at a given point in time. Why Do Oligopolies Exist? A combination of the barriers to entry that create monopolies and the product differentiation that characterizes monopolistic competition can create the setting for an oligopoly. For example, when a government grants a patent for an invention to one firm, it may create a monopoly. When the government grants patents to, for example, three different pharmaceutical companies that each has its own drug for reducing high blood pressure, those three firms may become an oligopoly. Similarly, a natural monopoly will arise when the quantity demanded in a market is only large enough for a single firm to operate at the minimum of the long-run average cost curve. In such a setting, the market has room for only one firm, because no smaller firm can operate at a low enough average cost to compete, and no larger firm could sell what it produced given the quantity demanded in the market. Quantity demanded in the market may also be two or three times the quantity needed to produce at the minimum of the average cost curve—which means that the market would have room for only two or three oligopoly firms (and they need not produce differentiated products). Again, smaller firms would have higher average costs and be unable to compete, while additional large firms would produce such a high quantity that they would not be able to sell it at a profitable price. This combination of economies of scale and market demand creates the barrier to entry, which led to the Boeing-Airbus oligopoly (also called a duopoly) for large passenger aircraft. The product differentiation at the heart of monopolistic competition can also play a role in creating oligopoly. For example, firms may need to reach a certain minimum size before they are able to spend enough on advertising and marketing to create a recognizable brand name. The problem in competing with, say, Coca-Cola or Pepsi is not that producing fizzy drinks is technologically difficult, but rather that creating a brand name and marketing effort to equal Coke or Pepsi is an enormous task. Collusion or Competition? When oligopoly firms in a certain market decide what quantity to produce and what price to charge, they face a temptation to act as if they were a monopoly. By acting together, oligopolistic firms can hold down industry output, charge a higher price, and divide the profit among themselves. When firms act together in this way to reduce output and keep prices high, it is called collusion. A group of firms that have a formal agreement to collude to produce the monopoly output and sell at the monopoly price is called a cartel. See the following Clear It Up feature for a more in-depth analysis of the difference between the two. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 245 Collusion versus cartels: How to differentiate In the United States, as well as many other countries, it is illegal for firms to collude since collusion is anticompetitive behavior, which is a violation of antitrust law. Both the Antitrust Division of the Justice Department and the Federal Trade Commission have responsibilities for preventing collusion in the United States. The problem of enforcement is finding hard evidence of collusion. Cartels are formal agreements to collude. Because cartel agreements provide evidence of collusion, they are rare in the United States. Instead, most collusion is tacit, where firms implicitly reach an understanding that competition is bad for profits. Economists have understood for a long time the desire of businesses to avoid competing so that they can instead raise the prices that they charge and earn higher profits. Adam Smith wrote in Wealth of Nations in 1776: “People of the same trade seldom meet together, even for merriment and diversion, but the conversation ends in a conspiracy against the public, or in some contrivance to raise prices.” Even when oligopolists recognize that they would benefit as a group by acting like a monopoly, each individual oligopoly faces a private temptation to produce just a slightly higher quantity and earn slightly higher profit—while still counting on the other oligopolists to hold down their production and keep prices high. If at least some oligopolists give in to this temptation and start producing more, then the market price will fall. A small handful of oligopoly firms may end up competing so fiercely that they all find themselves earning zero economic profits—as if they were perfect competitors. The Prisoner’s Dilemma Because of the complexity of oligopoly, which is the result of mutual interdependence among firms, there is no single, generally-accepted theory of how oligopolies behave, in the same way that we have theories for all the other market structures. Instead, economists use game theory, a branch of mathematics that analyzes situations in which players must make decisions and then receive payoffs based on what other players decide to do. Game theory has found widespread applications in the social sciences, as well as in business, law, and military strategy. The prisoner’s dilemma is a scenario in which the gains from cooperation are larger than the rewards from pursuing self-interest. It applies well to oligopoly. The story behind the prisoner’s dilemma goes like this: Two co-conspiratorial criminals are arrested. When they are taken to the police station, they refuse to say anything and are put in separate interrogation rooms. Eventually, a police officer enters the room where Prisoner A is being held and says: “You know what? Your partner in the other room is confessing. Your partner is going to get a light prison sentence of just one year, and because you’re remaining silent, the judge is going to stick you with eight years in prison. Why don’t you get smart? If you confess, too, we’ll cut your jail time down to five years, and your partner will get five years, also.” Over in the next room, another police officer is giving exactly the same speech to Prisoner B. What the police officers do not say is that if both prisoners remain silent, the evidence against them is not especially strong, and the prisoners will end up with only two years in jail each. The game theory situation facing the two prisoners is in Table 10.2. To understand the dilemma, first consider the choices from Prisoner A’s point of view. If A believes that B will confess, then A should confess, too, so as to not get stuck with the eight years in prison. However, if A believes that B will not confess, then A will be tempted to act selfishly and confess, so as to serve only one year. The key point is that A has an incentive to confess regardless of what choice B makes! B faces the same set of choices, and thus will have an incentive to confess regardless of what choice A makes. To confess is called the dominant strategy. It is the strategy an individual (or firm) will pursue regardless of the o
ther individual’s (or firm’s) decision. The result is that if prisoners pursue their own self-interest, both are likely to confess, and end up doing a total of 10 years of jail time between them. 246 Chapter 10 | Monopolistic Competition and Oligopoly Prisoner B Remain Silent (cooperate with other prisoner) Confess (do not cooperate with other prisoner) Prisoner A Remain Silent (cooperate with other prisoner) A gets 2 years, B gets 2 years A gets 8 years, B gets 1 year Confess (do not cooperate with other prisoner) A gets 1 year, B gets 8 years A gets 5 years B gets 5 years Table 10.2 The Prisoner’s Dilemma Problem The game is called a dilemma because if the two prisoners had cooperated by both remaining silent, they would only have had to serve a total of four years of jail time between them. If the two prisoners can work out some way of cooperating so that neither one will confess, they will both be better off than if they each follow their own individual self-interest, which in this case leads straight into longer jail terms. The Oligopoly Version of the Prisoner’s Dilemma The members of an oligopoly can face a prisoner’s dilemma, also. If each of the oligopolists cooperates in holding down output, then high monopoly profits are possible. Each oligopolist, however, must worry that while it is holding down output, other firms are taking advantage of the high price by raising output and earning higher profits. Table 10.3 shows the prisoner’s dilemma for a two-firm oligopoly—known as a duopoly. If Firms A and B both agree to hold down output, they are acting together as a monopoly and will each earn $1,000 in profits. However, both firms’ dominant strategy is to increase output, in which case each will earn $400 in profits. Firm B Hold Down Output (cooperate with other firm) Increase Output (do not cooperate with other firm) Firm A Hold Down Output (cooperate with other firm) A gets $1,000, B gets $1,000 A gets $200, B gets $1,500 Increase Output (do not cooperate with other firm) A gets $1,500, B gets $200 A gets $400, B gets $400 Table 10.3 A Prisoner’s Dilemma for Oligopolists Can the two firms trust each other? Consider the situation of Firm A: • • If A thinks that B will cheat on their agreement and increase output, then A will increase output, too, because for A the profit of $400 when both firms increase output (the bottom right-hand choice in Table 10.3) is better than a profit of only $200 if A keeps output low and B raises output (the upper right-hand choice in the table). If A thinks that B will cooperate by holding down output, then A may seize the opportunity to earn higher profits by raising output. After all, if B is going to hold down output, then A can earn $1,500 in profits by expanding output (the bottom left-hand choice in the table) compared with only $1,000 by holding down output as well (the upper left-hand choice in the table). Thus, firm A will reason that it makes sense to expand output if B holds down output and that it also makes sense to expand output if B raises output. Again, B faces a parallel set of decisions that will lead B also to expand output. The result of this prisoner’s dilemma is often that even though A and B could make the highest combined profits by cooperating in producing a lower level of output and acting like a monopolist, the two firms may well end up in This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 247 a situation where they each increase output and earn only $400 each in profits. The following Clear It Up feature discusses one cartel scandal in particular. What is the Lysine cartel? Lysine, a $600 million-a-year industry, is an amino acid that farmers use as a feed additive to ensure the proper growth of swine and poultry. The primary U.S. producer of lysine is Archer Daniels Midland (ADM), but several other large European and Japanese firms are also in this market. For a time in the first half of the 1990s, the world’s major lysine producers met together in hotel conference rooms and decided exactly how much each firm would sell and what it would charge. The U.S. Federal Bureau of Investigation (FBI), however, had learned of the cartel and placed wire taps on a number of their phone calls and meetings. From FBI surveillance tapes, following is a comment that Terry Wilson, president of the corn processing division at ADM, made to the other lysine producers at a 1994 meeting in Mona, Hawaii: I wanna go back and I wanna say something very simple. If we’re going to trust each other, okay, and if I’m assured that I’m gonna get 67,000 tons by the year’s end, we’re gonna sell it at the prices we agreed to . . . The only thing we need to talk about there because we are gonna get manipulated by these [expletive] buyers—they can be smarter than us if we let them be smarter. . . . They [the customers] are not your friend. They are not my friend. And we gotta have ‘em, but they are not my friends. You are my friend. I wanna be closer to you than I am to any customer. Cause you can make us ... money. ... And all I wanna tell you again is let’s—let’s put the prices on the board. Let’s all agree that’s what we’re gonna do and then walk out of here and do it. The price of lysine doubled while the cartel was in effect. Confronted by the FBI tapes, Archer Daniels Midland pled guilty in 1996 and paid a fine of $100 million. A number of top executives, both at ADM and other firms, later paid fines of up to $350,000 and were sentenced to 24–30 months in prison. In another one of the FBI recordings, the president of Archer Daniels Midland told an executive from another competing firm that ADM had a slogan that, in his words, had “penetrated the whole company.” The company president stated the slogan this way: “Our competitors are our friends. Our customers are the enemy.” That slogan could stand as the motto of cartels everywhere. How to Enforce Cooperation How can parties who find themselves in a prisoner’s dilemma situation avoid the undesired outcome and cooperate with each other? The way out of a prisoner’s dilemma is to find a way to penalize those who do not cooperate. Perhaps the easiest approach for colluding oligopolists, as you might imagine, would be to sign a contract with each other that they will hold output low and keep prices high. If a group of U.S. companies signed such a contract, however, it would be illegal. Certain international organizations, like the nations that are members of the Organization of Petroleum Exporting Countries (OPEC), have signed international agreements to act like a monopoly, hold down output, and keep prices high so that all of the countries can make high profits from oil exports. Such agreements, however, because they fall in a gray area of international law, are not legally enforceable. If Nigeria, for example, decides to start cutting prices and selling more oil, Saudi Arabia cannot sue Nigeria in court and force it to stop. Visit the Organization of the Petroleum Exporting Countries website (http://openstaxcollege.org/l/OPEC) and learn more about its history and how it defines itself. 248 Chapter 10 | Monopolistic Competition and Oligopoly Because oligopolists cannot sign a legally enforceable contract to act like a monopoly, the firms may instead keep close tabs on what other firms are producing and charging. Alternatively, oligopolists may choose to act in a way that generates pressure on each firm to stick to its agreed quantity of output. One example of the pressure these firms can exert on one another is the kinked demand curve, in which competing oligopoly firms commit to match price cuts, but not price increases. Figure 10.5 shows this situation. Say that an oligopoly airline has agreed with the rest of a cartel to provide a quantity of 10,000 seats on the New York to Los Angeles route, at a price of $500. This choice defines the kink in the firm’s perceived demand curve. The reason that the firm faces a kink in its demand curve is because of how the other oligopolists react to changes in the firm’s price. If the oligopoly decides to produce more and cut its price, the other members of the cartel will immediately match any price cuts—and therefore, a lower price brings very little increase in quantity sold. If one firm cuts its price to $300, it will be able to sell only 11,000 seats. However, if the airline seeks to raise prices, the other oligopolists will not raise their prices, and so the firm that raised prices will lose a considerable share of sales. For example, if the firm raises its price to $550, its sales drop to 5,000 seats sold. Thus, if oligopolists always match price cuts by other firms in the cartel, but do not match price increases, then none of the oligopolists will have a strong incentive to change prices, since the potential gains are minimal. This strategy can work like a silent form of cooperation, in which the cartel successfully manages to hold down output, increase price, and share a monopoly level of profits even without any legally enforceable agreement. Figure 10.5 A Kinked Demand Curve Consider a member firm in an oligopoly cartel that is supposed to produce a quantity of 10,000 and sell at a price of $500. The other members of the cartel can encourage this firm to honor its commitments by acting so that the firm faces a kinked demand curve. If the oligopolist attempts to expand output and reduce price slightly, other firms also cut prices immediately—so if the firm expands output to 11,000, the price per unit falls dramatically, to $300. On the other side, if the oligopoly attempts to raise its price, other firms will not do so, so if the firm raises its price to $550, its sales decline sharply to 5,000. Thus, the members of a cartel can discipline each other to stick to the pre-agreed levels of quantity and price through a strategy of matching all price cuts but not matching any price increases. Many real-worl
d oligopolies, prodded by economic changes, legal and political pressures, and the egos of their top executives, go through episodes of cooperation and competition. If oligopolies could sustain cooperation with each This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 249 other on output and pricing, they could earn profits as if they were a single monopoly. However, each firm in an oligopoly has an incentive to produce more and grab a bigger share of the overall market; when firms start behaving in this way, the market outcome in terms of prices and quantity can be similar to that of a highly competitive market. Tradeoffs of Imperfect Competition Monopolistic competition is probably the single most common market structure in the U.S. economy. It provides powerful incentives for innovation, as firms seek to earn profits in the short run, while entry assures that firms do not earn economic profits in the long run. However, monopolistically competitive firms do not produce at the lowest point on their average cost curves. In addition, the endless search to impress consumers through product differentiation may lead to excessive social expenses on advertising and marketing. Oligopoly is probably the second most common market structure. When oligopolies result from patented innovations or from taking advantage of economies of scale to produce at low average cost, they may provide considerable benefit to consumers. Oligopolies are often buffered by significant barriers to entry, which enable the oligopolists to earn sustained profits over long periods of time. Oligopolists also do not typically produce at the minimum of their average cost curves. When they lack vibrant competition, they may lack incentives to provide innovative products and highquality service. The task of public policy with regard to competition is to sort through these multiple realities, attempting to encourage behavior that is beneficial to the broader society and to discourage behavior that only adds to the profits of a few large companies, with no corresponding benefit to consumers. Monopoly and Antitrust Policy discusses the delicate judgments that go into this task. The Temptation to Defy the Law Oligopolistic firms have been called “cats in a bag,” as this chapter mentioned. The French detergent makers chose to “cozy up” with each other. The result? An uneasy and tenuous relationship. When the Wall Street Journal reported on the matter, it wrote: “According to a statement a Henkel manager made to the [French anti-trust] commission, the detergent makers wanted ‘to limit the intensity of the competition between them and clean up the market.’ Nevertheless, by the early 1990s, a price war had broken out among them.” During the soap executives’ meetings, sometimes lasting more than four hours, the companies established complex pricing structures. “One [soap] executive recalled ‘chaotic’ meetings as each side tried to work out how the other had bent the rules.” Like many cartels, the soap cartel disintegrated due to the very strong temptation for each member to maximize its own individual profits. How did this soap opera end? After an investigation, French antitrust authorities fined Colgate-Palmolive, Henkel, and Proctor & Gamble a total of €361 million ($484 million). A similar fate befell the icemakers. Bagged ice is a commodity, a perfect substitute, generally sold in 7- or 22-pound bags. No one cares what label is on the bag. By agreeing to carve up the ice market, control broad geographic swaths of territory, and set prices, the icemakers moved from perfect competition to a monopoly model. After the agreements, each firm was the sole supplier of bagged ice to a region. There were profits in both the long run and the short run. According to the courts: “These companies illegally conspired to manipulate the marketplace.” Fines totaled about $600,000—a steep fine considering a bag of ice sells for under $3 in most parts of the United States. Even though it is illegal in many parts of the world for firms to set prices and carve up a market, the temptation to earn higher profits makes it extremely tempting to defy the law. 250 Chapter 10 | Monopolistic Competition and Oligopoly KEY TERMS cartel a group of firms that collude to produce the monopoly output and sell at the monopoly price collusion when firms act together to reduce output and keep prices high differentiated product a product that is consumers perceive as distinctive in some way duopoly an oligopoly with only two firms game theory a branch of mathematics that economists use to analyze situations in which players must make decisions and then receive payoffs based on what decisions the other players make imperfectly competitive firms and organizations that fall between the extremes of monopoly and perfect competition kinked demand curve a perceived demand curve that arises when competing oligopoly firms commit to match price cuts, but not price increases monopolistic competition many firms competing to sell similar but differentiated products oligopoly when a few large firms have all or most of the sales in an industry prisoner’s dilemma a game in which the gains from cooperation are larger than the rewards from pursuing self-interest product differentiation any action that firms do to make consumers think their products are different from their competitors' KEY CONCEPTS AND SUMMARY 10.1 Monopolistic Competition Monopolistic competition refers to a market where many firms sell differentiated products. Differentiated products can arise from characteristics of the good or service, location from which the firm sells the product, intangible aspects of the product, and perceptions of the product. The perceived demand curve for a monopolistically competitive firm is downward-sloping, which shows that it is a price maker and chooses a combination of price and quantity. However, the perceived demand curve for a monopolistic competitor is more elastic than the perceived demand curve for a monopolist, because the monopolistic competitor has direct competition, unlike the pure monopolist. A profit-maximizing monopolistic competitor will seek out the quantity where marginal revenue is equal to marginal cost. The monopolistic competitor will produce that level of output and charge the price that the firm’s demand curve indicates. If the firms in a monopolistically competitive industry are earning economic profits, the industry will attract entry until profits are driven down to zero in the long run. If the firms in a monopolistically competitive industry are suffering economic losses, then the industry will experience exit of firms until economic losses are driven up to zero in the long run. A monopolistically competitive firm is not productively efficient because it does not produce at the minimum of its average cost curve. A monopolistically competitive firm is not allocatively efficient because it does not produce where P = MC, but instead produces where P > MC. Thus, a monopolistically competitive firm will tend to produce a lower quantity at a higher cost and to charge a higher price than a perfectly competitive firm. Monopolistically competitive industries do offer benefits to consumers in the form of greater variety and incentives for improved products and services. There is some controversy over whether a market-oriented economy generates too much variety. 10.2 Oligopoly An oligopoly is a situation where a few firms sell most or all of the goods in a market. Oligopolists earn their This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 10 | Monopolistic Competition and Oligopoly 251 highest profits if they can band together as a cartel and act like a monopolist by reducing output and raising price. Since each member of the oligopoly can benefit individually from expanding output, such collusion often breaks down—especially since explicit collusion is illegal. The prisoner’s dilemma is an example of the application of game theory to analysis of oligopoly. It shows how, in certain situations, all sides can benefit from cooperative behavior rather than self-interested behavior. However, the challenge for the parties is to find ways to encourage cooperative behavior. SELF-CHECK QUESTIONS 1. Suppose that, due to a successful advertising campaign, a monopolistic competitor experiences an increase in demand for its product. How will that affect the price it charges and the quantity it supplies? 2. Continuing with the scenario in question 1, in the long run, the positive economic profits that the monopolistic competitor earns will attract a response either from existing firms in the industry or firms outside. As those firms capture the original firm’s profit, what will happen to the original firm’s profit-maximizing price and output levels? 3. Consider the curve in the figure below, which shows the market demand, marginal cost, and marginal revenue curve for firms in an oligopolistic industry. In this example, we assume firms have zero fixed costs. a. Suppose the firms collude to form a cartel. What price will the cartel charge? What quantity will the cartel supply? How much profit will the cartel earn? b. Suppose now that the cartel breaks up and the oligopolistic firms compete as vigorously as possible by cutting the price and increasing sales. What will be the industry quantity and price? What will be the collective profits of all firms in the industry? c. Compare the equilibrium price, quantity, and profit for the cartel and cutthroat competition outcomes. 252 Chapter 10 | Monopolistic Competition and Oligopoly 4. Sometimes oligopolies in the same industry are very different in size. Suppose we have a duopoly where one firm (Firm A) is large and the other firm (Firm B) is small, as the prisoner’s dilemma box in Table 10.4 shows. Firm B colludes with Firm A Firm B cheats by selling mo
re output Firm A colludes with Firm B A gets $1,000, B gets $100 A gets $800, B gets $200 Firm A cheats by selling more output A gets $1,050, B gets $50 A gets $500, B gets $20 Table 10.4 Assuming that both firms know the payoffs, what is the likely outcome in this case? REVIEW QUESTIONS 5. What differentiation and monopolistic competition? relationship between product the is 6. How is the perceived demand curve for a monopolistically competitive firm different from the perceived demand curve for a monopoly or a perfectly competitive firm? 7. How does a monopolistic competitor choose its profit-maximizing quantity of output and price? Is a monopolistically 10. firm productively efficient? Is it allocatively efficient? Why or why not? competitive 11. Will the firms in an oligopoly act more like a monopoly or more like competitors? Briefly explain. 12. Does each individual in a prisoner’s dilemma benefit more from cooperation or from pursuing selfinterest? Explain briefly. 8. How can a monopolistic competitor tell whether the price it is charging will cause the firm to earn profits or experience losses? 13. What stops oligopolists from acting together as a monopolist and earning the highest possible level of profits? 9. If the firms in a monopolistically competitive market are earning economic profits or losses in the short run, would you expect them to continue doing so in the long run? Why? CRITICAL THINKING QUESTIONS 14. Aside from advertising, how can monopolistically competitive firms increase demand for their products? 15. Make a case for why monopolistically competitive industries never reach long-run equilibrium. 16. Would you rather have efficiency or variety? That is, one opportunity cost of the variety of products we have is that each product costs more per unit than if there were only one kind of product of a given type, like shoes. Perhaps a better question is, “What is the right amount of variety? Can there be too many varieties of shoes, for example?” This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 17. Would you expect the kinked demand curve to be more extreme (like a right angle) or less extreme (like a normal demand curve) if each firm in the cartel produces a near-identical product like OPEC and petroleum? What if each firm produces a somewhat different product? Explain your reasoning. Chapter 10 | Monopolistic Competition and Oligopoly 253 18. When OPEC raised the price of oil dramatically in the mid-1970s, experts said it was unlikely that the cartel could stay together over the long term—that the incentives for individual members to cheat would become too strong. More than forty years later, OPEC still exists. Why do you think OPEC has been able to beat the odds and continue to collude? Hint: You may wish to consider non-economic reasons. PROBLEMS 19. Andrea’s Day Spa began to offer a relaxing aromatherapy treatment. The firm asks you how much to charge to maximize profits. The first two columns in Table 10.5 provide the price and quantity for the demand curve for treatments. The third column shows its total costs. For each level of output, calculate total revenue, marginal revenue, average cost, and marginal cost. What is the profit-maximizing level of output for the treatments and how much will the firm earn in profits? Price Quantity TC $25.00 $24.00 $23.00 $22.50 $22.00 $21.60 $21.20 Table 10.5 0 10 20 30 40 50 60 $130 $275 $435 $610 $800 $1,005 $1,225 20. Mary and Raj are the only two growers who provide organically grown corn to a local grocery store. They know that if they cooperated and produced less corn, they could raise the price of the corn. If they work independently, they will each earn $100. If they decide to work together and both lower their output, they can each earn $150. If one person lowers output and the other does not, the person who lowers output will earn $0 and the other person will capture the entire market and will earn $200. Table 10.6 represents the choices available to Mary and Raj. What is the best choice for Raj if he is sure that Mary will cooperate? If Mary thinks Raj will cheat, what should Mary do and why? What is the prisoner’s dilemma result? What is the preferred choice if they could ensure cooperation? A = Work independently; B = Cooperate and Lower Output. (Each results entry lists Raj’s earnings first, and Mary's earnings second.) A Mary B ($100, $100) ($200, $0) ($0, $200) ($150, $150) Raj A B Table 10.6 254 Chapter 10 | Monopolistic Competition and Oligopoly 21. Jane and Bill are apprehended for a bank robbery. They are taken into separate rooms and questioned by the police about their involvement in the crime. The police tell them each that if they confess and turn the other person in, they will receive a lighter sentence. If they both confess, they will be each be sentenced to 30 years. If neither confesses, they will each receive a 20-year sentence. If only one confesses, the confessor will receive 15 years and the one who stayed silent will receive 35 years. Table 10.7 below represents the choices available to Jane and Bill. If Jane trusts Bill to stay silent, what should she do? If Jane thinks that Bill will confess, what should she do? Does Jane have a dominant strategy? Does Bill have a dominant strategy? A = Confess; B = Stay Silent. (Each results entry lists Jane’s sentence first (in years), and Bill's sentence second.) Jane B (15, 35) (20, 20) A (30, 30) (35, 15) Bill A B Table 10.7 This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 255 11 | Monopoly and Antitrust Policy Figure 11.1 Oligopoly versus Competitors in the Marketplace Large corporations, such as the natural gas producer Kinder Morgan, can bring economies of scale to the marketplace. Will that benefit consumers, or is more competition better? (Credit: modification of work by Derrick Coetzee/Flickr Creative Commons) More than Cooking, Heating, and Cooling If you live in the United States, there is a slightly better than 50–50 chance your home is heated and cooled using natural gas. You may even use natural gas for cooking. However, those uses are not the primary uses of natural gas in the U.S. In 2016, according to the U.S. Energy Information Administration, home heating, cooling, and cooking accounted for just 16% of natural gas usage. What accounts for the rest? The greatest uses for natural gas are the generation of electric power (36%) and in industry (28%). Together these three uses for natural gas touch many areas of our lives, so why would there be any opposition to a merger of two natural gas firms? After all, a merger could mean increased efficiencies and reduced costs to people like you and me. In October 2011, Kinder Morgan and El Paso Corporation, two natural gas firms, announced they were merging. The announcement stated the combined firm would link “nearly every major production region with markets,” cut costs by “eliminating duplication in pipelines and other assets,” and that “the savings could be passed on to consumers.” The objection? The $21.1 billion deal would give Kinder Morgan control of more than 80,000 miles of pipeline, making the new firm the third largest energy producer in North America. Policymakers and the public wondered whether the new conglomerate really would pass on cost savings to consumers, or would the merger give Kinder Morgan a strong oligopoly position in the natural gas marketplace? That brings us to the central questions this chapter poses: What should the balance be between corporate size and a larger number of competitors in a marketplace, and what role should the government play in this balancing act? 256 Chapter 11 | Monopoly and Antitrust Policy Introduction to Monopoly and Antitrust Policy In this chapter, you will learn about: • Corporate Mergers • Regulating Anticompetitive Behavior • Regulating Natural Monopolies • The Great Deregulation Experiment The previous chapters on the theory of the firm identified three important lessons: First, that competition, by providing consumers with lower prices and a variety of innovative products, is a good thing; second, that largescale production can dramatically lower average costs; and third, that markets in the real world are rarely perfectly competitive. As a consequence, government policymakers must determine how much to intervene to balance the potential benefits of large-scale production against the potential loss of competition that can occur when businesses grow in size, especially through mergers. For example, in 2006, AT&T and BellSouth proposed a merger. At the time, there were very few mobile phone service providers. Both the Justice Department and the FCC blocked the proposal. The two companies argued that the merger would benefit consumers, who would be able to purchase better telecommunications services at a cheaper price because the newly created firm would take advantage of economies of scale and eliminate duplicate investments. However, a number of activist groups like the Consumer Federation of America and Public Knowledge expressed fears that the merger would reduce competition and lead to higher prices for consumers for decades to come. In December 2006, the federal government allowed the merger to proceed. By 2009, the new post-merger AT&T was the eighth largest company by revenues in the United States, and by that measure the largest telecommunications company in the world. Economists have spent – and will still spend – years trying to determine whether the merger of AT&T and BellSouth, as well as other smaller mergers of telecommunications companies at about this same time, helped consumers, hurt them, or did not make much difference. This chapter discusses public policy issues about competition. How can economists and governments determine when mergers of large companies like AT&T and BellSouth should be allowed and when they should be blocked? The government
also plays a role in policing anticompetitive behavior other than mergers, like prohibiting certain kinds of contracts that might restrict competition. In the case of natural monopoly, however, trying to preserve competition probably will not work very well, and so government will often resort to regulation of price and/or quantity of output. In recent decades, there has been a global trend toward less government intervention in the price and output decisions of businesses. 11.1 | Corporate Mergers By the end of this section, you will be able to: • Explain antitrust law and its significance • Calculate concentration ratios • Calculate the Herfindahl-Herschman Index (HHI) • Evaluate methods of antitrust regulation A corporate merger occurs when two formerly separate firms combine to become a single firm. When one firm purchases another, it is called an acquisition. An acquisition may not look just like a merger, since the newly purchased firm may continue to operate under its former company name. Mergers can also be lateral, where two firms of similar sizes combine to become one. However, both mergers and acquisitions lead to two formerly separate firms operating under common ownership, and so they are commonly grouped together. Regulations for Approving Mergers Since a merger combines two firms into one, it can reduce the extent of competition between firms. Therefore, when This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 257 two U.S. firms announce a merger or acquisition where at least one of the firms is above a minimum size of sales (a threshold that moves up gradually over time, and was at $76.3 million in 2015), or certain other conditions are met, they are required under law to notify the U.S. Federal Trade Commission (FTC). The left-hand panel of Figure 11.2 (a) shows the number of mergers submitted for review to the FTC each year from 2002 to 2015. Mergers follow the business cycle, falling after the 2001 recession, peaking in 2007 as the Great Recession struck, and then rising since 2009. The right-hand panel of Figure 11.2 (b) shows the distribution of those mergers submitted for review in 2015 as measured by the size of the transaction. It is important to remember that this total leaves out many small mergers under $50 million, which companies only need to report in certain limited circumstances. About a third of all reported merger and acquisition transactions in 2015 exceeded $500 million, while about 15 percent exceeded $1 billion. Figure 11.2 Number and Size of Mergers (a) The number of mergers grew from 2003 to 2007, then fell dramatically during the 2008-2009 Great Recession, before recovering since. (b) In 2015, the greatest number of mergers submitted for review by the Federal Trade Commission was for transactions between $500 million and $1 billion. The laws that give government the power to block certain mergers, and even in some cases to break up large firms into smaller ones, are called antitrust laws. Before a large merger happens, the antitrust regulators at the FTC and the U.S. Department of Justice can allow the merger, prohibit it, or allow it if certain conditions are met. One common condition is that the merger will be allowed if the firm agrees to sell off certain parts. For example, in 2006, Johnson & Johnson bought the Pfizer’s “consumer health” division, which included well-known brands like Listerine mouthwash and Sudafed cold medicine. As a condition of allowing the merger, Johnson & Johnson was required to sell off six brands to other firms, including Zantac® heartburn relief medication, Cortizone anti-itch cream, and Balmex diaper rash medication, to preserve a greater degree of competition in these markets. The U.S. government approves most proposed mergers. In a market-oriented economy, firms have the freedom to make their own choices. Private firms generally have the freedom to: • expand or reduce production • set the price they choose • open new factories or sales facilities or close them • hire workers or to lay them off • start selling new products or stop selling existing ones If the owners want to acquire a firm or be acquired, or to merge with another firm, this decision is just one of many that firms are free to make. In these conditions, the managers of private firms will sometimes make mistakes. They may close down a factory which, it later turns out, would have been profitable. They may start selling a product that ends up losing money. A merger between two companies can sometimes lead to a clash of corporate personalities that makes both firms worse off. However, the fundamental belief behind a market-oriented economy is that firms, not governments, are in the best position to know if their actions will lead to attracting more customers or producing 258 more efficiently. Chapter 11 | Monopoly and Antitrust Policy Government regulators agree that most mergers are beneficial to consumers. As the Federal Trade Commission has noted on its website (as of November, 2013): “Most mergers actually benefit competition and consumers by allowing firms to operate more efficiently.” At the same time, the FTC recognizes, “Some [mergers] are likely to lessen competition. That, in turn, can lead to higher prices, reduced availability of goods or services, lower quality of products, and less innovation. Some mergers create a concentrated market, while others enable a single firm to raise prices.” The challenge for the antitrust regulators at the FTC and the U.S. Department of Justice is to figure out when a merger may hinder competition. This decision involves both numerical tools and some judgments that are difficult to quantify. The following Clear It Up explains the origins of U.S. antitrust law. What is U.S. antitrust law? In the closing decades of the 1800s, many industries in the U.S. economy were dominated by a single firm that had most of the sales for the entire country. Supporters of these large firms argued that they could take advantage of economies of scale and careful planning to provide consumers with products at low prices. However, critics pointed out that when competition was reduced, these firms were free to charge more and make permanently higher profits, and that without the goading of competition, it was not clear that they were as efficient or innovative as they could be. In many cases, these large firms were organized in the legal form of a “trust,” in which a group of formerly independent firms were consolidated by mergers and purchases, and a group of “trustees” then ran the companies as if they were a single firm. Thus, when the U.S. government sought to limit the power of these trusts, it passed the Sherman Antitrust Act in 1890 - the nation's first antitrust law. In an early demonstration of the law’s power, the U.S. Supreme Court in 1911 upheld the government’s right to break up Standard Oil, which had controlled about 90% of the country’s oil refining, into 34 independent firms, including Exxon, Mobil, Amoco, and Chevron. In 1914, the Clayton Antitrust Act outlawed mergers and acquisitions (where the outcome would be to “substantially lessen competition” in an industry), price discrimination (where different customers are charged different prices for the same product), and tied sales (where purchase of one product commits the buyer to purchase some other product). Also in 1914, the Federal Trade Commission (FTC) was created to define more specifically what competition was unfair. In 1950, the Celler-Kefauver Act extended the Clayton Act by restricting vertical and conglomerate mergers. A vertical merger occurs when two or more firms, operating at different levels within an industry's supply chain, merge operations. A conglomerate merger is a merger between firms that are involved in totally unrelated business activities. In the twenty-first century, the FTC and the U.S. Department of Justice continue to enforce antitrust laws. The Four-Firm Concentration Ratio Regulators have struggled for decades to measure the degree of monopoly power in an industry. An early tool was the concentration ratio, which measures the combined market share (or percent of total industry sales) which account for the largest firms (typically the top four to eight). For an explanation of how high market concentrations can create inefficiencies in an economy, refer to Monopoly. Say that the market for replacing broken automobile windshields in a certain city has 18 firms with the market shares in Table 11.1, where the market share is each firm’s proportion of total sales in that market. We calculate the fourfirm concentration ratio by adding the market shares of the four largest firms: in this case, 16 + 10 + 8 + 6 = 40. We do not consider this concentration ratio especially high, because the largest four firms have less than half the market. If the market shares for replacing automobile windshields are: Smooth as Glass Repair Company 16% of the market Table 11.1 Calculating Concentration Ratios from Market Shares This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 259 If the market shares for replacing automobile windshields are: The Auto Glass Doctor Company Your Car Shield Company 10% of the market 8% of the market Seven firms that each have 6% of the market 42% of the market, combined Eight firms that each have 3% of the market 24% of the market, combined Then the four-firm concentration ratio is 16 + 10 + 8 + 6 = 40. Table 11.1 Calculating Concentration Ratios from Market Shares The concentration ratio approach can help to clarify some of the fuzziness over deciding when a merger might affect competition. For instance, if two of the smallest firms in the hypothetical market for repairing automobile windshields merged, the four-firm concentration ratio would not change—which implies that there is not much worry that the deg
ree of competition in the market has notably diminished. However, if the top two firms merged, then the four-firm concentration ratio would become 46 (that is, 26 + 8 + 6 + 6). While this concentration ratio is modestly higher, the four-firm concentration ratio would still be less than half, so such a proposed merger might barely raise an eyebrow among antitrust regulators. Visit this website (http://openstaxcollege.org/l/Google_FTC) to read an article about Google’s run-in with the FTC. The Herfindahl-Hirshman Index A four-firm concentration ratio is a simple tool, which may reveal only part of the story. For example, consider two industries that both have a four-firm concentration ratio of 80. However, in one industry five firms each control 20% of the market, while in the other industry, the top firm holds 77% of the market and all the other firms have 1% each. Although the four-firm concentration ratios are identical, it would be reasonable to worry more about the extent of competition in the second case—where the largest firm is nearly a monopoly—than in the first. Another approach to measuring industry concentration that can distinguish between these two cases is called the Herfindahl-Hirschman Index (HHI). We calculate HHI by summing the squares of the market share of each firm in the industry, as the following Work It Out shows. 260 Chapter 11 | Monopoly and Antitrust Policy Calculating HHI Step 1. Calculate the HHI for a monopoly with a market share of 100%. Because there is only one firm, it has 100% market share. The HHI is 1002 = 10,000. Step 2. For an extremely competitive industry, with dozens or hundreds of extremely small competitors, the HHI value might drop as low as 100 or even less. Calculate the HHI for an industry with 100 firms that each have 1% of the market. In this case, the HHI is 100(12) = 100. Step 3. Calculate the HHI for the industry in Table 11.1. In this case, the HHI is 162 + 102 + 82 + 7(62) + 8(32) = 744. Step 4. Note that the HHI gives greater weight to large firms. Step 5. Consider the earlier example, comparing one industry where five firms each have 20% of the market with an industry where one firm has 77% and the other 23 firms have 1% each. The two industries have the same four-firm concentration ratio of 80. However, the HHI for the first industry is 5(202) = 2,000, while the HHI for the second industry is much higher at 772 + 23(12) = 5,952. Step 6. Note that the near-monopolist in the second industry drives up the HHI measure of industrial concentration. Step 7. Review Table 11.2 which gives some examples of the four-firm concentration ratio and the HHI in various U.S. industries in 2016. (You can find market share data from multiple industry sources. Data in the table are from: Statista.com (for wireless), The Wall Street Journal (for automobiles), Gartner.com (for computers) and the U.S. Bureau of Transportation Statistics (for airlines).) U.S. Industry Four-Firm Ratio HHI Wireless Largest five: Verizon, AT&T, Sprint, T-Mobile, US Cellular Personal Computers Largest five: HP, Lenovo, Dell, Asus, Apple, Acer Airlines Largest five: American, Southwest, Delta, United, JetBlue Automobiles Largest five: Ford, GM, Toyota, Chrysler, Nissan 98 76 69 58 2,736 1,234 1,382 1,099 Table 11.2 Examples of Concentration Ratios and HHIs in the U.S. Economy, 2016 In the 1980s, the FTC followed these guidelines: If a merger would result in an HHI of less than 1,000, the FTC would probably approve it. If a merger would result in an HHI of more than 1,800, the FTC would probably challenge it. If a merger would result in an HHI between 1,000 and 1,800, then the FTC would scrutinize the plan and make a case-by-case decision. However, in the last several decades, the antitrust enforcement authorities have moved away from relying as heavily on measures of concentration ratios and HHIs to determine whether they will allow a merger, and instead they carry out more case-by-case analysis on the extent of competition in different industries. New Directions for Antitrust Both the four-firm concentration ratio and the Herfindahl-Hirschman index share some weaknesses. First, they begin This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 261 from the assumption that the “market” under discussion is well-defined, and the only question is measuring how sales are divided in that market. Second, they are based on an implicit assumption that competitive conditions across industries are similar enough that a broad measure of concentration in the market is enough to make a decision about the effects of a merger. These assumptions, however, are not always correct. In response to these two problems, the antitrust regulators have been changing their approach in the last decade or two. Defining a market is often controversial. For example, Microsoft in the early 2000s had a dominant share of the software for computer operating systems. However, in the total market for all computer software and services, including everything from games to scientific programs, the Microsoft share was only about 14% in 2014. A narrowly defined market will tend to make concentration appear higher, while a broadly defined market will tend to make it appear smaller. In recent decades, there have been two especially important shifts affecting how we define markets: one centers on technology and the other centers on globalization. In addition, these two shifts are interconnected. With the vast improvement in communications technologies, including the development of the internet, a consumer can order books or pet supplies from all over the country or the world. As a result, the degree of competition many local retail businesses face has increased. The same effect may operate even more strongly in markets for business supplies, where so-called “business-to-business” websites can allow buyers and suppliers from anywhere in the world to find each other. Globalization has changed the market boundaries. As recently as the 1970s, it was common for measurements of concentration ratios and HHIs to stop at national borders. Now, many industries find that their competition comes from the global market. A few decades ago, three companies, General Motors, Ford, and Chrysler, dominated the U.S. auto market. By 2014, however, production of these three firms accounted for less than half of U.S. auto sales, and they were facing competition from well-known car manufacturers such as Toyota, Honda, Nissan, Volkswagen, Mitsubishi, and Mazda. When analysts calculate HHIs with a global perspective, concentration in most major industries—including cars—is lower than in a purely domestic context. Because attempting to define a particular market can be difficult and controversial, the Federal Trade Commission has begun to look less at market share and more at the data on actual competition between businesses. For example, in February 2007, Whole Foods Market and Wild Oats Market announced that they wished to merge. These were the two largest companies in the market that the government defined as “premium natural and organic supermarket chains.” However, one could also argue that they were two relatively small companies in the broader market for all stores that sell groceries or specialty food products. Rather than relying on a market definition, the government antitrust regulators looked at detailed evidence on profits and prices for specific stores in different cities, both before and after other competitive stores entered or exited. Based on that evidence, the Federal Trade Commission decided to block the merger. After two years of legal battles, the FTC eventually allowed the merger in 2009 under the conditions that Whole Foods sell off the Wild Oats brand name and a number of individual stores, to preserve competition in certain local markets. For more on the difficulties of defining markets, refer to Monopoly. This new approach to antitrust regulation involves detailed analysis of specific markets and companies, instead of defining a market and counting up total sales. A common starting point is for antitrust regulators to use statistical tools and real-world evidence to estimate the demand curves and supply curves the firms proposing a merger face. A second step is to specify how competition occurs in this specific industry. Some possibilities include competing to cut prices, to raise output, to build a brand name through advertising, and to build a reputation for good service or high quality. With these pieces of the puzzle in place, it is then possible to build a statistical model that estimates the likely outcome for consumers if the two firms are allowed to merge. These models do require some degree of subjective judgment, and so they can become the subject of legal disputes between the antitrust authorities and the companies that wish to merge. 262 Chapter 11 | Monopoly and Antitrust Policy 11.2 | Regulating Anticompetitive Behavior By the end of this section, you will be able to: • Analyze restrictive practices • Explain tying sales, bundling, and predatory pricing • Evaluate a real-world situation of possible anticompetitive and restrictive practices The U.S. antitrust laws reach beyond blocking mergers that would reduce competition to include a wide array of anticompetitive practices. For example, it is illegal for competitors to form a cartel to collude to make pricing and output decisions, as if they were a monopoly firm. The Federal Trade Commission and the U.S. Department of Justice prohibit firms from agreeing to fix prices or output, rigging bids, or sharing or dividing markets by allocating customers, suppliers, territories, or lines of commerce. In the late 1990s, for example, the antitrust regulators prosecuted an international cartel of vitamin manufacturers, including the Swiss firm Hoffman-La Roche, the German firm BASF, and the French firm Rhone-Poulenc. These
firms reached agreements on how much to produce, how much to charge, and which firm would sell to which customers. Firms bought the high-priced vitamins like General Mills, Kellogg, Purina-Mills, and Proctor and Gamble which pushed up the prices more. Hoffman-La Roche pleaded guilty in May 1999 and agreed both to pay a fine of $500 million and to have at least one top executive serve four months of jail time. Under U.S. antitrust laws, monopoly itself is not illegal. If a firm has a monopoly because of a newly patented invention, for example, the law explicitly allows a firm to earn higher-than-normal profits for a time as a reward for innovation. If a firm achieves a large share of the market by producing a better product at a lower price, such behavior is not prohibited by antitrust law. Restrictive Practices Antitrust law includes rules against restrictive practices—practices that do not involve outright agreements to raise price or to reduce the quantity produced, but that might have the effect of reducing competition. Antitrust cases involving restrictive practices are often controversial, because they delve into specific contracts or agreements between firms that are allowed in some cases but not in others. For example, if a product manufacturer is selling to a group of dealers who then sell to the general public it is illegal for the manufacturer to demand a minimum resale price maintenance agreement, which would require the dealers to sell for at least a certain minimum price. A minimum price contract is illegal because it would restrict competition among dealers. However, the manufacturer is legally allowed to “suggest” minimum prices and to stop selling to dealers who regularly undercut the suggested price. If you think this rule sounds like a fairly subtle distinction, you are right. An exclusive dealing agreement between a manufacturer and a dealer can be legal or illegal. It is legal if the purpose of the contract is to encourage competition between dealers. For example, it is legal for the Ford Motor Company to sell its cars to only Ford dealers, and for General Motors to sell to only GM dealers, and so on. However, exclusive deals may also limit competition. If one large retailer obtained the exclusive rights to be the sole distributor of televisions, computers, and audio equipment made by a number of companies, then this exclusive contract would have an anticompetitive effect on other retailers. Tying sales happen when a customer is required to buy one product only if the customer also buys a second product. Tying sales are controversial because they force consumers to purchase a product that they may not actually want or need. Further, the additional, required products are not necessarily advantageous to the customer. Suppose that to purchase a popular DVD, the store required that you also purchase a certain portable TV model. These products are only loosely related, thus there is no reason to make the purchase of one contingent on the other. Even if a customer were interested in a portable TV, the tying to a particular model prevents the customer from having the option of selecting one from the numerous types available in the market. A related, but not identical, concept is bundling, where a firm sells two or more products as one. Bundling typically offers an advantage for consumers by allowing them to acquire multiple products or services for a better price. For example, several cable companies allow customers to buy products like cable, internet, and a phone line through a special price available through bundling. Customers are also welcome to purchase these products separately, but the This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 263 price of bundling is usually more appealing. In some cases, we can view tying sales and bundling as anticompetitive. However, in other cases they may be legal and even common. It is common for people to purchase season tickets to a sports team or a set of concerts so to guarantee tickets to the few contests or shows that are most popular and likely to sell out. Computer software manufacturers may often bundle a number of different programs, even when the buyer wants only a few. Think about the software that is included in a new computer purchase, for example. Recall from the chapter on Monopoly that predatory pricing occurs when the existing firm (or firms) reacts to a new firm by dropping prices very low, until the new firm is driven out of the market, at which point the existing firm raises prices again. This pattern of pricing is aimed at deterring new firms from entering the market. However, in practice, it can be hard to figure out when pricing is predatory. Say that American Airlines is flying between two cities, and a new airline starts flying between the same two cities, at a lower price. If American Airlines cuts its price to match the new entrant, is this predatory pricing or is it just market competition at work? A commonly proposed rule is that if a firm is selling for less than its average variable cost—that is, at a price where it should be shutting down—then there is evidence for predatory pricing. However, calculating in the real world what costs are variable and what costs are fixed is often not obvious, either. The Microsoft antitrust case embodies many of these gray areas in restrictive practices, as the next Clear It Up shows. Did Microsoft® engage in anticompetitive and restrictive practices? The most famous restrictive practices case of recent years was a series of lawsuits by the U.S. government against Microsoft—lawsuits that some of Microsoft’s competitors encouraged. All sides admitted that Microsoft’s Windows program had a near-monopoly position in the market for the software used in general computer operating systems. All sides agreed that the software had many satisfied customers and that the computer software capabilities were compatible with Windows. Software that Microsoft and other companies produced had expanded dramatically in the 1990s. Having a monopoly or a near-monopoly is not necessarily illegal in and of itself, but in cases where one company controls a great deal of the market, antitrust regulators look at any allegations of restrictive practices with special care. The antitrust regulators argued that Microsoft had gone beyond profiting from its software innovations and its dominant position in the software market for operating systems, and had tried to use its market power in operating systems software to take over other parts of the software industry. For example, the government argued that Microsoft had engaged in an anticompetitive form of exclusive dealing by threatening computer makers that, if they did not leave another firm’s software off their machines (specifically, Netscape’s Internet browser), then Microsoft would not sell them its operating system software. Government antitrust regulators accused Microsoft of tying together its Windows operating system software, where it had a monopoly, with its Internet Explorer browser software, where it did not have a monopoly, and thus using this bundling as an anticompetitive tool. The government also accused Microsoft of a form of predatory pricing; namely, giving away certain additional software products for free as part of Windows, as a way of driving out the competition from other software makers. In April 2000, a federal court held that Microsoft’s behavior had crossed the line into unfair competition, and recommended that the company be split into two competing firms. However, the court overturned that penalty on appeal, and in November 2002 Microsoft reached a settlement with the government that it would end its restrictive practices. The concept of restrictive practices is continually evolving, as firms seek new ways to earn profits and government regulators define what is permissible. A situation where the law is evolving and changing is always somewhat troublesome, since laws are most useful and fair when firms know what they are in advance. In addition, since the law is open to interpretation, competitors who are losing out in the market can accuse successful firms of anticompetitive restrictive practices, and try to win through government regulation what they have failed to accomplish in the market. 264 Chapter 11 | Monopoly and Antitrust Policy Officials at the Federal Trade Commission and the Department of Justice are, of course, aware of these issues, but there is no easy way to resolve them. 11.3 | Regulating Natural Monopolies By the end of this section, you will be able to: • Evaluate the appropriate competition policy for a natural monopoly Interpret a graph of regulatory choices • • Contrast cost-plus and price cap regulation Most true monopolies today in the U.S. are regulated, natural monopolies. A natural monopoly poses a difficult challenge for competition policy, because the structure of costs and demand makes competition unlikely or costly. A natural monopoly arises when average costs are declining over the range of production that satisfies market demand. This typically happens when fixed costs are large relative to variable costs. As a result, one firm is able to supply the total quantity demanded in the market at lower cost than two or more firms—so splitting up the natural monopoly would raise the average cost of production and force customers to pay more. Public utilities, the companies that have traditionally provided water and electrical service across much of the United States, are leading examples of natural monopoly. It would make little sense to argue that a local water company should be divided into several competing companies, each with its own separate set of pipes and water supplies. Installing four or five identical sets of pipes under a city, one for each water company, so that each household could choose its own water provider, would be terribly c
ostly. The same argument applies to the idea of having many competing companies for delivering electricity to homes, each with its own set of wires. Before the advent of wireless phones, the argument also applied to the idea of many different phone companies, each with its own set of phone wires running through the neighborhood. The Choices in Regulating a Natural Monopoly What then is the appropriate competition policy for a natural monopoly? Figure 11.3 illustrates the case of natural monopoly, with a market demand curve that cuts through the downward-sloping portion of the average cost curve. Points A, B, C, and F illustrate four of the main choices for regulation. Table 11.3 outlines the regulatory choices for dealing with a natural monopoly. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 265 Figure 11.3 Regulatory Choices in Dealing with Natural Monopoly A natural monopoly will maximize profits by producing at the quantity where marginal revenue (MR) equals marginal costs (MC) and by then looking to the market demand curve to see what price to charge for this quantity. This monopoly will produce at point A, with a quantity of 4 and a price of 9.3. If antitrust regulators split this company exactly in half, then each half would produce at point B, with average costs of 9.75 and output of 2. The regulators might require the firm to produce where marginal cost crosses the market demand curve at point C. However, if the firm is required to produce at a quantity of 8 and sell at a price of 3.5, the firm will suffer from losses. The most likely choice is point F, where the firm is required to produce a quantity of 6 and charge a price of 6.5. Quantity Price Total Revenue* Marginal Revenue Total Cost Marginal Cost Average Cost 1 2 3 4 5 6 7 8 9 14.7 14.7 12.4 24.7 10.6 31.7 9.3 8.0 6.5 5.0 3.5 2.0 37.2 40.0 39.0 35.0 28.0 18.0 14.7 10.0 7.0 5.5 2.8 –1.0 –4.0 –7.0 –10.0 11.0 19.5 25.5 31.0 35.0 39.0 42.0 45.5 49.5 - 8.5 6.0 5.5 4.0 4.0 3.0 3.5 4.0 11.00 9.75 8.50 7.75 7.00 6.50 6.00 5.70 5.5 Table 11.3 Regulatory Choices in Dealing with Natural Monopoly (*We obtain total revenue by multiplying price and quantity. However, we have rounded some of the price values in this table for ease of presentation.) The first possibility is to leave the natural monopoly alone. In this case, the monopoly will follow its normal approach to maximizing profits. It determines the quantity where MR = MC, which happens at point P at a quantity of 4. The firm then looks to point A on the demand curve to find that it can charge a price of 9.3 for that profit-maximizing quantity. Since the price is above the average cost curve, the natural monopoly would earn economic profits. A second outcome arises if antitrust authorities decide to divide the company, so that the new firms can compete. As a simple example, imagine that the company is cut in half. Thus, instead of one large firm producing a quantity of 4, two half-size firms each produce a quantity of 2. Because of the declining average cost curve (AC), the average 266 Chapter 11 | Monopoly and Antitrust Policy cost of production for each of the half-size companies each producing 2, as point B shows, would be 9.75, while the average cost of production for a larger firm producing 4 would only be 7.75. Thus, the economy would become less productively efficient, since the good is produced at a higher average cost. In a situation with a downward-sloping average cost curve, two smaller firms will always have higher average costs of production than one larger firm for any quantity of total output. In addition, the antitrust authorities must worry that splitting the natural monopoly into pieces may be only the start of their problems. If one of the two firms grows larger than the other, it will have lower average costs and may be able to drive its competitor out of the market. Alternatively, two firms in a market may discover subtle ways of coordinating their behavior and keeping prices high. Either way, the result will not be the greater competition that was desired. A third alternative is that regulators may decide to set prices and quantities produced for this industry. The regulators will try to choose a point along the market demand curve that benefits both consumers and the broader social interest. Point C illustrates one tempting choice: the regulator requires that the firm produce the quantity of output where marginal cost crosses the demand curve at an output of 8, and charge the price of 3.5, which is equal to marginal cost at that point. This rule is appealing because it requires price to be set equal to marginal cost, which is what would occur in a perfectly competitive market, and it would assure consumers a higher quantity and lower price than at the monopoly choice A. In fact, efficient allocation of resources would occur at point C, since the value to the consumers of the last unit bought and sold in this market is equal to the marginal cost of producing it. Attempting to bring about point C through force of regulation, however, runs into a severe difficulty. At point C, with an output of 8, a price of 3.5 is below the average cost of production, which is 5.7, so if the firm charges a price of 3.5, it will be suffering losses. Unless the regulators or the government offer the firm an ongoing public subsidy (and there are numerous political problems with that option), the firm will lose money and go out of business. Perhaps the most plausible option for the regulator is point F; that is, to set the price where AC crosses the demand curve at an output of 6 and a price of 6.5. This plan makes some sense at an intuitive level: let the natural monopoly charge enough to cover its average costs and earn a normal rate of profit, so that it can continue operating, but prevent the firm from raising prices and earning abnormally high monopoly profits, as it would at the monopoly choice A. Determining this level of output and price with the political pressures, time constraints, and limited information of the real world is much harder than identifying the point on a graph. For more on the problems that can arise from a centrally determined price, see the discussion of price floors and price ceilings in Demand and Supply. Cost-Plus versus Price Cap Regulation Regulators of public utilities for many decades followed the general approach of attempting to choose a point like F in Figure 11.3. They calculated the average cost of production for the water or electricity companies, added in an amount for the normal rate of profit the firm should expect to earn, and set the price for consumers accordingly. This method was known as cost-plus regulation. Cost-plus regulation raises difficulties of its own. If producers receive reimbursement for their costs, plus a bit more, then at a minimum, producers have less reason to be concerned with high costs—because they can just pass them along in higher prices. Worse, firms under cost-plus regulation even have an incentive to generate high costs by building huge factories or employing many staff, because what they can charge is linked to the costs they incur. Thus, in the 1980s and 1990s, some public utility regulators began to use price cap regulation, where the regulator sets a price that the firm can charge over the next few years. A common pattern was to require a price that declined slightly over time. If the firm can find ways of reducing its costs more quickly than the price caps, it can make a high level of profits. However, if the firm cannot keep up with the price caps or suffers bad luck in the market, it may suffer losses. A few years down the road, the regulators will then set a new series of price caps based on the firm’s performance. Price cap regulation requires delicacy. It will not work if the price regulators set the price cap unrealistically low. It may not work if the market changes dramatically so that the firm is doomed to incurring losses no matter what it does—say, if energy prices rise dramatically on world markets, then the company selling natural gas or heating oil to homes may not be able to meet price caps that seemed reasonable a year or two ago. However, if the regulators compare the prices with producers of the same good in other areas, they can, in effect, pressure a natural monopoly in one area to compete with the prices charged in other areas. Moreover, the possibility of earning greater profits or experiencing losses—instead of having an average rate of profit locked in every year by cost-plus regulation—can provide the natural monopoly with incentives for efficiency and innovation. With natural monopoly, market competition is unlikely to take root, so if consumers are not to suffer the high prices This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 267 and restricted output of an unrestricted monopoly, government regulation will need to play a role. In attempting to design a system of price cap regulation with flexibility and incentive, government regulators do not have an easy task. 11.4 | The Great Deregulation Experiment By the end of this section, you will be able to: • Evaluate the effectiveness of price regulation and antitrust policy • Explain regulatory capture and its significance Governments at all levels across the United States have regulated prices in a wide range of industries. In some cases, like water and electricity that have natural monopoly characteristics, there is some room in economic theory for such regulation. However, once politicians are given a basis to intervene in markets and to choose prices and quantities, it is hard to know where to stop. Doubts about Regulation of Prices and Quantities Beginning in the 1970s, it became clear to policymakers of all political leanings that the existing price regulation was not working well. The United States
carried out a great policy experiment—the deregulation that we discussed in Monopoly—removing government controls over prices and quantities produced in airlines, railroads, trucking, intercity bus travel, natural gas, and bank interest rates. The Clear It Up discusses the outcome of deregulation in one industry in particular—airlines. What are the results of airline deregulation? Why did the pendulum swing in favor of deregulation? Consider the airline industry. In the early days of air travel, no airline could make a profit just by flying passengers. Airlines needed something else to carry and the Postal Service provided that something with airmail. Thus, the first U.S. government regulation of the airline industry happened through the Postal Service, when in 1926 the Postmaster General began giving airlines permission to fly certain routes based on mail delivery needs—and the airlines took some passengers along for the ride. In 1934, the antitrust authorities charged the Postmaster General with colluding with the major airlines of that day to monopolize the nation’s airways. In 1938, the U.S. government created the Civil Aeronautics Board (CAB) to regulate airfares and routes instead. For 40 years, from 1938 to 1978, the CAB approved all fares, controlled all entry and exit, and specified which airlines could fly which routes. There was zero entry of new airlines on the main routes across the country for 40 years, because the CAB did not think it was necessary. In 1978, the Airline Deregulation Act took the government out of the business of determining airfares and schedules. The new law shook up the industry. Famous old airlines like Pan American, Eastern, and Braniff went bankrupt and disappeared. Some new airlines like People Express were created—and then vanished. The greater competition from deregulation reduced airfares by about one-third over the next two decades, saving consumers billions of dollars a year. The average flight used to take off with just half its seats full; now it is two-thirds full, which is far more efficient. Airlines have also developed hub-and-spoke systems, where planes all fly into a central hub city at a certain time and then depart. As a result, one can fly between any of the spoke cities with just one connection—and there is greater service to more cities than before deregulation. With lower fares and more service, the number of air passengers doubled from the late 1970s to the start of the 2000s—an increase that, in turn, doubled the number of jobs in the airline industry. Meanwhile, with the watchful oversight of government safety inspectors, commercial air travel has continued to get safer over time. The U.S. airline industry is far from perfect. For example, a string of mergers in recent years has raised concerns over how competition might be compromised. 268 Chapter 11 | Monopoly and Antitrust Policy One difficulty with government price regulation is what economists call regulatory capture, in which the firms that are supposedly regulated end up playing a large role in setting the regulations that they will follow. When the airline industry was regulated, for example, it suggested appointees to the regulatory board, sent lobbyists to argue with the board, provided most of the information on which the board made decisions, and offered well-paid jobs to at least some of the people leaving the board. In this situation, it is easy for regulators to poorly represent consumers. The result of regulatory capture is that government price regulation can often become a way for existing competitors to work together to reduce output, keep prices high, and limit competition. The Effects of Deregulation Deregulation, both of airlines and of other industries, has its negatives. The greater pressure of competition led to entry and exit. When firms went bankrupt or contracted substantially in size, they laid off workers who had to find other jobs. Market competition is, after all, a full-contact sport. A number of major accounting scandals involving prominent corporations such as Enron, Tyco International, and WorldCom led to the Sarbanes-Oxley Act in 2002. The government designed Sarbanes-Oxley to increase confidence in financial information provided by public corporations to protect investors from accounting fraud. The Great Recession, which began in late 2007, was caused at least in part by a global financial crisis, which began in the United States. The key component of the crisis was the creation and subsequent failure of several types of unregulated financial assets, such as collateralized mortgage obligations (CMOs, a type of mortgage-backed security), and credit default swaps (CDSs, insurance contracts on assets like CMOs that provided a payoff even if the holder of the CDS did not own the CMO). Private credit rating agencies such as Standard & Poors, Moody’s, and Fitch rated many of these assets very safe. The collapse of the markets for these assets precipitated the financial crisis and led to the failure of Lehman Brothers, a major investment bank, numerous large commercial banks, such as Wachovia, and even the Federal National Mortgage Corporation (Fannie Mae), which had to be nationalized—that is, taken over by the federal government. One response to the financial crisis was the Dodd-Frank Act, which majorly attempted to reform the financial system. The legislation’s purpose, as noted on dodd-frank.com is: To promote the financial stability of the United States by improving accountability and transparency in the financial system, to end “too big to fail,” to protect the American taxpayer by ending bailouts, [and] to protect consumers from abusive financial services practices. . . All market-based economies operate against a background of laws and regulations, including laws about enforcing contracts, collecting taxes, and protecting health and the environment. The government policies that we discussed in this chapter—like blocking certain anticompetitive mergers, ending restrictive practices, imposing price cap regulation on natural monopolies, and deregulation—demonstrate the role of government to strengthen the incentives that come with a greater degree of competition. More than Cooking, Heating, and Cooling What did the Federal Trade Commission (FTC) decide on the Kinder Morgan / El Paso Corporation merger? After careful examination, federal officials decided there was only one area of significant overlap that might provide the merged firm with strong market power. The FTC approved the merger, provided Kinder Morgan divest itself of the overlap area. Tallgrass purchased Kinder Morgan Interstate Gas Transmission, Trailblazer Pipeline Co. LLC, two processing facilities in Wyoming, and Kinder Morgan’s 50 percent interest in the Rockies Express Pipeline to meet the FTC requirements. The FTC was attempting to strike a balance between potential cost reductions resulting from economies of scale and concentration of market power. Did the price of natural gas decrease? Yes, rather significantly. In 2010, the wellhead price of natural gas was $4.48 per thousand cubic foot. In 2012 the price had fallen to just $2.66. Was the merger responsible for the large drop in price? The answer is uncertain. The larger contributor to the sharp drop in price was the overall increase in the supply of natural gas. Increasingly, more natural gas was able to be recovered by fracturing shale deposits, a process called fracking. Fracking, which is controversial for environmental reasons, enabled This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 269 the recovery of known reserves of natural gas that previously were not economically feasible to tap. Kinder Morgan’s control of 80,000-plus miles of pipeline likely made moving the gas from wellheads to end users smoother and allowed for an even greater benefit from the increased supply. 270 Chapter 11 | Monopoly and Antitrust Policy KEY TERMS acquisition when one firm purchases another antitrust laws laws that give government the power to block certain mergers, and even in some cases to break up large firms into smaller ones bundling a situation in which multiple products are sold as one concentration ratio an early tool to measure the degree of monopoly power in an industry; measures what share of the total sales in the industry are accounted for by the largest firms, typically the top four to eight firms cost-plus regulation when regulators permit a regulated firm to cover its costs and to make a normal level of profit exclusive dealing an agreement that a dealer will sell only products from one manufacturer four-firm concentration ratio the percentage of the total sales in the industry that are accounted for by the largest four firms Herfindahl-Hirschman Index (HHI) share of each firm in the industry approach to measuring market concentration by adding the square of the market market share the percentage of total sales in the market merger when two formerly separate firms combine to become a single firm minimum resale price maintenance agreement to sell for at least a certain minimum price an agreement that requires a dealer who buys from a manufacturer price cap regulation when the regulator sets a price that a firm cannot exceed over the next few years regulatory capture when the supposedly regulated firms end up playing a large role in setting the regulations that they will follow and as a result, they “capture” the people usually through the promise of a job in that “regulated” industry once their term in government has ended restrictive practices practices that reduce competition but that do not involve outright agreements between firms to raise prices or to reduce the quantity produced tying sales a situation where a customer is allowed to buy one product only if the customer also buys another product KEY CONCEPTS AND SUMMARY 11.1 Corporate Mergers A corporate merger invol
ves two private firms joining together. An acquisition refers to one firm buying another firm. In either case, two formerly independent firms become one firm. Antitrust laws seek to ensure active competition in markets, sometimes by preventing large firms from forming through mergers and acquisitions, sometimes by regulating business practices that might restrict competition, and sometimes by breaking up large firms into smaller competitors. A four-firm concentration ratio is one way of measuring the extent of competition in a market. We calculate it by adding the market shares—that is, the percentage of total sales—of the four largest firms in the market. A HerfindahlHirschman Index (HHI) is another way of measuring the extent of competition in a market. We calculate it by taking the market shares of all firms in the market, squaring them, and then summing the total. The forces of globalization and new communications and information technology have increased the level of competition that many firms face by increasing the amount of competition from other regions and countries. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 271 11.2 Regulating Anticompetitive Behavior Antitrust firms block authorities from openly colluding to form a cartel that will reduce output and raise prices. Companies sometimes attempt to find other ways around these restrictions and, consequently, many antitrust cases involve restrictive practices that can reduce competition in certain circumstances, like tie-in sales, bundling, and predatory pricing. 11.3 Regulating Natural Monopolies In the case of a natural monopoly, market competition will not work well and so, rather than allowing an unregulated monopoly to raise price and reduce output, the government may wish to regulate price and/or output. Common examples of regulation are public utilities, the regulated firms that often provide electricity and water service. Cost-plus regulation refers to government regulating a firm which sets the price that a firm can charge over a period of time by looking at the firm’s accounting costs and then adding a normal rate of profit. Price cap regulation refers to government regulation of a firm where the government sets a price level several years in advance. In this case, the firm can either earn high profits if it manages to produce at lower costs or sell a higher quantity than expected or suffer low profits or losses if costs are high or it sells less than expected. 11.4 The Great Deregulation Experiment The U.S. economy experienced a wave of deregulation in the late 1970s and early 1980s, when the government eliminated a number of regulations that had set prices and quantities produced in a number of industries. Major accounting scandals in the early 2000s and, more recently, the Great Recession have spurred new regulation to prevent similar occurrences in the future. Regulatory capture occurs when the regulated industries end up having a strong influence over what regulations exist. SELF-CHECK QUESTIONS Is it true that a merger between two firms that are not already in the top four by size can affect both the four-firm 1. concentration ratio and the Herfindahl-Hirshman Index? Explain briefly. Is it true that the four-firm concentration ratio puts more emphasis on one or two very large firms, while the 2. Herfindahl-Hirshman Index puts more emphasis on all the firms in the entire market? Explain briefly. 3. Some years ago, two intercity bus companies, Greyhound Lines, Inc. and Trailways Transportation System, wanted to merge. One possible definition of the market in this case was “the market for intercity bus service.” Another possible definition was “the market for intercity transportation, including personal cars, car rentals, passenger trains, and commuter air flights.” Which definition do you think the bus companies preferred, and why? 4. As a result of globalization and new information and communications technology, would you expect that the definitions of markets that antitrust authorities use will become broader or narrower? 5. Why would a firm choose to use one or more of the anticompetitive practices described in Regulating Anticompetitive Behavior? 272 Chapter 11 | Monopoly and Antitrust Policy 6. Urban transit systems, especially those with rail systems, typically experience significant economies of scale in operation. Consider the transit system data in Table 11.4. Note that the quantity is in millions of riders. Demand: Quantity Price Marginal Revenue Costs: Marginal Cost Average Cost Table 11.4 1 10 10 .5 6.7 5.2 4 8 3 –4 5 9 2 –6 7 10 1 –8 10 4.7 4.6 4.6 4.9 5.4 Draw the demand, marginal revenue, marginal cost, and average cost curves. Do they have the normal shapes? 7. From the graph you drew to answer Exercise 11.6, would you say this transit system is a natural monopoly? Justify. Use the following information to answer the next three questions. In the years before wireless phones, when telephone technology required having a wire running to every home, it seemed plausible that telephone service had diminishing average costs and might require regulation like a natural monopoly. For most of the twentieth century, the national U.S. phone company was AT&T, and the company functioned as a regulated monopoly. Think about the deregulation of the U.S. telecommunications industry that has occurred over the last few decades. (This is not a research assignment, but a thought assignment based on what you have learned in this chapter.) 8. What real world changes made the deregulation possible? 9. What are some of the benefits of the deregulation? 10. What might some of the negatives of deregulation be? REVIEW QUESTIONS 11. What acquisition? is a corporate merger? What is an 12. What is the goal of antitrust policies? 13. How do we measure a four-firm concentration ratio? What does a high measure mean about the extent of competition? 14. How do we measure a Herfindahl-Hirshman Index? What does a low measure mean about the extent of competition? 15. Why can it be difficult to decide what a “market” is for purposes of measuring competition? 16. What is a minimum resale price maintenance agreement? How might it reduce competition and when might it be acceptable? 18. What is a tie-in sale? How might competition and when might it be acceptable? it reduce 19. What is predatory pricing? How might it reduce competition, and why might it be difficult to tell when it should be illegal? If public utilities are a natural monopoly, what 20. would be the danger in deregulating them? 21. If public utilities are a natural monopoly, what would be the danger in splitting them into a number of separate competing firms? 22. What is cost-plus regulation? 23. What is price cap regulation? 24. What is deregulation? Name some industries that have been deregulated in the United States. 17. What is exclusive dealing? How might it reduce competition and when might it be acceptable? 25. What is regulatory capture? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 11 | Monopoly and Antitrust Policy 273 26. Why does the persuasiveness of the case for regulating industries for the benefit of consumers? regulatory capture reduce CRITICAL THINKING QUESTIONS 27. Does either the four-firm concentration ratio or the HHI directly measure the amount of competition in an industry? Why or why not? 32. Why are urban areas willing to subsidize urban transit systems? Does the argument for subsidies make sense to you? 33. Deregulation, like all changes in government policy, always has pluses and minuses. What do you think some of the minuses might be for airline deregulation? 34. Do you think it is possible for government to outlaw everything that businesses could do wrong? If so, why does government not do that? If not, how can regulation stay ahead of rogue businesses that push the limits of the system until it breaks? 28. What would be evidence of serious competition between firms in an industry? Can you identify two highly competitive industries? 29. Can you think of any examples of successful predatory pricing in the real world? 30. If you were developing a product (like a web browser) for a market with significant barriers to entry, how would you try to get your product into the market successfully? 31. In the middle of the twentieth century, major U.S. cities had multiple competing city bus companies. Today, there is usually only one and it runs as a subsidized, regulated monopoly. What do you suppose caused the change? PROBLEMS 35. Use Table 11.5 to calculate the four-firm concentration ratio for the U.S. auto market. Does this indicate a concentrated market or not? 36. Use Table 11.5 and Table 11.6 to calculate the Herfindal-Hirschman Index for the U.S. auto market. Would the FTC approve a merger between GM and Ford? GM Ford Toyota Chrysler 19% 17% 14% 11% Table 11.5 Global Auto Manufacturers with Top Four U.S. Market Share, June 2013 (Source: http://www.zacks.com/commentary/27690/autoindustry-stock-outlook-june-2013) Honda Nissan Hyundai Kia Subaru Volkswagen 10% 7% 5% 4% 3% 3% Table 11.6 Global Auto Manufacturers with additional U.S. Market Share, June 2013 (Source: http://www.zacks.com/ commentary/27690/auto-industry-stock-outlookjune-2013) Use Table 11.4 to answer the following questions. 274 Chapter 11 | Monopoly and Antitrust Policy 37. If the transit system were allowed to operate as an unregulated monopoly, what output would it supply and what price would it charge? 38. If the transit system were regulated to operate with no subsidy (i.e., at zero economic profit), what approximate output would it supply and what approximate price would it charge? 39. If the transit system were regulated to provide the most allocatively efficient quantity of output, what output would it supply and what price would it charge? What subsidy would be necessary to insure this
efficient provision of transit services? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 275 12 | Environmental Protection and Negative Externalities Figure 12.1 Environmental Debate Across the country, countless people have protested, even risking arrest, against the Keystone XL Pipeline. (Credit: modification of image by “NoKXL”/Flickr Creative Commons) Keystone XL You might have heard about Keystone XL in the news. It is a pipeline system designed to bring oil from Canada to the refineries near the Gulf of Mexico, as well as to boost crude oil production in the United States. While a private company, TransCanada, will own the pipeline, U.S. government approval is required because of its size and location. There are four phases in building the pipeline, with the first two currently in operation, bringing oil from Alberta, Canada, east across Canada, south through the United States into Nebraska and Oklahoma, and northeast again to Illinois. The project's third and fourth phases, known as Keystone XL, would create a pipeline southeast from Alberta straight to Nebraska, and then from Oklahoma to the Gulf of Mexico. Sounds like a great idea, right? A pipeline that would move much needed crude oil to the Gulf refineries would increase oil production for manufacturing needs, reduce price pressure at the gas pump, and increase overall economic growth. Supporters argue that the pipeline is one of the safest pipelines built yet, and would reduce America’s dependence on politically vulnerable Middle Eastern oil imports. Not so fast, say its critics. The Keystone XL would be constructed over an enormous aquifer (one of the largest in the world) in the Midwest, and through an environmentally fragile area in Nebraska, causing great concern among environmentalists about possible destruction to the natural surroundings. They argue that leaks could taint valuable water sources and pipeline construction could disrupt and even harm indigenous species. Environmentalist groups have fought government approval of the proposed pipeline construction, and as of press time the pipeline projects remain stalled. Environmental concerns matter when discussing issues related to economic growth. However, how much should economists factor in these issues when deciding policy? In the case of the pipeline, how do we know 276 Chapter 12 | Environmental Protection and Negative Externalities how much damage it would cause when we do not know how to put a value on the environment? Would the pipeline's benefits outweigh the opportunity cost? The issue of how to balance economic progress with unintended effects on our planet is the subject of this chapter. Introduction to Environmental Protection and Negative Externalities In this chapter, you will learn about: • The Economics of Pollution • Command-and-Control Regulation • Market-Oriented Environmental Tools • The Benefits and Costs of U.S. Environmental Laws • International Environmental Issues • The Tradeoff between Economic Output and Environmental Protection In 1969, the Cuyahoga River in Ohio was so polluted that it spontaneously burst into flame. Air pollution was so bad at that time that Chattanooga, Tennessee was a city where, as an article from Sports Illustrated put it: “the death rate from tuberculosis was double that of the rest of Tennessee and triple that of the rest of the United States, a city in which the filth in the air was so bad it melted nylon stockings off women’s legs, in which executives kept supplies of clean white shirts in their offices so they could change when a shirt became too gray to be presentable, in which headlights were turned on at high noon because the sun was eclipsed by the gunk in the sky.” The problem of pollution arises for every economy in the world, whether high-income or low-income, and whether market-oriented or command-oriented. Every country needs to strike some balance between production and environmental quality. This chapter begins by discussing how firms may fail to take certain social costs, like pollution, into their planning if they do not need to pay these costs. Traditionally, policies for environmental protection have focused on governmental limits on how much of each pollutant could be emitted. While this approach has had some success, economists have suggested a range of more flexible, market-oriented policies that reduce pollution at a lower cost. We will consider both approaches, but first let’s see how economists frame and analyze these issues. 12.1 | The Economics of Pollution By the end of this section, you will be able to: • Explain and give examples of positive and negative externalities • • Evaluate how firms can contribute to market failure Identify equilibrium price and quantity From 1970 to 2012, the U.S. population increased by one-third and the size of the U.S. economy more than doubled. Since the 1970s, however, the United States, using a variety of anti-pollution policies, has made genuine progress against a number of pollutants. Table 12.1 lists the change in carbon dioxide emissions by energy users (from residential to industrial) according to the U.S. Energy Information Administration (EIA). The table shows that emissions of certain key air pollutants declined substantially from 2007 to 2012. They dropped 740 million metric tons (MMT) a year—a 12% reduction. This seems to indicate that there has been progress made in the United States in reducing overall carbon dioxide emissions, which contribute to the greenhouse effect. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 277 Primary Fossil Fuels Purchased Electric Power Total Primary Fossil Fuels Coal Petroleum Natural End-use Sector Residential Commercial 0 (4) (16) 16 Industrial (40) (77) Transportation 0 (174) Power (637) (31) Change 2007–2015 (686) (282) Gas 3 (13) (65) 4 (154) (232) (182) (168) (161) (1) - (−521) (202) (145) (222) (171) - (740) Table 12.1 U.S. Carbon Dioxide (CO2) Emissions from Fossil Fuels Consumed 2007–2012, Million (Source: EIA Monthly Energy Review) Metric Tons (MMT) per Year Despite the gradual reduction in emissions from fossil fuels, many important environmental issues remain. Along with the still high levels of air and water pollution, other issues include hazardous waste disposal, destruction of wetlands and other wildlife habitats, and the impact on human health from pollution. Externalities Private markets, such as the cell phone industry, offer an efficient way to put buyers and sellers together and determine what goods they produce, how they produce them and who gets them. The principle that voluntary exchange benefits both buyers and sellers is a fundamental building block of the economic way of thinking. However, what happens when a voluntary exchange affects a third party who is neither the buyer nor the seller? As an example, consider a concert producer who wants to build an outdoor arena that will host country music concerts a half-mile from your neighborhood. You will be able to hear these outdoor concerts while sitting on your back porch—or perhaps even in your dining room. In this case, the sellers and buyers of concert tickets may both be quite satisfied with their voluntary exchange, but you have no voice in their market transaction. The effect of a market exchange on a third party who is outside or “external” to the exchange is called an externality. Because externalities that occur in market transactions affect other parties beyond those involved, they are sometimes called spillovers. Externalities can be negative or positive. If you hate country music, then having it waft into your house every night would be a negative externality. If you love country music, then what amounts to a series of free concerts would be a positive externality. Pollution as a Negative Externality Pollution is a negative externality. Economists illustrate the social costs of production with a demand and supply diagram. The social costs include the private costs of production that a company incurs and the external costs of pollution that pass on to society. Figure 12.2 shows the demand and supply for manufacturing refrigerators. The demand curve (D) shows the quantity demanded at each price. The supply curve (Sprivate) shows the quantity of refrigerators that all firms in the industry supply at each price assuming they are taking only their private costs into account and they are allowed to emit pollution at zero cost. The market equilibrium (E0), where quantity supplied equals quantity demanded, is at a price of $650 per refrigerator and a quantity of 45,000 refrigerators. Table 12.2 reflects this information in the first three columns. 278 Chapter 12 | Environmental Protection and Negative Externalities Figure 12.2 Taking Social Costs into Account: A Supply Shift into account, then its supply curve will be Sprivate, and the market equilibrium will occur at E0. Accounting for additional external costs of $100 for every unit produced, the firm’s supply curve will be Ssocial. The new equilibrium will occur at E1. If the firm takes only its own costs of production Price Quantity Demanded Quantity Supplied before Considering Pollution Cost Quantity Supplied after Considering Pollution Cost $600 50,000 $650 45,000 $700 40,000 $750 35,000 $800 30,000 $850 25,000 $900 20,000 40,000 45,000 50,000 55,000 60,000 65,000 70,000 30,000 35,000 40,000 45,000 50,000 55,000 60,000 Table 12.2 A Supply Shift Caused by Pollution Costs However, as a by-product of the metals, plastics, chemicals and energy that refrigerator manufacturers use, some pollution is created. Let’s say that, if these pollutants were emitted into the air and water, they would create costs of $100 per refrigerator produced. These costs might occur because of adverse effects on human health, property va
lues, or wildlife habitat, reduction of recreation possibilities, or because of other negative impacts. In a market with no anti-pollution restrictions, firms can dispose of certain wastes absolutely free. Now imagine that firms which produce refrigerators must factor in these external costs of pollution—that is, the firms have to consider not only labor and material costs, but also the broader costs to society of harm to health and other costs caused by pollution. If the firm is required to pay $100 for the additional external costs of pollution each time it produces a refrigerator, production becomes more costly and the entire supply curve shifts up by $100. As Table 12.2 and Figure 12.2 illustrate, the firm will need to receive a price of $700 per refrigerator and produce This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 279 a quantity of 40,000—and the firm’s new supply curve will be Ssocial. The new equilibrium will occur at E1. In short, taking the additional external costs of pollution into account results in a higher price, a lower quantity of production, and a lower quantity of pollution. The following Work It Out feature will walk you through an example, this time with musical accompaniment. Identifying the Equilibrium Price and Quantity Table 12.3 shows the supply and demand conditions for a firm that will play trumpets on the streets when requested. We measure output is measured as the number of songs played. Price Quantity Demanded Quantity Supplied without paying the costs of the externality Quantity Supplied after paying the costs of the externality $20 $18 $15 $12 $10 $5 0 1 2.5 4 5 7.5 10 9 7.5 6 5 2.5 8 7 5.5 4 3 0.5 Table 12.3 Supply and Demand Conditions for a Trumpet-Playing Firm Step 1. Determine the negative externality in this situation. To do this, you must think about the situation and consider all parties that might be impacted. A negative externality might be the increase in noise pollution in the area where the firm is playing. Step 2. Identify the initial equilibrium price and quantity only taking private costs into account. Next, identify the new equilibrium taking into account social costs as well as private costs. Remember that equilibrium is where the quantity demanded is equal to the quantity supplied. Step 3. Look down the columns to where the quantity demanded (the second column) is equal to the “quantity supplied without paying the costs of the externality” (the third column). Then refer to the first column of that row to determine the equilibrium price. In this case, the equilibrium price and quantity would be at a price of $10 and a quantity of five when we only take into account private costs. Step 4. Identify the equilibrium price and quantity when we take into account the additional external costs. Look down the columns of quantity demanded (the second column) and the “quantity supplied after paying the costs of the externality” (the fourth column) then refer to the first column of that row to determine the equilibrium price. In this case, the equilibrium will be at a price of $12 and a quantity of four. Step 5. Consider how taking into account the externality affects the equilibrium price and quantity. Do this by comparing the two equilibrium situations. If the firm is forced to pay its additional external costs, then production of trumpet songs becomes more costly, and the supply curve will shift up. Remember that the supply curve is based on choices about production that firms make while looking at their marginal costs, while the demand curve is based on the benefits that individuals perceive while maximizing utility. If no externalities existed, private costs would be the same as the costs to society as a whole, and private benefits would be the same as the benefits to society as a whole. Thus, if no externalities existed, the interaction of demand and supply will coordinate social costs and benefits. 280 Chapter 12 | Environmental Protection and Negative Externalities However, when the externality of pollution exists, the supply curve no longer represents all social costs. Because externalities represent a case where markets no longer consider all social costs, but only some of them, economists commonly refer to externalities as an example of market failure. When there is market failure, the private market fails to achieve efficient output, because either firms do not account for all costs incurred in the production of output and/or consumers do not account for all benefits obtained (a positive externality). In the case of pollution, at the market output, social costs of production exceed social benefits to consumers, and the market produces too much of the product. We can see a general lesson here. If firms were required to pay the social costs of pollution, they would create less pollution but produce less of the product and charge a higher price. In the next module, we will explore how governments require firms to account for the social costs of pollution. 12.2 | Command-and-Control Regulation By the end of this section, you will be able to: • Explain command-and-control regulation • Evaluate the effectiveness of command-and-control regulation When the United States started passing comprehensive environmental laws in the late 1960s and early 1970s, a typical law specified to companies how much pollution their smokestacks or drainpipes could emit and imposed penalties if companies exceeded the limit. Other laws required that companies install certain equipment—for example, on automobile tailpipes or on smokestacks—to reduce pollution. These types of laws, which specify allowable quantities of pollution and which also may detail which pollution-control technologies companies must use, fall under the category of command-and-control regulation. In effect, command-and-control regulation requires that firms increase their costs by installing anti-pollution equipment. Thus, firms are required to account for the social costs of pollution in deciding how much output to produce. Command-and-control regulation has been highly successful in protecting and cleaning up the U.S. environment. In 1970, the Federal government created Environmental Protection Agency (EPA) to oversee all environmental laws. In the same year, Congress enacted the Clean Air Act to address air pollution. Just two years later, in 1972, Congress passed and the president signed the far-reaching Clean Water Act. These command-and-control environmental laws, and their amendments and updates, have been largely responsible for America’s cleaner air and water in recent decades. However, economists have pointed out three difficulties with command-and-control environmental regulation. First, command-and-control regulation offers no incentive to improve the quality of the environment beyond the standard set by a particular law. Once firms meet the standard, polluters have zero incentive to do better. Second, command-and-control regulation is inflexible. It usually requires the same standard for all polluters, and often the same pollution-control technology as well. This means that command-and-control regulation draws no distinctions between firms that would find it easy and inexpensive to meet the pollution standard—or to reduce pollution even further—and firms that might find it difficult and costly to meet the standard. Firms have no reason to rethink their production methods in fundamental ways that might reduce pollution even more and at lower cost. legislators and EPA analysts write the command-and-control regulations, and so they are subject to Third, compromises in the political process. Existing firms often argue (and lobby) that stricter environmental standards should not apply to them, only to new firms that wish to start production. Consequently, real-world environmental laws are full of fine print, loopholes, and exceptions. Although critics accept the goal of reducing pollution, they question whether command-and-control regulation is the best way to design policy tools for accomplishing that goal. A different approach is the use of market-oriented tools, which we discussed in the next section. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 281 12.3 | Market-Oriented Environmental Tools By the end of this section, you will be able to: • Show how pollution charges impact firm decisions • Suggest other laws and regulations that could fall under pollution charges • Explain the significance of marketable permits and property rights • Evaluate which policies are most appropriate for various situations Market-oriented environmental policies create incentives to allow firms some flexibility in reducing pollution. The three main categories of market-oriented approaches to pollution control are pollution charges, marketable permits, and better-defined property rights. All of these policy tools which we discuss, below, address the shortcomings of command-and-control regulation—albeit in different ways. Pollution Charges A pollution charge is a tax imposed on the quantity of pollution that a firm emits. A pollution charge gives a profitmaximizing firm an incentive to determine ways to reduce its emissions—as long as the marginal cost of reducing the emissions is less than the tax. For example, consider a small firm that emits 50 pounds per year of small particles, such as soot, into the air. This particulate matter causes respiratory illnesses and also imposes costs on firms and individuals. Figure 12.3 illustrates the marginal costs that a firm faces in reducing pollution. The marginal cost of pollution reduction, like most most marginal cost curves increases with output, at least in the short run. Reducing the first 10 pounds of particulate emissions costs the firm $300. Reducing the second 10 pounds would cost $500;
reducing the third ten pounds would cost $900; reducing the fourth 10 pounds would cost $1,500; and the fifth 10 pounds would cost $2,500. This pattern for the costs of reducing pollution is common, because the firm can use the cheapest and easiest method to make initial reductions in pollution, but additional reductions in pollution become more expensive. Figure 12.3 A Pollution Charge If a pollution charge is set equal to $1,000, then the firm will have an incentive to reduce pollution by 30 pounds because the $900 cost of these reductions would be less than the cost of paying the pollution charge. Imagine the firm now faces a pollution tax of $1,000 for every 10 pounds of particulates it emits. The firm has the choice of either polluting and paying the tax, or reducing the amount of particulates it emits and paying the cost of abatement as the figure shows. How much will the firm pollute and how much will the firm abate? The first 10 pounds would cost the firm $300 to abate. This is substantially less than the $1,000 tax, so the firm will choose to abate. The 282 Chapter 12 | Environmental Protection and Negative Externalities second 10 pounds would cost $500 to abate, which is still less than the tax, so it will choose to abate. The third 10 pounds would cost $900 to abate, which is slightly less than the $1,000 tax. The fourth 10 pounds would cost $1,500, which is much more costly than paying the tax. As a result, the firm will decide to reduce pollutants by 30 pounds, because the marginal cost of reducing pollution by this amount is less than the pollution tax. With a tax of $1,000, the firm has no incentive to reduce pollution more than 30 pounds. A firm that has to pay a pollution tax will have an incentive to figure out the least expensive technologies for reducing pollution. Firms that can reduce pollution cheaply and easily will do so to minimize their pollution taxes; whereas firms that will incur high costs for reducing pollution will end up paying the pollution tax instead. If the pollution tax applies to every source of pollution, then there are no special favoritism or loopholes for politically well-connected producers. For an example of a pollution charge at the household level, consider two ways of charging for garbage collection. One method is to have a flat fee per household, no matter how much garbage a household produces. An alternative approach is to have several levels of fees, depending on how much garbage the household produces—and to offer lower or free charges for recyclable materials. As of 2006 (latest statistics available), the EPA had recorded over 7,000 communities that have implemented “pay as you throw” programs. When people have a financial incentive to put out less garbage and to increase recycling, they find ways to make it happen. this website (http://openstaxcollege.org/l/payasyouthrow) Visit to learn more about pay-as-you-throw programs, including viewing a map and a table that shows the number of communities using this program in each state. A number of environmental policies are really pollution charges, although they often do not travel under that name. For example, the federal government and many state governments impose taxes on gasoline. We can view this tax as a charge on the air pollution that cars generate as well as a source of funding for maintaining roads. Gasoline taxes are far higher in most other countries than in the United States. Similarly, the refundable charge of five or 10 cents that only 10 states have for returning recyclable cans and bottles works like a pollution tax that provides an incentive to avoid littering or throwing bottles in the trash. Compared with command-and-control regulation, a pollution tax reduces pollution in a more flexible and cost-effective way. Visit this website (http://openstaxcollege.org/l/bottlebill) to see the current U.S. states with bottle bills and the states that have active campaigns for new bottle bills. You can also view current and proposed bills in Canada and other countries around the world. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 283 Marketable Permits When a city or state government sets up a marketable permit program (e.g. cap-and-trade), it must start by determining the overall quantity of pollution it will allow as it tries to meet national pollution standards. Then, it divides a number of permits allowing only this quantity of pollution among the firms that emit that pollutant. The government can sell or provide these permits to pollute free to firms. Now, add two more conditions. Imagine that these permits are designed to reduce total emissions over time. For example, a permit may allow emission of 10 units of pollution one year, but only nine units the next year, then eight units the year after that, and so on down to some lower level. In addition, imagine that these are marketable permits, meaning that firms can buy and sell them. To see how marketable permits can work to reduce pollution, consider the four firms in Table 12.4. The table shows current emissions of lead from each firm. At the start of the marketable permit program, each firm receives permits to allow this level of pollution. However, these permits are shrinkable, and next year the permits allow the firms to emit only half as much pollution. Let’s say that in a year, Firm Gamma finds it easy and cheap to reduce emissions from 600 tons of lead to 200 tons, which means that it has permits that it is not using that allow emitting 100 tons of lead. Firm Beta reduces its lead pollution from 400 tons to 200 tons, so it does not need to buy any permits, and it does not have any extra permits to sell. However, although Firm Alpha can easily reduce pollution from 200 tons to 150 tons, it finds that it is cheaper to purchase permits from Gamma rather than to reduce its own emissions to 100. Meanwhile, Firm Delta did not even exist in the first period, so the only way it can start production is to purchase permits to emit 50 tons of lead. The total quantity of pollution will decline. However, buying and selling the marketable permits will determine exactly which firms reduce pollution and by how much. With a system of marketable permits, the firms that find it least expensive to do so will reduce pollution the most. Current emissions—permits distributed free for this amount How much pollution will these permits allow in one year? Actual emissions one year in the future Firm Alpha Firm Beta Firm Gamma Firm Delta 200 tons 400 tons 600 tons 0 tons 100 tons 200 tons 300 tons 0 tons 150 tons 200 tons 200 tons 50 tons Buyer or seller of marketable permit? Buys permits for 50 tons Doesn’t buy or sell permits Sells permits for 100 tons Buys permits for 50 tons Table 12.4 How Marketable Permits Work Another application of marketable permits occurred when the U.S. government amended the Clean Air Act in 1990. The revised law sought to reduce sulfur dioxide emissions from electric power plants to half of the 1980 levels out of concern that sulfur dioxide was causing acid rain, which harms forests as well as buildings. In this case, the 284 Chapter 12 | Environmental Protection and Negative Externalities marketable permits the federal government issued were free of charge (no pun intended) to electricity-generating plants across the country, especially those that were burning coal (which produces sulfur dioxide). These permits were of the “shrinkable” type; that is, the amount of pollution allowed by a given permit declined with time. Better-Defined Property Rights A clarified and strengthened idea of property rights can also strike a balance between economic activity and pollution. Ronald Coase (1910–2013), who won the 1991 Nobel Prize in economics, offered a vivid illustration of an externality: a railroad track running beside a farmer’s field where the railroad locomotive sometimes emits sparks and sets the field ablaze. Coase asked whose responsibility it was to address this spillover. Should the farmer be required to build a tall fence alongside the field to block the sparks, or should the railroad be required to place a gadget on the locomotive’s smokestack to reduce the number of sparks? Coase pointed out that one cannot resolve this issue until one clearly defines property rights—that is, the legal rights of ownership on which others are not allowed to infringe without paying compensation. Does the farmer have a property right not to have a field burned? Does the railroad have a property right to run its own trains on its own tracks? If neither party has a property right, then the two sides may squabble endlessly, doing nothing, and sparks will continue to set the field aflame. However, if either the farmer or the railroad has a well-defined legal responsibility, then that party will seek out and pay for the least costly method of reducing the risk that sparks will hit the field. The property right determines whether the farmer or the railroad pays the bills. The property rights approach is highly relevant in cases involving endangered species. The U.S. government’s endangered species list includes about 1,000 plants and animals, and about 90% of these species live on privately owned land. The protection of these endangered species requires careful thinking about incentives and property rights. The discovery of an endangered species on private land has often triggered an automatic reaction from the government to prohibit the landowner from using that land for any purpose that might disturb the imperiled creatures. Consider the incentives of that policy: If you admit to the government that you have an endangered species, the government effectively prohibits you from using your land. As a result, rumors abounded of landowners who followed a policy of “shoot, shovel, and shut up” when they found an endangered animal on their land. Other landowners
have deliberately cut trees or managed land in a way that they knew would discourage endangered animals from locating there. How effective are market-oriented environmental policy tools? Environmentalists sometimes fear that market-oriented environmental tools are an excuse to weaken or eliminate strict limits on pollution emissions and instead to allow more pollution. It is true that if pollution charges are set very low or if marketable permits do not reduce pollution by very much then marketlaws can also be full of oriented tools will not work well. However, command-and-control environmental loopholes or have exemptions that do not reduce pollution by much, either. The advantage of market-oriented environmental tools is not that they reduce pollution by more or less, but because of their incentives and flexibility, they can achieve any desired reduction in pollution at a lower cost to society. A more productive policy would consider how to provide private landowners with an incentive to protect the endangered species that they find and to provide a habitat for additional endangered species. For example, the government might pay landowners who provide and maintain suitable habitats for endangered species or who restrict the use of their land to protect an endangered species. Again, an environmental law built on incentives and flexibility offers greater promise than a command-and-control approach when trying to oversee millions of acres of privately owned land. Applying Market-Oriented Environmental Tools Market-oriented environmental policies are a tool kit. Specific policy tools will work better in some situations than in others. For example, marketable permits work best when a few dozen or a few hundred parties are highly interested in trading, as in the cases of oil refineries that trade lead permits or electrical utilities that trade sulfur dioxide This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 285 permits. However, for cases in which millions of users emit small amounts of pollution—such as emissions from car engines or unrecycled soda cans—and have no strong interest in trading, pollution charges will typically offer a better choice. We can also combine market-oriented environmental tools. We can view marketable permits as a form of improved property rights. Alternatively, the government could combine marketable permits with a pollution tax on any emissions not covered by a permit. 12.4 | The Benefits and Costs of U.S. Environmental Laws By the end of this section, you will be able to: • Evaluate the benefits and costs of environmental protection • Explain the effects of ecotourism • Apply marginal analysis to illustrate the marginal costs and marginal benefits of reducing pollution Government economists have estimated that U.S. firms may pay more than $200 billion per year to comply with federal environmental laws. That is a sizable amount of money. Is the money well spent? Benefits and Costs of Clean Air and Clean Water We can divide the benefits of a cleaner environment into four areas: (1) people may stay healthier and live longer; (2) certain industries that rely on clean air and water, such as farming, fishing, and tourism, may benefit; (3) property values may be higher; and (4) people may simply enjoy a cleaner environment in a way that does not need to involve a market transaction. Some of these benefits, such as gains to tourism or farming, are relatively easy to value in economic terms. It is harder to assign a monetary value to others, such as the value of clean air for someone with asthma. It seems impossible to put a clear-cut monetary value on still others, such as the satisfaction you might feel from knowing that the air is clear over the Grand Canyon, even if you have never visited the Grand Canyon. Although estimates of environmental benefits are not precise, they can still be revealing. For example, a study by the Environmental Protection Agency looked at the costs and benefits of the Clean Air Act from 1970 to 1990. It found that total costs over that time period were roughly $500 billion—a huge amount. However, it also found that a middlerange estimate of the health and other benefits from cleaner air was $22 trillion—about 44 times higher than the costs. A more recent EPA study estimated that the environmental benefits to Americans from the Clean Air Act will exceed their costs by a margin of four to one. The EPA estimated that “in 2010 the benefits of Clean Air Act programs will total about $110 billion. This estimate represents the value of avoiding increases in illness and premature death which would have prevailed.” Saying that overall benefits of environmental regulation have exceeded costs in the past, however, is very different from saying that every environmental regulation makes sense. For example, studies suggest that when breaking down emission reductions by type of contaminants, the benefits of air pollution control outweigh the costs primarily for particulates and lead, but when looking at other air pollutants, the costs of reducing them may be comparable to or greater than the benefits. Just because some environmental regulations have had benefits much higher than costs does not prove that every individual regulation is a sensible idea. Ecotourism: Making Environmentalism Pay The definition of ecotourism is a little vague. Does it mean sleeping on the ground, eating roots, and getting close to wild animals? Does it mean flying in a helicopter to shoot anesthetic darts at African wildlife, or a little of both? The definition may be fuzzy, but tourists who hope to appreciate the ecology of their destination—“eco tourists”—are the impetus to a big and growing business. The International Ecotourism Society estimates that international tourists interested in seeing nature or wildlife will take 1.56 billion trips by 2020. Visit The International Ecotourism Society’s website (http://openstaxcollege.org/l/ecotourism) to learn more about The International Ecotourism Society, its programs, and tourism’s role in sustainable community development. 286 Chapter 12 | Environmental Protection and Negative Externalities Realizing the attraction of ecotourism, the residents of low-income countries may come to see that preserving wildlife habitats is more lucrative than, say, cutting down forests or grazing livestock to survive. In South Africa, Namibia, and Zimbabwe, for example, a substantial expansion of both rhinoceros and elephant populations is broadly credited to ecotourism, which has given local communities an economic interest in protecting them. Some of the leading ecotourism destinations include: Costa Rica and Panama in Central America; the Caribbean; Malaysia, and other South Pacific destinations; New Zealand; the Serengeti in Tanzania; the Amazon rain forests; and the Galapagos Islands. In many of these countries and regions, governments have enacted policies whereby they share revenues from ecotourism with local communities, to give people in those local communities a kind of property right that encourages them to conserve their local environment. Ecotourism needs careful management, so that the combination of eager tourists and local entrepreneurs does not destroy what the visitors are coming to see. However, whatever one’s qualms are about certain kinds of ecotourism—such as the occasional practice of rich tourists shooting elderly lions with high-powered rifles—it is worth remembering that the alternative is often that low-income people in poor countries will damage their local environment in their effort to survive. Marginal Benefits and Marginal Costs We can use the tools of marginal analysis to illustrate the marginal costs and the marginal benefits of reducing pollution. Figure 12.4 illustrates a theoretical model of this situation. When the quantity of environmental protection is low so that pollution is extensive—for example, at quantity Qa—there are usually numerous relatively cheap and easy ways to reduce pollution, and the marginal benefits of doing so are quite high. At Qa, it makes sense to allocate more resources to fight pollution. However, as the extent of environmental protection increases, the cheap and easy ways of reducing pollution begin to decrease, and one must use more costly methods. The marginal cost curve rises. Also, as environmental protection increases, one achieves the largest marginal benefits first, followed by reduced marginal benefits. As the quantity of environmental protection increases to, say, Qb, the gap between marginal benefits and marginal costs narrows. At point Qc the marginal costs will exceed the marginal benefits. At this level of environmental protection, society is not allocating resources efficiently, because it is forfeiting too many resources to reduce pollution. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 287 Figure 12.4 Marginal Costs and Marginal Benefits of Environmental Protection Reducing pollution is costly—one must sacrifice resources. The marginal costs of reducing pollution are generally increasing, because one can make the least expensive and easiest reductions, leaving the more expensive methods for later. The marginal benefits of reducing pollution are generally declining, because one can take the steps that provide the greatest benefit first, and steps that provide less benefit can wait until later. As society draws closer to Qb, some might argue that to use market-oriented environmental tools to hold down the costs of reducing pollution. Their objective would be to avoid environmental rules that would provide the quantity of environmental protection at Qc, where marginal costs exceed marginal benefits. The following Clear It Up feature delves into how the EPA measures its policies – and the monetary value of
our lives. it becomes more important What's a life worth? The U.S. Environmental Protection Agency (EPA) must estimate the value of saving lives by reducing pollution against the additional costs. In measuring the benefits of government environmental policies, the EPA’s National Center for Environmental Economics (NCEE) values a statistical human life at $7.4 million (in 2006 U.S. dollars). Economists value a human life on the basis of studies of the value that people actually place on human lives in their own decisions. For example, some jobs have a higher probability of death than others, and these jobs typically pay more to compensate for the risk. Examples are ocean fishery as opposed to fish farming, and ice trucking in Alaska as opposed to truck driving in the “lower forty-eight” states. Government regulators use estimates such as these when deciding what proposed regulations are “reasonable,” which means deciding which proposals have high enough benefits to justify their cost. For example, when the U.S. Department of Transportation makes decisions about what safety systems should be required in cars or airplanes, it will approve rules only where the estimated cost per life saved is $3 million or less. Resources that we spend on life-saving regulations create tradeoff. A study by W. Kip Viscusi of Vanderbilt University estimated that when a regulation costs $50 million, it diverts enough spending in the rest of the economy from health care and safety expenditures that it costs a life. This finding suggests that any regulation that costs more than $50 million per life saved actually costs lives, rather than saving them. 288 Chapter 12 | Environmental Protection and Negative Externalities 12.5 | International Environmental Issues By the end of this section, you will be able to: • Explain biodiversity • Analyze the partnership of high-income and low-income countries in efforts to address international externalities Many countries around the world have become more aware of the benefits of environmental protection. Yet even if most nations individually took steps to address their environmental issues, no nation acting alone can solve certain environmental problems which spill over national borders. No nation by itself can reduce emissions of carbon dioxide and other gases by enough to solve the problem of global warming—not without the cooperation of other nations. Another issue is the challenge of preserving biodiversity, which includes the full spectrum of animal and plant genetic material. Although a nation can protect biodiversity within its own borders, no nation acting alone can protect biodiversity around the world. Global warming and biodiversity are examples of international externalities. Bringing the nations of the world together to address environmental issues requires a difficult set of negotiations between countries with different income levels and different sets of priorities. If nations such as China, India, Brazil, Mexico, and others are developing their economies by burning vast amounts of fossil fuels or by stripping their forest and wildlife habitats, then the world’s high-income countries acting alone will not be able to reduce greenhouse gases. However, low-income countries, with some understandable exasperation, point out that high-income countries do not have much moral standing to lecture them on the necessities of putting environmental protection ahead of economic growth. After all, high-income countries have historically been the primary contributors to greenhouse warming by burning fossil fuels—and still are today. It is hard to tell people who are living in a low-income country, where adequate diet, health care, and education are lacking, that they should sacrifice an improved quality of life for a cleaner environment. Can rich and poor countries come together to address global environmental spillovers? At the initiative of the European Union and the most vulnerable developing nations, the Durban climate conference in December 2011 launched negotiations to develop a new international climate change agreement that covers all countries. The outcome of these negotiations was the Paris Climate Agreement, passed in 2016. The Paris Agreement committed participating countries to significant limits on CO2 emissions. To date, 129 nations have signed on, including the two biggest emitters of greenhouse gases—China and the United States. The U.S. contribution to the agreement was the Clean Power Plan, which planned to reduce power plant CO2 emissions across the U.S. by 17% to pre-2005 levels by 2020, and to further reduce emissions by a cumulative 32% by 2030. In early 2017, the Trump Administration announced plans to back out of the Paris Climate Agreement. Trump opposes the Clean Power plan, opting instead to shift focus to the use of natural gas. This represents a significant blow to the success of the Paris Agreement. Visit this website (http://openstaxcollege.org/l/EC) to learn more about the European Commission. If high-income countries want low-income countries to reduce their greenhouse emission gases, then the high-income countries may need to pay some of the costs. Perhaps some of these payments will happen through private markets. For example, some tourists from rich countries will pay handsomely to vacation near the natural treasures of low- This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 289 income countries. Perhaps some of the transfer of resources can happen through making modern pollution-control technology available to poorer countries. The practical details of what such an international system might look like and how it would operate across international borders are forbiddingly complex. However, it seems highly unlikely that some form of world government will impose a detailed system of environmental command-and-control regulation around the world. As a result, a decentralized and market-oriented approach may be the only practical way to address international issues such as global warming and biodiversity. 12.6 | The Tradeoff between Economic Output and Environmental Protection By the end of this section, you will be able to: • Apply the production possibility frontier to evaluate the tradeoff between economic output and the • environment Interpret a graphic representation of the tradeoff between economic output and environmental protection We can analyze the tradeoff between economic output and the environment with a production possibility frontier (PPF) such as the one in Figure 12.5. At one extreme, at a choice like P, a country would be selecting a high level of economic output but very little environmental protection. At the other extreme, at a choice like T, a country would be selecting a high level of environmental protection but little economic output. According to the graph, an increase in environmental protection involves an opportunity cost of less economic output. No matter what their preferences, all societies should wish to avoid choices like M, which are productively inefficient. Efficiency requires that the choice should be on the production possibility frontier. Figure 12.5 The Tradeoff between Economic Output and Environmental Protection Each society will have to weigh its own values and decide whether it prefers a choice like P with more economic output and less environmental protection, or a choice like T with more environmental protection and less economic output. Economists do not have a great deal to say about the choice between P, Q, R, S and T in Figure 12.5, all of which lie along the production possibility frontier. Countries with low per capita gross domestic product (GDP), such as China, place a greater emphasis on economic output—which in turn helps to produce nutrition, shelter, health, education, and desirable consumer goods. Countries with higher income levels, where a greater share of people have access to the basic necessities of life, may be willing to place a relatively greater emphasis on environmental protection. However, economists are united in their belief that an inefficient choice such as M is undesirable. Rather than choosing M, a nation could achieve either greater economic output with the same environmental protection, as at 290 Chapter 12 | Environmental Protection and Negative Externalities point Q, or greater environmental protection with the same level of output, as at point S. The problem with commandand-control environmental laws is that they sometimes involve a choice like M. Market-oriented environmental tools offer a mechanism for providing either the same environmental protection at lower cost, or providing a greater degree of environmental protection for the same cost. Keystone XL How would an economist respond to claims of environmental damage caused by the Keystone XL project? Clearly, we can consider the environmental cost of oil spills a negative externality, but how large would these external costs be? Furthermore, are these costs “too high” when we measure them against any potential for economic benefit? As this chapter indicates, in deciding whether pipeline construction is a good idea, an economist would want to know not only about the marginal benefits resulting from the additional pipeline construction, but also the potential marginal costs—and especially the pipeline's marginal external costs. Typically these come in the form of environmental impact statements, which are usually required for such projects. The most recent impact statement, released in March 2013 by the Nebraska Department of State, considered the possibility of fewer pipeline miles going over the aquifer system and avoiding completely environmentally fragile areas. It indicated that pipeline construction would not harm "most resources". The Obama Administration declined to approve construction of the Keystone XL project. However, the Trump
administration has already announced its willingness to do so. While we may fairly easily quantify the economic benefits of additional oil in the United States, the social costs are more challenging to measure. It seems that, in a period of less than robust economic growth, people are giving the benefit of the doubt that the marginal costs of additional oil generation will be less than the marginal benefits. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 291 KEY TERMS additional external cost additional costs incurred by third parties outside the production process when a unit of output is produced biodiversity the full spectrum of animal and plant genetic material command-and-control regulation laws that specify allowable quantities of pollution and that also may detail which pollution-control technologies one must use externality a market exchange that affects a third party who is outside or “external” to the exchange; sometimes called a “spillover” international externalities externalities that cross national borders and that a single nation acting alone cannot resolve market failure When the market on its own does not allocate resources efficiently in a way that balances social costs and benefits; externalities are one example of a market failure marketable permit program a permit that allows a firm to emit a certain amount of pollution; firms with more permits than pollution can sell the remaining permits to other firms negative externality a situation where a third party, outside the transaction, suffers from a market transaction by others pollution charge a tax imposed on the quantity of pollution that a firm emits; also called a pollution tax positive externality a situation where a third party, outside the transaction, benefits from a market transaction by others property rights the legal rights of ownership on which others are not allowed to infringe without paying compensation social costs costs that include both the private costs incurred by firms and also additional costs incurred by third parties outside the production process, like costs of pollution spillover see externality KEY CONCEPTS AND SUMMARY 12.1 The Economics of Pollution Economic production can cause environmental damage. This tradeoff arises for all countries, whether high-income or low-income, and whether their economies are market-oriented or command-oriented. An externality occurs when an exchange between a buyer and seller has an impact on a third party who is not part of the exchange. An externality, which is sometimes also called a spillover, can have a negative or a positive impact on the third party. If those parties imposing a negative externality on others had to account for the broader social cost of their behavior, they would have an incentive to reduce the production of whatever is causing the negative externality. In the case of a positive externality, the third party obtains benefits from the exchange between a buyer and a seller, but they are not paying for these benefits. If this is the case, then markets would tend to under produce output because suppliers are not aware of the additional demand from others. If the parties generating benefits to others would somehow receive compensation for these external benefits, they would have an incentive to increase production of whatever is causing the positive externality. 12.2 Command-and-Control Regulation Command-and-control regulation sets specific limits for pollution emissions and/or specific pollution-control technologies that firms must use. Although such regulations have helped to protect the environment, they have three shortcomings: they provide no incentive for going beyond the limits they set; they offer limited flexibility on where and how to reduce pollution; and they often have politically-motivated loopholes. 292 Chapter 12 | Environmental Protection and Negative Externalities 12.3 Market-Oriented Environmental Tools Examples of market-oriented environmental policies, also called cap and trade programs, include pollution charges, marketable permits, and better-defined property rights. Market-oriented environmental policies include taxes, markets, and property rights so that those who impose negative externalities must face the social cost. 12.4 The Benefits and Costs of U.S. Environmental Laws We can make a strong case, taken as a whole, that the benefits of U.S. environmental regulation have outweighed the costs. As the extent of environment regulation increases, additional expenditures on environmental protection will probably have increasing marginal costs and decreasing marginal benefits. This pattern suggests that the flexibility and cost savings of market-oriented environmental policies will become more important. 12.5 International Environmental Issues Certain global environmental issues, such as global warming and biodiversity, spill over national borders and require addressing with some form of international agreement. 12.6 The Tradeoff between Economic Output and Environmental Protection Depending on their different income levels and political preferences, countries are likely to make different choices about allocative efficiency—that is, the choice between economic output and environmental protection along the production possibility frontier. However, all countries should prefer to make a choice that shows productive efficiency—that is, the choice is somewhere on the production possibility frontier rather than inside it. Revisit Choice in a World of Scarcity for more on these terms. SELF-CHECK QUESTIONS 1. Identify the following situations as an example of a negative or a positive externality: a. You are a birder (bird watcher), and your neighbor has put up several birdhouses in the yard as well as planting trees and flowers that attract birds. Investments in private education raise your country’s standard of living. b. Your neighbor paints his house a hideous color. c. d. Trash dumped upstream flows downstream right past your home. e. Your roommate is a smoker, but you are a nonsmoker. 2. Identify whether the market supply curve will shift right or left or will stay the same for the following: a. Firms in an industry are required to pay a fine for their carbon dioxide emissions. b. Companies are sued for polluting the water in a river. c. Power plants in a specific city are not required to address the impact of their air quality emissions. d. Companies that use fracking to remove oil and gas from rock are required to clean up the damage. 3. For each of your answers to Exercise 12.2, will equilibrium price rise or fall or stay the same? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 293 4. Table 12.5 provides the supply and demand conditions for a manufacturing firm. The third column represents a supply curve without accounting for the social cost of pollution. The fourth column represents the supply curve when the firm is required to account for the social cost of pollution. Identify the equilibrium before the social cost of production is included and after the social cost of production is included. Price Quantity Demanded Quantity Supplied without paying the cost of the pollution Quantity Supplied after paying the cost of the pollution $10 $15 $20 $25 $30 450 440 430 420 410 Table 12.5 400 440 480 520 560 250 290 330 370 410 5. Consider two approaches to reducing emissions of CO2 into the environment from manufacturing industries in the United States. In the first approach, the U.S. government makes it a policy to use only predetermined technologies. In the second approach, the U.S. government determines which technologies are cleaner and subsidizes their use. Of the two approaches, which is the command-and-control policy? 6. Classify the following pollution-control policies as command-and-control or market incentive based. a. A state emissions tax on the quantity of carbon emitted by each firm. b. The federal government requires domestic auto companies to improve car emissions by 2020. c. The EPA sets national standards for water quality. d. A city sells permits to firms that allow them to emit a specified quantity of pollution. e. The federal government pays fishermen to preserve salmon. 7. An emissions tax on a quantity of emissions from a firm is not a command-and-control approach to reducing pollution. Why? 294 Chapter 12 | Environmental Protection and Negative Externalities 8. Four firms called Elm, Maple, Oak, and Cherry, produce wooden chairs. However, they also produce a great deal of garbage (a mixture of glue, varnish, sandpaper, and wood scraps). The first row of Table 12.6 shows the total amount of garbage (in tons) that each firm currently produces. The other rows of the table show the cost of reducing garbage produced by the first five tons, the second five tons, and so on. First, calculate the cost of requiring each firm to reduce the weight of its garbage by one-fourth. Now, imagine that the government issues marketable permits for the current level of garbage, but the permits will shrink the weight of allowable garbage for each firm by one-fourth. What will be the result of this alternative approach to reducing pollution? Elm Maple Oak Cherry Current production of garbage (in tons) 20 40 60 80 Cost of reducing garbage by first five tons $5,500 $6,300 $7,200 $3,000 Cost of reducing garbage by second five tons $6,000 $7,200 $7,500 $4,000 Cost of reducing garbage by third five tons $6,500 $8,100 $7,800 $5,000 Cost of reducing garbage by fouth five tons $7,000 $9,000 $8,100 $6,000 Cost of reducing garbage by fifth five tons $0 $9,900 $8,400 $7,000 Table 12.6 9. The rows in Table 12.7 show three market-oriented tools for reducing pollution. The columns of the table show three complaints about command-and-control regulation. Fill in the tabl
e by stating briefly how each market-oriented tool addresses each of the three concerns. Incentives to Go Beyond Flexibility about Where and How Pollution Will Be Reduced Political Process Creates Loopholes and Exceptions Pollution Charges Marketable Permits Property Rights Table 12.7 This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 295 10. Suppose a city releases 16 million gallons of raw sewage into a nearby lake. Table 12.8 shows the total costs of cleaning up the sewage to different levels, together with the total benefits of doing so. (Benefits include environmental, recreational, health, and industrial benefits.) Total Cost (in thousands of dollars) Total Benefits (in thousands of dollars) Current situation Current situation 50 150 500 1200 800 1300 1650 1900 16 million gallons 12 million gallons 8 million gallons 4 million gallons 0 gallons Table 12.8 a. Using the information in Table 12.8, calculate the marginal costs and marginal benefits of reducing sewage emissions for this city. See Production, Costs and Industry Structure if you need a refresher on how to calculate marginal costs. b. What is the optimal level of sewage for this city? c. Why not just pass a law that firms can emit zero sewage? After all, the total benefits of zero emissions exceed the total costs. 11. The state of Colorado requires oil and gas companies who use fracking techniques to return the land to its original condition after the oil and gas extractions. Table 12.9 shows the total cost and total benefits (in dollars) of this policy. Land Restored (in acres) Total Cost Total Benefit 0 100 200 300 400 Table 12.9 $0 $20 $80 $160 $280 $0 $140 $240 $320 $380 a. Calculate the marginal cost and the marginal benefit at each quantity (acre) of land restored. See Production, Costs and Industry Structure if you need a refresher on how to calculate marginal costs and benefits. If we apply marginal analysis, what is the optimal amount of land to be restored? b. 296 Chapter 12 | Environmental Protection and Negative Externalities 12. Consider the case of global environmental problems that spill across international borders as a prisoner’s dilemma of the sort studied in Monopolistic Competition and Oligopoly. Say that there are two countries, A and B. Each country can choose whether to protect the environment, at a cost of 10, or not to protect it, at a cost of zero. If one country decides to protect the environment, there is a benefit of 16, but the benefit is divided equally between the two countries. If both countries decide to protect the environment, there is a benefit of 32, which is divided equally between the two countries. a. In Table 12.10, fill in the costs, benefits, and total payoffs to the countries of the following decisions. Explain why, without some international agreement, they are likely to end up with neither country acting to protect the environment. Country B Protect Not Protect Country A Protect Not Protect Table 12.10 13. A country called Sherwood is very heavily covered with a forest of 50,000 trees. There are proposals to clear some of Sherwood’s forest and grow corn, but obtaining this additional economic output will have an environmental cost from reducing the number of trees. Table 12.11 shows possible combinations of economic output and environmental protection. Combos Corn Bushels (thousands) Number of Trees (thousands) P Q R S T Table 12.11 9 2 7 2 6 5 30 20 40 10 a. Sketch a graph of a production possibility frontier with environmental quality on the horizontal axis, measured by the number of trees, and the quantity of economic output, measured in corn, on the vertical axis. b. Which choices display productive efficiency? How can you tell? c. Which choices show allocative efficiency? How can you tell? d. e. f. In the choice between T and R, decide which one is better. Why? In the choice between T and S, can you say which one is better, and why? If you had to guess, which choice would you think is more likely to represent a command-and-control environmental policy and which choice is more likely to represent a market-oriented environmental policy, choice Q or S? Why? REVIEW QUESTIONS 14. What is an externality? 15. Give an example of a positive externality and an example of a negative externality. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 297 16. What is the difference between private costs and social costs? 17. In a market without environmental regulations, will the supply curve for a firm account for private costs, external costs, both, or neither? Explain. 18. What regulation? is command-and-control environmental 19. What are the three problems that economists have noted with regard to command-and-control regulation? 20. What is a pollution charge and what incentive does it provide for a firm to take external costs into account? 21. What is a marketable permit and what incentive does it provide for a firm to account for external costs? 22. What are better-defined property rights and what incentive do they provide to account for external costs? CRITICAL THINKING QUESTIONS 29. Suppose you want to put a dollar value on the external costs of carbon emissions from a power plant. What information or data would you obtain to measure the external [not social] cost? 30. Would environmentalists favor command-andcontrol policies as a way to reduce pollution? Why or why not? 31. Consider two ways of protecting elephants from poachers in African countries. In one approach, the government sets up enormous national parks that have sufficient habitat for elephants to thrive and forbids all local people to enter the parks or to injure either the elephants or their habitat in any way. In a second approach, the government sets up national parks and designates 10 villages around the edges of the park as official tourist centers that become places where tourists can stay and bases for guided tours inside the national park. Consider local villagers—who often are very poor—in each of these plans. Which plan seems more likely to help the elephant population? incentives of the different 32. Will a system of marketable permits work with thousands of firms? Why or why not? 23. As the extent of environmental protection expands, would you expect marginal costs of environmental protection to rise or fall? Why or why not? you 24. As the extent of environmental protection expands, of would environmental protection to rise or fall? Why or why not? the marginal benefits expect 25. What are the economic tradeoffs between lowincome and high-income countries in international conferences on global environmental damage? 26. What arguments do low-income countries make in international discussions of global environmental cleanup? 27. In the tradeoff between economic output and environmental protection, what do the combinations on the protection possibility curve represent? 28. What does a point inside the production possibility frontier represent? Is zero pollution possible under a marketable 33. permits system? Why or why not? Is zero pollution an optimal goal? Why or why 34. not? 35. From an economic perspective, is it sound policy to pursue a goal of zero pollution? Why or why not? 36. Recycling is a relatively inexpensive solution to much of the environmental contamination from plastics, glass, and other waste materials. Is it a sound policy to make it mandatory for everybody to recycle? 37. Can extreme levels of pollution hurt the economic development of a high-income country? Why or why not? 38. How can high-income countries benefit from covering much of the cost of reducing pollution created by low-income countries? innovations shift 39. Technological the production possibility curve. Look at graph you sketched for Exercise 12.13 Which types of technologies should a country promote? Should “clean” technologies be promoted over other technologies? Why or why not? 298 Chapter 12 | Environmental Protection and Negative Externalities 43. A city currently emits 16 million gallons (MG) of raw sewage into a lake that is beside the city. Table 12.13 shows the total costs (TC) in thousands of dollars of cleaning up the sewage to different levels, together with the total benefits (TB) of doing so. Benefits include environmental, and industrial recreational, health, benefits. TC TB Current Current 50 150 500 1200 800 1300 1850 2000 16 MG 12 MG 8 MG 4 MG 0 MG Table 12.13 a. Using the information in Table 12.13 calculate the marginal costs and marginal benefits of reducing sewage emissions for this city. b. What is the optimal level of sewage for this city? How can you tell? PROBLEMS 40. Show the market for cigarettes in equilibrium, assuming that there are no laws banning smoking in public. Label the equilibrium private market price and quantity as Pm and Qm. Add whatever is needed to the model to show the impact of the negative externality from second-hand smoking. (Hint: In this case it is the consumers, not the sellers, who are creating the negative externality.) Label the social optimal output and price as Pe and Qe. On the graph, shade in the deadweight loss at the market output. 41. Refer to Table 12.2. The externality created by the refrigerator production was $100. However, once we accounted for both the private and additional external costs, the market price increased by only $50. If the external costs were $100 why did the price only increase by $50 when we accounted for all costs? 42. Table 12.12, shows the supply and demand conditions for a firm that will play trumpets on the streets when requested. Qs1 is the quantity supplied without social costs. Qs2 is the quantity supplied with social costs. What is the negative externality in this situation? Identify the equilibrium price and quantity when we account only for private costs, and then when
we account for social costs. How does accounting for the externality affect the equilibrium price and quantity? P Qd Qs1 Qs2 $20 $18 $15 $12 $10 $5 0 1 2.5 4 5 10 9 7.5 6 5 7.5 2.5 Table 12.12 8 7 5.5 4 3 0.5 This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 12 | Environmental Protection and Negative Externalities 299 44. In the Land of Purity, there is only one form of pollution, called “gunk.” Table 12.14 shows possible combinations of economic output and reduction of gunk, depending on what kinds of environmental regulations you choose. Combos Eco Output Gunk Cleaned Up J K L M N 800 500 600 400 100 Table 12.14 10% 30% 40% 40% 90% a. Sketch a graph of a production possibility frontier with environmental quality on the horizontal axis, measured by the percentage reduction of gunk, and with the quantity of economic output on the vertical axis. b. Which choices display productive efficiency? How can you tell? c. Which choices show allocative efficiency? How d. e. f. can you tell? In the choice between K and L, can you say which one is better and why? In the choice between K and N, can you say which one is better, and why? If you had to guess, which choice would you think is more likely to represent a command-andcontrol environmental policy and which choice is more likely to represent a market-oriented environmental policy, choice L or M? Why? 300 Chapter 12 | Environmental Protection and Negative Externalities This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 301 13 | Positive Externalities and Public Goods Figure 13.1 View from Voyager I Launched by NASA on September 5, 1977, Voyager 1’s primary mission was to provide detailed images of Jupiter, Saturn, and their moons. It took this photograph of Jupiter on its journey. In August of 2012, Voyager I entered interstellar space—the first human-made object to do so—and it is expected to send data and images back to earth until 2025. Such a technological feat entails many economic principles. (Credit: modification of work by NASA/JPL) The Benefits of Voyager I Endure The rapid growth of technology has increased our ability to access and process data, to navigate through a busy city, and to communicate with friends on the other side of the globe. The research and development efforts of citizens, scientists, firms, universities, and governments have truly revolutionized the modern economy. To get a sense of how far we have come in a short period of time, let’s compare one of humankind’s greatest achievements to the smartphone most of us have in our coat pocket. In 1977 the United States launched Voyager I, a spacecraft originally intended to reach Jupiter and Saturn, to send back photographs and other cosmic measurements. Voyager I, however, kept going, and going—past Jupiter and Saturn—right out of our solar system. At the time of its launch, Voyager had some of the most sophisticated computing processing power NASA could engineer (8,000 instructions per second), but today, we Earthlings use handheld devices that can process 14 billion instructions per second. Still, the technology of today is a spillover product of the incredible feats NASA accomplished forty years ago. NASA research, for instance, is responsible for the kidney dialysis and mammogram machines that we 302 Chapter 13 | Positive Externalities and Public Goods use today. Research in new technologies not only produces private benefits to the investing firm, or in this case to NASA, but it also creates benefits for the broader society. In this way, new knowledge often becomes what economists refer to as a public good. This leads us to the topic of this chapter—technology, positive externalities, public goods, and the role of government in encouraging innovation and the social benefits that it provides. Introduction to Positive Externalities and Public Goods In this chapter, you will learn about: • Why the Private Sector Underinvests in Technologies • How Governments Can Encourage Innovation • Public Goods Can you imagine a world in which you did not own a cellular phone or use Wikipedia? New technology changes how people live and work and what they buy. Technology includes the invention of new products, new ways of producing goods and services, and even new ways of managing a company more efficiently. Research and development of technology is the difference between horses and automobiles, between candles and electric lights, between fetching water in buckets and indoor plumbing, and between infection and good health from antibiotics. In December 2009, ABC News compiled a list of some of the technological breakthroughs that have revolutionized consumer products in the past 10 years: • GPS tracking devices, originally developed by the defense department and available to consumers in 2000, give users up-to-date information on location and time through satellite technology. • In 2000, Toyota introduced the Prius hybrid car, which greatly improved fuel efficiency. • Also in 2000, AT&T offered its customers the ability to text on a mobile phone. • In 2001, Wikipedia launched a user-generated encyclopedia on the Web. • Even though Napster died in 2001, the company launched music downloading and file sharing, which revolutionized how consumers obtain their music and videos. • Friendster kicked off the social networking business in 2003, and Twitter and Facebook followed. • In 2003, international scientists completed the Human Genome project. It helps to fight disease and launch new pharmaceutical innovations. • Also in 2003, the search engine became a way of life for obtaining information quickly. The search engine companies also became innovators in the digital software that dominates mobile devices. • In 2006, Nintendo launched Wii and changed the way we play video games. Players can now be drawn into the action and use their bodies to respond rather than a handheld device. • Apple introduced the iPhone in 2007 and launched an entire smartphone industry. In 2015, cell phones now recognize human voices via artificial intelligence. With all new technologies, however, there are new challenges. This chapter deals with some of these issues: Will private companies be willing to invest in new technology? In what ways does new technology have positive externalities? What motivates inventors? Does government have a role to play in encouraging research and technology? Are there certain types of goods that markets fail to provide efficiently, and that only government can produce? What happens when consumption or production of a product creates positive externalities? Why is it unsurprising when we overuse a common resource, like marine fisheries? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 303 13.1 | Why the Private Sector Underinvests in Innovation By the end of this section, you will be able to: Identify the positive externalities of new technology. • • Explain the difference between private benefits and social benefits and give examples of each. • Calculate and analyze rates of return Market competition can provide an incentive for discovering new technology because a firm can earn higher profits by finding a way to produce products more cheaply or to create products with characteristics consumers want. As Gregory Lee, CEO of Samsung said, “Relentless pursuit of new innovation is the key principle of our business and enables consumers to discover a world of possibilities with technology.” An innovative firm knows that it will usually have a temporary edge over its competitors and thus an ability to earn above-normal profits before competitors can catch up. In certain cases, however, competition can discourage new technology, especially when other firms can quickly copy a new idea. Consider a pharmaceutical firm deciding to develop a new drug. On average, it can cost $800 million and take more than a decade to discover a new drug, perform the necessary safety tests, and bring the drug to market. If the research and development (R&D) effort fails—and every R&D project has some chance of failure—then the firm will suffer losses and could even be driven out of business. If the project succeeds, then the firm’s competitors may figure out ways of adapting and copying the underlying idea, but without having to pay the costs themselves. As a result, the innovative company will bear the much higher costs of the R&D and will enjoy at best only a small, temporary advantage over the competition. Many inventors over the years have discovered that their inventions brought them less profit than they might have reasonably expected. • Eli Whitney (1765–1825) invented the cotton gin, but then southern cotton planters built their own seedseparating devices with a few minor changes in Whitney’s design. When Whitney sued, he found that the courts in southern states would not uphold his patent rights. • Thomas Edison (1847–1931) still holds the record for most patents granted to an individual. His first invention was an automatic vote counter, and despite the social benefits, he could not find a government that wanted to buy it. • Gordon Gould came up with the idea behind the laser in 1957. He put off applying for a patent and, by the time he did apply, other scientists had laser inventions of their own. A lengthy legal battle resulted, in which Gould spent $100,000 on lawyers, before he eventually received a patent for the laser in 1977. Compared to the enormous social benefits of the laser, Gould received relatively little financial reward. • In 1936, Alan Turing delivered a paper titled, "On Computable Numbers, with an Application to the Entscheidungsproblem," in which he presented the notion of a universal machine (later called the “Universal Turing Machine," and then the "Turing machine") capable of computing anything that is
computable. The central concept of the modern computer was based on Turing’s paper. Today scholars widely consider Turing as the father of theoretical computer science and artificial intelligence; however, the UK government prosecuted Turing in 1952 for homosexual acts and gave him the choice of chemical castration or prison. Turing chose castration and died in 1954 from cyanide poisoning. A variety of studies by economists have found that the original inventor receives one-third to one-half of the total economic benefits from innovations, while other businesses and new product users receive the rest. The Positive Externalities of New Technology Will private firms in a market economy underinvest in research and technology? If a firm builds a factory or buys a piece of equipment, the firm receives all the economic benefits that result from the investments. However, when a firm invests in new technology, the private benefits, or profits, that the firm receives are only a portion of the overall social benefits. The social benefits of an innovation account for the value of all the positive externalities of the new idea or product, whether enjoyed by other companies or society as a whole, as well as the private benefits the firm that developed the new technology receives. As you learned in Environmental Protection and Negative Externalities, positive externalities are beneficial spillovers to a third party, or parties. 304 Chapter 13 | Positive Externalities and Public Goods Consider the example of the Big Drug Company, which is planning its R&D budget for the next year. Economists and scientists working for Big Drug have compiled a list of potential research and development projects and estimated rates of return. (The rate of return is the estimated payoff from the project.) Figure 13.2 shows how the calculations work. The downward-sloping DPrivate curve represents the firm’s demand for financial capital and reflects the company’s willingness to borrow to finance research and development projects at various interest rates. Suppose that this firm’s investment in research and development creates a spillover benefit to other firms and households. After all, new innovations often spark other creative endeavors that society also values. If we add the spillover benefits society enjoys to the firm’s private demand for financial capital, we can draw DSocial that lies above DPrivate. If there were a way for the firm to fully monopolize those social benefits by somehow making them unavailable to the rest of us, the firm’s private demand curve would be the same as society’s demand curve. According to Figure 13.2 and Table 13.1, if the going rate of interest on borrowing is 8%, and the company can receive the private benefits of innovation only, then the company would finance $30 million. Society, at the same rate of 8%, would find it optimal to have $52 million of borrowing. Unless there is a way for the company to fully enjoy the total benefits, then it will borrow less than the socially optimal level of $52 million. Figure 13.2 Positive Externalities and Technology Big Drug faces a cost of borrowing of 8%. If the firm receives only the private benefits of investing in R&D, then we show its demand curve for financial capital by DPrivate, and the equilibrium will occur at $30 million. Because there are spillover benefits, society would find it optimal to have $52 million of investment. If the firm could keep the social benefits of its investment for itself, its demand curve for financial capital would be DSocial and it would be willing to borrow $52 million. Rate of Return DPrivate (in millions) DSocial (in millions) 2% 4% 6% 8% 10% $72 $52 $38 $30 $26 Table 13.1 Return and Demand for Capital $84 $72 $62 $52 $44 Big Drug’s original demand for financial capital (DPrivate) is based on the profits received the firm receives. However, other pharmaceutical firms and health care companies may learn new lessons about how to treat certain medical conditions and are then able to create their own competing products. The social benefit of the drug takes into account the value of all the drug's positive externalities. If Big Drug were able to gain this social return instead of other companies, its demand for financial capital would shift to the demand curve DSocial, and it would be willing to borrow and invest $52 million. However, if Big Drug is receiving only 50 cents of each dollar of social benefits, the firm will not spend as much on creating new products. The amount it would be willing to spend would fall somewhere in between DPrivate and DSocial. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 305 Why Invest in Human Capital? The investment in anything, whether it is the construction of a new power plant or research in a new cancer treatment, usually requires a certain upfront cost with an uncertain future benefit. The investment in education, or human capital, is no different. Over the span of many years, a student and her family invest significant amounts of time and money into that student’s education. The idea is that higher levels of educational attainment will eventually serve to increase the student’s future productivity and subsequent ability to earn. Once the student crunches the numbers, does this investment pay off for her? Almost universally, economists have found that the answer to this question is a clear “Yes.” For example, several studies of the return to education in the United States estimate that the rate of return to a college education is approximately 10-15%. Data in Table 13.2, from the U.S. Bureau of Labor Statistics’ Usual Weekly Earnings of Wage and Salary Workers, Third Quarter 2014, demonstrate that median weekly earnings are higher for workers who have completed more education. While these rates of return will beat equivalent investments in Treasury bonds or savings accounts, the estimated returns to education go primarily to the individual worker, so these returns are private rates of return to education. Median Weekly Earnings (full-time workers over the age of 25) Less than a High School Degree High School Degree, No College Bachelor’s Degree $519 $698 $1,270 Table 13.2 Usual Weekly Earnings of Wage and Salary Workers, Fourth Quarter 2016 (Source: http://www.bls.gov/news.release/pdf/wkyeng.pdf) What does society gain from investing in the education of another student? After all, if the government is spending taxpayer dollars to subsidize public education, society should expect some kind of return on that spending. Economists like George Psacharopoulos have found that, across a variety of nations, the social rate of return on schooling is also positive. After all, positive externalities exist from investment in education. While not always easy to measure, according to Walter McMahon, the positive externalities to education typically include better health outcomes for the population, lower levels of crime, a cleaner environment and a more stable, democratic government. For these reasons, many nations have chosen to use taxpayer dollars to subsidize primary, secondary, and higher education. Education clearly benefits the person who receives it, but a society where most people have a good level of education provides positive externalities for all. Other Examples of Positive Externalities Although technology may be the most prominent example of a positive externality, it is not the only one. For example, vaccinations against disease are not only a protection for the individual, but they have the positive spillover of protecting others who may become infected. When a number of homes in a neighborhood are modernized, updated, and restored, not only does it increase the homes' value, but other property values in the neighborhood may increase as well. The appropriate public policy response to a positive externality, like a new technology, is to help the party creating the positive externality receive a greater share of the social benefits. In the case of vaccines, like flu shots, an effective policy might be to provide a subsidy to those who choose to get vaccinated. Figure 13.3 shows the market for flu shots. The market demand curve DMarket for flu shots reflects only the marginal private benefits (MPB) that the vaccinated individuals receive from the shots. Assuming that there are no spillover costs in the production of flu shots, the market supply curve is given by the marginal private cost (MPC) of producing the vaccinations. The equilibrium quantity of flu shots produced in the market, where MPB is equal to MPC, is QMarket and the price of flu shots is PMarket. However, spillover benefits exist in this market because others, those who chose not to purchase a flu shot, receive a positive externality in a reduced chance of contracting the flu. When we add the spillover benefits to the marginal private benefit of flu shots, the marginal social benefit (MSB) of flu shots is given by DSocial. Because the MSB is greater than MPB, we see that the socially optimal level of flu shots is greater than the market quantity 306 Chapter 13 | Positive Externalities and Public Goods (QSocial exceeds QMarket) and the corresponding price of flu shots, if the market were to produce QSocial, would be at PSocial. Unfortunately, the marketplace does not recognize the positive externality and flu shots will go under produced and under consumed. How can government try to move the market level of output closer to the socially desirable level of output? One policy would be to provide a subsidy, like a voucher, to any citizen who wishes to get vaccinated. This voucher would act as “income” that one could use purchase only a flu shot and, if the voucher were exactly equal to the per-unit spillover benefits, would increase market equilibrium to a quantity of QSocial and a price of PSocial where MSB equals MSC. Suppliers of the flu shots would rece
ive payment of PSocial per vaccination, while consumers of flu shots would redeem the voucher and only pay a price of PSubsidy. When the government uses a subsidy in this way, it produces the socially optimal quantity of vaccinations. Figure 13.3 The Market for Flu Shots with Spillover Benefits (A Positive Externality) The market demand curve does not reflect the positive externality of flu vaccinations, so only QMarket will be exchanged. This outcome is inefficient because the marginal social benefit exceeds the marginal social cost. If the government provides a subsidy to consumers of flu shots, equal to the marginal social benefit minus the marginal private benefit, the level of vaccinations can increase to the socially optimal quantity of QSocial. 13.2 | How Governments Can Encourage Innovation By the end of this section, you will be able to: • Explain the effects of intellectual property rights on social and private rates of return. Identify three U.S. Government policies and explain how they encourage innovation • including: guaranteeing A number of different government policies can increase the incentives to innovate, intellectual property rights, government assistance with the costs of research and development, and cooperative research ventures between universities and companies. Intellectual Property Rights One way to increase new technology is to guarantee the innovator an exclusive right to that new product or process. Intellectual property rights include patents, which give the inventor the exclusive legal right to make, use, or sell the invention for a limited time, and copyright laws, which give the author an exclusive legal right over works of literature, music, film/video, and pictures. For example, if a pharmaceutical firm has a patent on a new drug, then no other firm can manufacture or sell that drug for 21 years, unless the firm with the patent grants permission. Without a patent, the pharmaceutical firm would have to face competition for any successful products, and could earn no more than a normal rate of profit. With a patent, a firm is able to earn monopoly profits on its product for a period of time—which offers an incentive for research and development. In general, how long can “a period of time” be? The This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 307 Clear It Up discusses patent and copyright protection timeframes for some works you might know. How long is Mickey Mouse protected from being copied? All patents and copyrights are scheduled to end someday. In 2003, copyright protection for Mickey Mouse was scheduled to run out. Once the copyright had expired, anyone would be able to copy Mickey Mouse cartoons or draw and sell new ones. In 1998, however, Congress passed the Sonny Bono Copyright Term Extension Act. For copyrights owned by companies or other entities, it increased or extended the copyright from 75 years to 95 years after publication. For copyrights owned by individuals, it increased or extended the copyright coverage from 50 years to 70 years after death. Along with protecting Mickey for another 20 years, the copyright extension affected about 400,000 books, movies, and songs. Figure 13.4 illustrates how the total number of patent applications filed with the U.S. Patent and Trademark Office, as well as the total number of patents granted, surged in the mid-1990s with the invention of the internet, and is still going strong today. Figure 13.4 Patents Filed and Granted, 1981–2012 The number of applications filed for patents increased substantially beginning in the 1990s, due in part to the invention of the internet, which has led to many other inventions and to the 1998 Copyright Term Extension Act. (Source: http://www.uspto.gov/web/offices/ac/ido/oeip/taf/ us_stat.htm) While patents provide an incentive to innovate by protecting the innovator, they are not perfect. For example: • • In countries that already have patents, economic studies show that inventors receive only one-third to one-half of the total economic value of their inventions. In a fast-moving high-technology industry like biotechnology or semiconductor design, patents may be almost irrelevant because technology is advancing so quickly. • Not every new idea can be protected with a patent or a copyright—for example, a new way of organizing a factory or a new way of training employees. • Patents may sometimes cover too much or be granted too easily. In the early 1970s, Xerox had received over 1,700 patents on various elements of the photocopy machine. Every time Xerox improved the photocopier, it received a patent on the improvement. • The 21-year time period for a patent is somewhat arbitrary. Ideally, a patent should cover a long enough period of time for the inventor to earn a good return, but not so long that it allows the inventor to charge a monopoly price permanently. 308 Chapter 13 | Positive Externalities and Public Goods Because patents are imperfect and do not apply well to all situations, alternative methods of improving the rate of return for inventors of new technology are desirable. The following sections describe some of these possible alternative policies. Policy #1: Government Spending on Research and Development If the private sector does not have sufficient incentive to carry out research and development, one possibility is for the government to fund such work directly. Government spending can provide direct financial support for research and development (R&D) conducted at colleges and universities, nonprofit research entities, and sometimes by private firms, as well as at government-run laboratories. While government spending on research and development produces technology that is broadly available for firms to use, it costs taxpayers money and can sometimes be directed more for political than for scientific or economic reasons. the NASA Visit website (http://openstaxcollege.org/l/NASA) (http://openstaxcollege.org/l/USDA) to read about government research that would not take place were it left to firms due to the externalities. website USDA and the The first column of Table 13.3 shows the sources of total U.S. spending on research and development. The second column shows the total dollars of R&D funding by each source. The third column shows that, relative to the total amount of funding, 22.7% comes from the federal government, about 69% of R&D is done by industry, and less than 4% is done by universities and colleges. (The percentages below do not add up to exactly 100% due to rounding.) Sources of R&D Funding Amount ($ billions) Percent of the Total Federal government Industry Universities and colleges Nonprofits Nonfederal government Total $113.1 $344.9 $17.1 $19.9 $4.0 $499 22.7% 69.0% 3.4% 4.0% 0.8% Table 13.3 U.S. Research and Development Expenditures, 2015 (Source: https://www.nsf.gov/ statistics/2016/nsf16316/) In the 1960s the federal government paid for about two-thirds of the nation’s R&D. Over time, the U.S. economy has come to rely much more heavily on industry-funded R&D. The federal government has tried to focus its direct R&D spending on areas where private firms are not as active. One difficulty with direct government support of R&D is that it inevitably involves political decisions about which projects are worthy. The scientific question of whether research is worthwhile can easily become entangled with considerations like the location of the congressional district in which This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 309 the research funding is spent. Policy #2: Tax Breaks for Research and Development A complementary approach to supporting R&D that does not involve the government’s close scrutiny of specific projects is to give firms a reduction in taxes depending on how much research and development they do. The federal government refers to this policy as the research and experimentation (R&E) tax credit. According to the Treasury Department: “. . . the R&E Credit is also a cost-effective policy for stimulating additional private sector investment. Most recent studies find that each dollar of foregone tax revenue through the R&E Tax Credit causes firms to invest at least a dollar in R&D, with some studies finding a benefit to cost ratio of 2 or 2.96.” Visit this website (http://openstaxcollege.org/l/REtaxcredit) for more information on how the R&E Tax Credit encourages investment. Policy #3 Cooperative Research State and federal governments support research in a variety of ways. For example, United for Medical Research, a coalition of groups that seek funding for the National Institutes of Health, (which is supported by federal grants), states: “NIH-supported research added $69 billion to our GDP and supported seven million jobs in 2011 alone.” The United States remains the leading sponsor of medical-related research spending $117 billion in 2011. Other institutions, such as the National Academy of Scientists and the National Academy of Engineers, receive federal grants for innovative projects. The Agriculture and Food Research Initiative (AFRI) at the United States Department of Agriculture awards federal grants to projects that apply the best science to the most important agricultural problems, from food safety to childhood obesity. Cooperation between government-funded universities, academies, and the private sector can spur product innovation and create whole new industries. 13.3 | Public Goods By the end of this section, you will be able to: Identify a public good using nonexcludable and non-rival as criteria • • Explain the free rider problem • Identify several sources of public goods Even though new technology creates positive externalities so that perhaps one-third or one-half of the social benefit of new inventions spills over to others, the inventor still receives some private return. Wha
t about a situation where the positive externalities are so extensive that private firms could not expect to receive any of the social benefit? We call this kind of good a public good. Spending on national defense is a good example of a public good. Let’s begin by defining the characteristics of a public good and discussing why these characteristics make it difficult for private firms to supply public goods. Then we will see how government may step in to address the issue. The Definition of a Public Good Economists have a strict definition of a public good, and it does not necessarily include all goods financed through 310 Chapter 13 | Positive Externalities and Public Goods taxes. To understand the defining characteristics of a public good, first consider an ordinary private good, like a piece of pizza. We can buy and sell a piece of pizza fairly easily because it is a separate and identifiable item. However, public goods are not separate and identifiable in this way. Instead, public goods have two defining characteristics: they are nonexcludable and non-rival. The first characteristic, that a public good is nonexcludable, means that it is costly or impossible to exclude someone from using the good. If Larry buys a private good like a piece of pizza, then he can exclude others, like Lorna, from eating that pizza. However, if national defense is provided, then it includes everyone. Even if you strongly disagree with America’s defense policies or with the level of defense spending, the national defense still protects you. You cannot choose to be unprotected, and national defense cannot protect everyone else and exclude you. The second main characteristic of a public good, that it is non-rival, means that when one person uses the public good, another can also use it. With a private good like pizza, if Max is eating the pizza then Michelle cannot also eat it; that is, the two people are rivals in consumption. With a public good like national defense, Max’s consumption of national defense does not reduce the amount left for Michelle, so they are non-rival in this area. A number of government services are examples of public goods. For instance, it would not be easy to provide fire and police service so that some people in a neighborhood would be protected from the burning and burglary of their property, while others would not be protected at all. Protecting some necessarily means protecting others, too. Positive externalities and public goods are closely related concepts. Public goods have positive externalities, like police protection or public health funding. Not all goods and services with positive externalities, however, are public goods. Investments in education have huge positive spillovers but can be provided by a private company. Private companies can invest in new inventions such as the Apple iPad and reap profits that may not capture all of the social benefits. We can also describe patents as an attempt to make new inventions into private goods, which are excludable and rivalrous, so that no one but the inventor can use them during the length of the patent. The Free Rider Problem of Public Goods Private companies find it difficult to produce public goods. If a good or service is nonexcludable, like national defense, so that it is impossible or very costly to exclude people from using this good or service, then how can a firm charge people for it? Visit this website (http://openstaxcollege.org/l/freerider) to read about a connection between free riders and “bad music.” When individuals make decisions about buying a public good, a free rider problem can arise, in which people have an incentive to let others pay for the public good and then to “free ride” on the purchases of others. We can express the free rider problem in terms of the prisoner’s dilemma game, which we discuss as a representation of oligopoly in Monopolistic Competition and Oligopoly. When individuals make decisions about buying a public good, a free rider problem can arise, in which people have an incentive to let others pay for the public good and then, since once there is a provided public good it is available to all, to “free ride” on the purchases of others. There is a dilemma with the Prisoner’s Dilemma, though. See the Work It Out feature. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 311 The Problem with the Prisoner’s Dilemma Suppose two people, Rachel and Samuel, are considering purchasing a public good. The difficulty with the prisoner’s dilemma arises as each person thinks through his or her strategic choices. Step 1. Rachel reasons in this way: If Samuel does not contribute, then I would be a fool to contribute. However, if Samuel does contribute, then I can come out ahead by not contributing. Step 2. Either way, I should choose not to contribute, and instead hope that I can be a free rider who uses the public good paid for by Samuel. Step 3. Samuel reasons the same way about Rachel. Step 4. When both people reason in that way, the public good never gets built, and there is no movement to the option where everyone cooperates—which is actually best for all parties. The Role of Government in Paying for Public Goods The key insight in paying for public goods is to find a way of assuring that everyone will make a contribution and to prevent free riders. For example, if people come together through the political process and agree to pay taxes and make group decisions about the quantity of public goods, they can defeat the free rider problem by requiring, through the law, that everyone contributes. However, government spending and taxes are not the only way to provide public goods. In some cases, markets can produce public goods. For example, think about radio. It is nonexcludable, since once the radio signal is broadcast, it would be very difficult to stop someone from receiving it. It is non-rival, since one person listening to the signal does not prevent others from listening as well. Because of these features, it is practically impossible to charge listeners directly for listening to conventional radio broadcasts. Radio has found a way to collect revenue by selling advertising, which is an indirect way of “charging” listeners by taking up some of their time. Ultimately, consumers who purchase the goods advertised are also paying for the radio service, since the station builds in the cost of advertising into the product cost. In a more recent development, satellite radio companies, such as SirusXM, charge a regular subscription fee for streaming music without commercials. In this case, however, the product is excludable—only those who pay for the subscription will receive the broadcast. Some public goods will also have a mixture of public provision at no charge along with fees for some purposes, like a public city park that is free to use, but the government charges a fee for parking your car, for reserving certain picnic grounds, and for food sold at a refreshment stand. Read this article (http://openstaxcollege.org/l/governmentpay) to find out what economists say the government should pay for. In other cases, we can use social pressures and personal appeals, rather than the force of law, to reduce the number of free riders and to collect resources for the public good. For example, neighbors sometimes form an association to 312 Chapter 13 | Positive Externalities and Public Goods carry out beautification projects or to patrol their area after dark to discourage crime. In low-income countries, where social pressure strongly encourages all farmers to participate, farmers in a region may come together to work on a large irrigation project that will benefit all. We can view many fundraising efforts, including raising money for local charities and for the endowments of colleges and universities, as an attempt to use social pressure to discourage free riding and to generate the outcome that will produce a public benefit. Common Resources and the “Tragedy of the Commons” There are some goods that do not fall neatly into the categories of private good or public good. While it is easy to classify a pizza as a private good and a city park as a public good, what about an item that is nonexcludable and rivalrous, such as the queen conch? In the Caribbean, the queen conch is a large marine mollusk that lives in shallow waters of sea grass. These waters are so shallow, and so clear, that a single diver may harvest many conch in a single day. Not only is conch meat a local delicacy and an important part of the local diet, but artists use the large ornate shells and craftsmen transform them. Because almost anyone with a small boat, snorkel, and mask, can participate in the conch harvest, it is essentially nonexcludable. At the same time, fishing for conch is rivalrous. Once a diver catches one conch another diver cannot catch it. We call goods that are nonexcludable and rivalrous common resources. Because the waters of the Caribbean are open to all conch fishermen, and because any conch that you catch is conch that I cannot catch, fishermen tend to overharvest common resources like the conch. The problem of overharvesting common resources is not a new one, but ecologist Garret Hardin put the tag “Tragedy of the Commons” to the problem in a 1968 article in the magazine Science. Economists view this as a problem of property rights. Since nobody owns the ocean, or the conch that crawl on the sand beneath it, no one individual has an incentive to protect that resource and responsibly harvest it. To address the issue of overharvesting conch and other marine fisheries, economists typically advocate simple devices like fishing licenses, harvest limits, and shorter fishing seasons. When the population of a species drops to critically low numbers, governments have even banned the harvest until biologists determine that the population has returned to sustainable levels.
In fact, such is the case with the conch, the harvesting of which the government has effectively banned in the United States since 1986. Visit this website (http://openstaxcollege.org/l/queenconch) for more on the queen conch industry. Positive Externalities in Public Health Programs One of the most remarkable changes in the standard of living in the last several centuries is that people are living longer. Thousands of years ago, scientists believe that human life expectancy ranged between 20 to 30 years. By 1900, average life expectancy in the United States was 47 years. By 2015, life expectancy was 79 years. Most of the gains in life expectancy in the history of the human race happened in the twentieth century. The rise in life expectancy seems to stem from three primary factors. First, systems for providing clean water and disposing of human waste helped to prevent the transmission of many diseases. Second, changes in public behavior have advanced health. Early in the twentieth century, for example, people learned the importance of boiling bottles before using them for food storage and baby’s milk, washing their hands, and protecting food from flies. More recent behavioral changes include reducing the number of people who smoke tobacco and precautions to limit sexually transmitted diseases. Third, medicine has played a large role. Scientists developed immunizations for diphtheria, This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 313 cholera, pertussis, tuberculosis, tetanus, and yellow fever between 1890 and 1930. Penicillin, discovered in 1941, led to a series of other antibiotic drugs for bringing infectious diseases under control. In recent decades, drugs that reduce the risks of high blood pressure have had a dramatic effect in extending lives. These advances in public health have all been closely linked to positive externalities and public goods. Public health officials taught hygienic practices to mothers in the early 1900s and encouraged less smoking in the late 1900s. Government funded many public sanitation systems and storm sewers because they have the key traits of public goods. In the twentieth century, many medical discoveries emerged from government or university-funded research. Patents and intellectual property rights provided an additional incentive for private inventors. The reason for requiring immunizations, phrased in economic terms, is that it prevents spillovers of illness to others—as well as helping the person immunized. The Benefits of Voyager I Endure While we applaud the technology spillovers of NASA’s space projects, we should also acknowledge that those benefits are not shared equally. Economists like Tyler Cowen, a professor at George Mason University, are seeing increasing evidence of a widening gap between those who have access to rapidly improving technology, and those who do not. According to Cowen, author of the recent book, Average Is Over: Powering America Beyond the Age of the Great Stagnation, this inequality in access to technology and information is going to deepen the inequality in skills, and ultimately, in wages and global standards of living. 314 Chapter 13 | Positive Externalities and Public Goods KEY TERMS external benefits (or positive externalities) beneficial spillovers to a third party of parties, who did not purchase the good or service that provided the externalities free rider those who want others to pay for the public good and then plan to use the good themselves; if many people act as free riders, the public good may never be provided intellectual property the body of law including patents, trademarks, copyrights, and trade secret law that protect the right of inventors to produce and sell their inventions nonexcludable when it is costly or impossible to exclude someone from using the good, and thus hard to charge for it nonrivalrous even when one person uses the good, others can also use it positive externalities beneficial spillovers to a third party or parties private benefits the benefits a person who consumes a good or service receives, or a new product's benefits or process that a company invents that the company captures private rates of return on a savings account when the estimated rates of return go primarily to an individual; for example, earning interest public good good that is nonexcludable and non-rival, and thus is difficult for market producers to sell to individual consumers social benefits the sum of private benefits and external benefits social rate of return when the estimated rates of return go primarily to society; for example, providing free education KEY CONCEPTS AND SUMMARY 13.1 Why the Private Sector Underinvests in Innovation Competition creates pressure to innovate. However, if one can easily copy new inventions, then the original inventor loses the incentive to invest further in research and development. New technology often has positive externalities; that is, there are often spillovers from the invention of new technology that benefit firms other than the innovator. The social benefit of an invention, once the firm accounts for these spillovers, typically exceeds the private benefit to the inventor. If inventors could receive a greater share of the broader social benefits for their work, they would have a greater incentive to seek out new inventions. 13.2 How Governments Can Encourage Innovation Public policy with regard to technology must often strike a balance. For example, patents provide an incentive for inventors, but they should be limited to genuinely new inventions and not extend forever. Government has a variety of policy tools for increasing the rate of return for new technology and encouraging its development, including: direct government funding of R&D, tax incentives for R&D, protection of intellectual property, and forming cooperative relationships between universities and the private sector. 13.3 Public Goods A public good has two key characteristics: it is nonexcludable and non-rival. Nonexcludable means that it is costly or impossible for one user to exclude others from using the good. Non-rival means that when one person uses the good, it does not prevent others from using it. Markets often have a difficult time producing public goods because free riders will attempt to use the public good without paying for it. One can overcome the free rider problem through measures to assure that users of the public good pay for it. Such measures include government actions, social pressures, and specific situations where markets have discovered a way to collect payments. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 315 SELF-CHECK QUESTIONS 1. Do market demand curves reflect positive externalities? Why or why not? 2. Suppose that Sony's R&D investment in digital devices has increased profits by 20%. Is this a private or social benefit? 3. The Gizmo Company is planning to develop new household gadgets. Table 13.4 shows the company’s demand for financial capital for research and development of these gadgets, based on expected rates of return from sales. Now, say that every investment would have an additional 5% social benefit—that is, an investment that pays at least a 6% return to the Gizmo Company will pay at least an 11% return for society as a whole; an investment that pays at least 7% for the Gizmo Company will pay at least 12% for society as a whole, and so on. Answer the questions that follow based on this information. Estimated Rate of Return Private profits of the firm from an R&D project (in $ millions) 10% 9% 8% 7% 6% 5% 4% 3% Table 13.4 $100 $102 $108 $118 $133 $153 $183 $223 a. If the going interest rate is 9%, how much will Gizmo invest in R&D if it receives only the private benefits of this investment? b. Assume that the interest rate is still 9%. How much will the firm invest if it also receives the social benefits of its investment? (Add an additional 5% return on all levels of investment.) 4. The Junkbuyers Company travels from home to home, looking for opportunities to buy items that would otherwise end up with the garbage, but which the company can resell or recycle. Which will be larger, the private or the social benefits? 5. When residents in a neighborhood tidy it and keep it neat, there are a number of positive spillovers: higher property values, less crime, happier residents. What types of government policies can encourage neighborhoods to clean up? 6. Education provides both private benefits to those who receive it and broader social benefits for the economy as a whole. Think about the types of policies a government can follow to address the issue of positive spillovers in technology and then suggest a parallel set of policies that governments could follow for addressing positive externalities in education. 316 Chapter 13 | Positive Externalities and Public Goods 7. Which of the following goods or services are nonexcludable? streaming music from satellite transmission programs roads a. police protection b. c. d. primary education e. cell phone service 8. Are the following goods non-rival in consumption? slice of pizza laptop computer a. b. c. public radio d. ice cream cone REVIEW QUESTIONS In what ways do company investments in research 9. and development create positive externalities? 13. What are the two key characteristics of public goods? 10. Will the demand for borrowing and investing in R&D be higher or lower if there are no external benefits? 11. Why might private markets tend to provide too few incentives for the development of new technology? 12. What can government do to encourage the development of new technology? CRITICAL THINKING QUESTIONS 17. Can a company be guaranteed all of the social benefits of a new invention? Why or why not? Is it 18. inevitable that government must become involved in supporting inves
tments in new technology? 19. How do public television stations, like PBS, try to overcome the free rider problem? 20. Why is a football game on ESPN a quasi-public good but a game on the NBC, CBS, or ABC is a public good? 14. Name two public goods and explain why they are public goods. 15. What is the free rider problem? 16. Explain why the federal government funds national defense. 21. Provide two examples of goods/services that are classified as private goods/services even though they are provided by a federal government. 22. Radio stations, tornado sirens, light houses, and street lights are all public goods in that all are nonrivalrous and nonexclusionary. Therefore why does the government provide tornado sirens, street lights and light houses but not radio stations (other than PBS stations)? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 13 | Positive Externalities and Public Goods 317 24. Assume that the marginal private costs of a firm producing fuel-efficient cars is greater than the marginal social costs. Assume that the marginal private benefits of a firm producing fuel-efficient cars is the same as the marginal social benefits. Discuss one way that the government can try to increase production and sales of fuel efficient cars to the socially desirable amount. Hint: the government is trying to affect production through costs, not benefits. 25. Becky and Sarah are sisters who share a room. Their room can easily get messy, and their parents are always telling them to tidy it. Here are the costs and benefits to both Becky and Sarah, of taking the time to clean their room: If both Becky and Sarah clean, they each spends two hours and get a clean room. If Becky decides not to clean and Sarah does all the cleaning, then Sarah spends 10 hours cleaning (Becky spends 0) but Sarah is exhausted. The same would occur for Becky if Sarah decided not to clean—Becky spends 10 hours and becomes exhausted. If both girls decide not to clean, they both have a dirty room. a. What is the best outcome for Becky and Sarah? What is the worst outcome? (It would help you to construct a prisoner’s dilemma table.) b. Unfortunately, we know that the optimal outcome will most likely not happen, and that the sisters probably will choose the worst one instead. Explain what it is about Becky’s and Sarah’s reasoning that will lead them both to choose the worst outcome. PROBLEMS 23. HighFlyer Airlines wants to build new airplanes with greatly increased cabin space. This will allow HighFlyer Airlines to give passengers more comfort and sell more tickets at a higher price. However, redesigning the cabin means rethinking many other elements of the airplane as well, like engine and luggage placement, and the most efficient shape of the plane for moving through the air. HighFlyer Airlines has developed a list of possible methods to increase cabin space, along with estimates of how these approaches would affect the plane's operating costs and ticket sales. Based on these estimates, Table 13.5 shows the value of R&D projects that provide at least a certain private rate of return. Column 1 = Private Rate of Return. Column 2 = Value of R&D Projects that Return at Least the Private Rate of Return to HighFlyer Airlines. Use the data to answer the following questions. Private Rate of Return Value of R&D 12% 10% 8% 6% 4% Table 13.5 $100 $200 $300 $400 $500 a. If the opportunity cost of financial capital for HighFlyer Airlines is 6%, how much should the firm invest in R&D? b. Assume that the social rate of return for R&D is an additional 2% on top of the private return; that is, an R&D investment that had a 7% private return to HighFlyer Airlines would have a 9% social return. How much investment is socially optimal at the 6% interest rate? 318 Chapter 13 | Positive Externalities and Public Goods This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 319 14 | Labor Markets and Income Figure 14.1 What determines incomes? In the U.S., income is based on one's value to an employer, which depends in part on education. (Credit: modification of work by AFL-CIO America's Unions/Flickr Creative Commons and COD Newsroom/Flickr Creative Commons) The Increasing Value of a College Degree Working your way through college used to be fairly common in the United States. According to a 2015 study by the Georgetown Center on Education and the Workforce, 40% of college students work 30 hours or more per week. At the same time, the cost of college seems to rise every year. The data show that the cost of tuition, fees, room and board has more than doubled since 1984. Thus, even full time employment may not be enough to cover college expenses anymore. Working full time at minimum wage--40 hours per week, 52 weeks per year—earns $15,080 before taxes, which is less than the $19,548 the College Board estimates it cost in 2016 for a year of college at a public university. The result of these costs is that student loan debt topped $1.3 trillion this year. Despite these disheartening figures, the value of a bachelor’s degree has never been higher. How do we explain this? This chapter will tell us. Introduction to Labor Markets and Income In this chapter, you will learn about: 320 Chapter 14 | Labor Markets and Income • The theory of labor markets • How wages are determined in an imperfectly competitive labor market • How unions affect wages and employment • How labor market outcomes are determined under Bilateral Monopoly • Theories of Employment Discrimination, and • How Immigration affects labor market outcomes In a market economy like the United States, income comes from ownership of the means of production: resources or assets. More precisely, one’s income is a function of two things: the quantity of each resource one owns, and the value society places on those resources. Recall from the chapter on Production, Costs, and Industry Structure, each factor of production has an associated factor payment. For the majority of us, the most important resource we own is our labor. Thus, most of our income is wages, salaries, commissions, tips and other types of labor income. Your labor income depends on how many hours you have to work and the wage rate an employer will pay you for those hours. At the same time, some people own real estate, which they can either use themselves or rent out to other users. Some people have financial assets like bank accounts, stocks and bonds, for which they earn interest, dividends or some other form of income. Each of these factor payments, like wages for labor and interest for financial capital, is determined in their respective factor markets. For the rest of this chapter, we will focus on labor markets, but other factor markets operate similarly. Later in Chapter 17 we will describe how this works for financial capital. 14.1 | The Theory of Labor Markets By the end of this section, you will be able to: • The Demand for Labor in Perfectly Competitive Output Markets • The Demand for Labor in Imperfectly Competitive Output Markets • What Determines the Going Market Wage Rate? What is the labor market? The labor market is the term that economists use for all the different markets for labor. There is no single labor market. Rather, there is a different market for every different type of labor. Labor differs by type of work (e.g. retail sales vs. scientist), skill level (entry level or more experienced), and location (the market for administrative assistants is probably more local or regional than the market for university presidents). While each labor market is different, they all tend to operate in similar ways. For example, when wages go up in one labor market, they tend to go up in others too. When economists talk about the labor market, they are describing these similarities. The labor market, like all markets, has a demand and a supply. Why do firms demand labor? Why is an employer willing to pay you for your labor? It’s not because the employer likes you or is socially conscious. Rather, it’s because your labor is worth something to the employer--your work brings in revenues to the firm. How much is an employer willing to pay? That depends on the skills and experience you bring to the firm. If a firm wants to maximize profits, it will never pay more (in terms of wages and benefits) for a worker than the value of his or her marginal productivity to the firm. We call this the first rule of labor markets. Suppose a worker can produce two widgets per hour and the firm can sell each widget for $4 each. Then the worker is generating $8 per hour in revenues to the firm, and a profit-maximizing employer will pay the worker up to, but no This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 321 more than, $8 per hour, because that is what the worker is worth to the firm. Recall the definition of marginal product. Marginal product is the additional output a firm can produce by adding one more worker to the production process. Since employers often hire labor by the hour, we’ll define marginal product as the additional output the firm produces by adding one more worker hour to the production process. In this chapter, we assume that workers are homogeneous—they have the same background, experience and skills and they put in the same amount of effort. Thus, marginal product depends on the capital and technology with which workers have to work. A typist can type more pages per hour with an electric typewriter than a manual typewriter, and he or she can type even more pages per hour with a personal computer and word processing software. A ditch digger can dig more cubic feet of dirt in an hour with a backhoe than with at shovel. Thus, we can define the demand for labor as the marginal product of labor times the value of that output to the firm. # Workers (L) MPL Table 14.1 Marginal Product of L
abor 1 4 2 3 3 2 4 1 Figure 14.2 Marginal Product of Labor Because of fixed capital, the marginal product of labor declines as the employer hires additional workers. On what does the value of each worker’s marginal product depend? If we assume that the employer sells its output in a perfectly competitive market, the value of each worker’s output will be the market price of the product. Thus, Demand for Labor = MPL x P = Value of the Marginal Product of Labor We show this in Table 14.2, which is an expanded version of Table 14.1 # Workers (L) MPL Price of Output 1 4 $4 2 3 $4 3 2 $4 4 1 $4 Table 14.2 Value of the Marginal Product of Labor 322 VMPL Chapter 14 | Labor Markets and Income $16 $12 $8 $4 Table 14.2 Value of the Marginal Product of Labor Note that the value of each additional worker is less than the ones who came before. Figure 14.3 Value of the Marginal Product of Labor For firms operating in a competitive output market, the value of additional output sold is the price the firms receive for the output. Since MPL declines with additional labor employed, while that marginal product is worth the market price, the value of the marginal product declines as employment increases. Demand for Labor in Perfectly Competitive Output Markets The question for any firm is how much labor to hire. We can define a Perfectly Competitive Labor Market as one where firms can hire all the labor they wish at the going market wage. Think about secretaries in a large city. Employers who need secretaries can probably hire as many as they need if they pay the going wage rate. Graphically, this means that firms face a horizontal supply curve for labor, as Figure 14.3 shows. Given the market wage, profit maximizing firms hire workers up to the point where: Wmkt = VMPL This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 323 Figure 14.4 Equilibrium Employment for Firms in a Competitive Labor Market In a perfectly competitive labor market, firms can hire all the labor they want at the going market wage. Therefore, they hire workers up to the point L1 where the going market wage equals the value of the marginal product of labor. Derived Demand Economists describe the demand for inputs like labor as a derived demand. Since the demand for labor is MPL*P, it is dependent on the demand for the product the firm is producing. We show this by the P term in the demand for labor. An increase in demand for the firm’s product drives up the product’s price, which increases the firm’s demand for labor. Thus, we derive the demand for labor from the demand for the firm’s output. Demand for Labor in Imperfectly Competitive Output Markets If the employer does not sell its output in a perfectly competitive industry, they face a downward sloping demand curve for output, which means that in order to sell additional output the firm must lower its price. This is true if the firm is a monopoly, but it’s also true if the firm is an oligopoly or monopolistically competitive. In this situation, the value of a worker’s marginal product is the marginal revenue, not the price. Thus, the demand for labor is the marginal product times the marginal revenue. The Demand for Labor = MPL x MR = Marginal Revenue Product # Workers (L) MPL Marginal Revenue MRPL Table 14.3 Marginal Revenue Product 1 4 $4 $16 2 3 $3 $9 3 2 $2 $4 4 1 $1 $1 324 Chapter 14 | Labor Markets and Income Figure 14.5 Marginal Revenue Product For firms with some market power in their output market, the value of additional output sold is the firm’s marginal revenue. Since MPL declines with additional labor employed and since MR declines with additional output sold, the firm’s marginal revenue declines as employment increases. Everything else remains the same as we described above in the discussion of the labor demand in perfectly competitive labor markets. Given the market wage, profit-maximizing firms will hire workers up to the point where the market wage equals the marginal revenue product, as Figure 14.5 shows. Figure 14.6 Equilibrium Level of Employment for Firms with Market Power For firms with market power in their output market, they choose the number of workers, L2, where the going market wage equals the firm’s marginal revenue product. Note that since marginal revenue is less than price, the demand for labor for a firm which has market power in its output market is less than the demand for labor (L1) for a perfectly competitive firm. As a result, employment will be lower in an imperfectly competitive industry than in a perfectly competitive industry. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 325 Do Profit Maximizing Employers Exploit Labor? If you look back at Figure 14.4, you will see that only the firm pays the last worker it hires what they’re worth to the firm. Every other worker brings in more revenue than the firm pays him or her. This has sometimes led to the claim that employers exploit workers because they do not pay workers what they are worth. Let’s think about this claim. The first worker is worth $x to the firm, and the second worker is worth $y, but why are they worth that much? It is because of the capital and technology with which they work. The difference between workers’ worth and their compensation goes to pay for the capital, technology, without which the workers wouldn’t have a job. The difference also goes to the employer’s profit, without which the firm would close and workers wouldn’t have a job. The firm may be earning excessive profits, but that is a different topic of discussion. What Determines the Going Market Wage Rate? In the chapter on Labor and Financial Markets, we learned that the labor market has demand and supply curves like other markets. The demand for labor curve is a downward sloping function of the wage rate. The market demand for labor is the horizontal sum of all firms’ demands for labor. The supply for labor curve is an upward sloping function of the wage rate. This is because if wages for a particular type of labor increase in a particular labor market, people with appropriate skills may change jobs, and vacancies will attract people from outside the geographic area. The market supply for labor is the horizontal summation of all individuals’ supplies of labor. Figure 14.7 The Market Wage Rate In a competitive labor market, the equilibrium wage and employment level are determined where the market demand for labor equals the market supply of labor. Like all equilibrium prices, the market wage rate is determined through the interaction of supply and demand in the labor market. Thus, we can see in Figure 14.7 for competitive markets the wage rate and number of workers hired. The FRED database has a great deal of data on labor markets, starting at the wage rate and number of workers hired (https://openstax.org/l/cat10) . The United States Census Bureau for the Bureau of Labor Statistics publishes The Current Population Survey, which is a monthly survey of households (link is on that page), which provides data on labor supply, including numerous measures of the labor force size (disaggregated by age, gender and educational attainment), labor force participation rates for different demographic groups, and employment. It also includes more than 3,500 measures of earnings by different demographic groups. 326 Chapter 14 | Labor Markets and Income The Current Employment Statistics, which is a survey of businesses, offers alternative estimates of employment across all sectors of the economy. The link labeled "Productivity and Costs" has a wide range of data on productivity, labor costs and profits across the business sector. 14.2 | Wages and Employment in an Imperfectly Competitive Labor Market By the end of this section, you will be able to: • Define monopsony power • Explain how imperfectly competitive labor markets determine wages and employment, where employers have market power In the chapters on market structure, we observed that while economists use the theory of perfect competition as an ideal case of market structure, there are very few examples of perfectly competitive industries in the real world. What about labor markets? How many labor markets are perfectly competitive? There are probably more examples of perfectly competitive labor markets than perfectly competitive product markets, but that doesn’t mean that all labor markets are competitive. When a job applicant is bargaining with an employer for a position, the applicant is often at a disadvantage—needing the job more than the employer needs that particular applicant. John Bates Clark (1847–1938), often named as the first great American economist, wrote in 1907: “In the making of the wages contract the individual laborer is always at a disadvantage. He has something which he is obliged to sell and which his employer is not obliged to take, since he [that is, the employer] can reject single men with impunity.” To give workers more power, the U.S. government has passed, in response to years of labor protests, a number of laws to create a more equal balance of power between workers and employers. These laws include some of the following: • Setting minimum hourly wages • Setting maximum hours of work (at least before employers pay overtime rates) • Prohibiting child labor • Regulating health and safety conditions in the workplace • Preventing discrimination on the basis of race, ethnicity, gender, sexual orientation, and age • Requiring employers to provide family leave • Requiring employers to give advance notice of layoffs • Covering workers with unemployment insurance • Setting a limit on the number of immigrant workers from other countries Table 14.4 lists some prominent U.S. workplace protection laws. Many of the laws listed in the table were only the start of labor market regulations in these areas and have been followed, over time, by other related
laws, regulations, and court rulings. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 327 Law National LaborManagement Relations Act of 1935 (the “Wagner Act”) Social Security Actof 1935 Fair Labor Standards Act of 1938 Taft-Hartley Act of 1947 Protection Establishes procedures for establishing a union that firms are obligated to follow; sets up the National Labor Relations Board for deciding disputes Under Title III, establishes a state-run system of unemployment insurance, in which workers pay into a state fund when they are employed and received benefits for a time when they are unemployed Establishes the minimum wage, limits on child labor, and rules requiring payment of overtime pay for those in jobs that are paid by the hour and exceed 40 hours per week Allows states to decide whether all workers at a firm can be required to join a union as a condition of employment; in the case of a disruptive union strike, permits the president to declare a “cooling-off period” during which workers have to return to work Civil Rights Act of 1964 Title VII of the Act prohibits discrimination in employment on the basis of race, gender, national origin, religion, or sexual orientation Occupational Health and Safety Act of 1970 Employee Retirement and Income Security Act of 1974 Pregnancy Discrimination Act of 1978 Immigration Reform and Control Act of 1986 Worker Adjustment and Retraining Notification Act of 1988 Americans with Disabilities Act of 1990 Creates the Occupational Safety and Health Administration (OSHA), which protects workers from physical harm in the workplace Regulates employee pension rules and benefits Prohibits discrimination against women in the workplace who are planning to get pregnant or who are returning to work after pregnancy Prohibits hiring of illegal immigrants; requires employers to ask for proof of citizenship; protects rights of legal immigrants Requires employers with more than 100 employees to provide written notice 60 days before plant closings or large layoffs Prohibits discrimination against those with disabilities and requires reasonable accommodations for them on the job Table 14.4 Prominent U.S. Workplace Protection Laws 328 Chapter 14 | Labor Markets and Income Law Protection Family and Medical Leave Act of 1993 Allows employees to take up to 12 weeks of unpaid leave per year for family reasons, including birth or family illness Pension Protection Act of 2006 Penalizes firms for underfunding their pension plans and gives employees more information about their pension accounts Lilly Ledbetter Fair Pay Act of 2009 Restores protection for pay discrimination claims on the basis of sex, race, national origin, age, religion, or disability Table 14.4 Prominent U.S. Workplace Protection Laws There are two sources of imperfect competition in labor markets. These are demand side sources, that is, labor market power by employers, and supply side sources: labor market power by employees. In this section we will discuss the former. In the next section we will discuss the latter. A competitive labor market is one where there are many potential employers for a given type of worker, say a secretary or an accountant. Suppose there is only one employer in a labor market. Because that employer has no direct competition in hiring, if they offer lower wages than would exist in a competitive market, employees will have few options. If they want a job, they must accept the offered wage rate. Since the employer is exploiting its market power, we call the firm a monopsony. The classical example of monopsony is the sole coal company in a West Virginia town. If coal miners want to work, they must accept what the coal company is paying. This is not the only example of monopsony. Think about surgical nurses in a town with only one hospital. Employers that have at least some market power over potential employees is not that unusual. After all, most firms have many employees while there is only one employer. Thus, even if there is some competition for workers, it may not feel that way to potential employees unless they do their research and find the opposite. How does market power by an employer affect labor market outcomes? Intuitively, one might think that wages will be lower than in a competitive labor market. Let’s prove it. We will tell the story for a monopsonist, but the results will be qualitatively similar, although less extreme for any firm with labor market power. Think back to monopoly. The good news is that because the monopolist is the sole supplier in the market, it can charge any price it wishes. The bad news is that if it wants to sell a greater quantity of output, it must lower the price it charges. Monopsony is analogous. Because the monopsonist is the sole employer in a labor market, it can offer any wage that it wishes. However, because they face the market supply curve for labor, if they want to hire more workers, they must raise the wage they pay. This creates a quandary, which we can understand by introducing a new concept: the marginal cost of labor. The marginal cost of labor is the cost to the firm of hiring one more worker. However, here is the thing: we assume that the firm is determining how many workers to hire in total. They are not hiring sequentially. Let’s look how this plays out with the example in Table 14.5. Supply of Labor 1 2 3 4 5 Wage Rate $1 per hour $2 per hour $3 per hour $4 per hour $5 per hour Total Cost of Labor Marginal Cost of Labor $1 $1 $4 $3 $9 $5 $16 $7 $25 $9 Table 14.5 The Marginal Cost of Labor There are a couple of things to notice from the table. First, the marginal cost increases faster than the wage rate. In fact, for any number of workers more than one, the marginal cost of labor is greater than the wage. This is because to hire one more worker requires paying a higher wage rate, not just for the new worker but for all the previous hires also. We can see this graphically in Figure 14.7. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 329 Figure 14.8 The Marginal Cost of Labor Since monopsonies are the sole demander for labor, they face the market supply curve for labor. In order to increase employment they must raise the wage they pay not just for new workers, but for all the existing workers they could have hired at the previous lower wage. As a result, the marginal cost of additional hiring labor is greater than the wage, and thus for any level of employment (above the first worker), MCL is above the Market Supply of Labor. Figure 14.9 Labor Market Outcomes Under Monopsony A monopsony will hire workers up to the point Lm where its demand for labor equals the marginal cost of additional labor, paying the wage Wm given by the supply curve of labor necessary to obtain Lm workers. If the firm wants to maximize profits, it will hire labor up to the point Lm where DL = VMP (or MRP) = MCL., as Figure 14.9 shows. Then, the supply curve for labor shows the wage the firm will have to pay to attract Lm workers. Graphically, we can draw a vertical line up from Lm to the Supply Curve for label and then read the wage Wm off the vertical axis to the left. How does this outcome compare to what would occur in a perfectly competitive market? A competitive market would operate where DL = SL, hiring Lc workers and paying Wc wage. In other words, under monopsony employers hire fewer workers and pay a lower wage. While pure monopsony may be rare, many employers have some degree of market power in labor markets. The outcomes for those employers will be qualitatively similar though not as extreme as monopsony. 330 Chapter 14 | Labor Markets and Income Figure 14.10 Comparison of labor market outcomes: Monopsony vs. Perfect Competition A monopsony hires fewer workers Lm than would be hired in a competitive labor market Lc. In exploiting its market power, the monopsony can also pay a lower wage Wm than workers would earn in a competitive labor market Wc. 14.3 | Market Power on the Supply Side of Labor Markets: Unions By the end of this section, you will be able to: • Explain the concept of labor unions, including membership levels and wages • Evaluate arguments for and against labor unions • Analyze reasons for the decline in U.S. union membership A labor union is an organization of workers that negotiates with employers over wages and working conditions. A labor union seeks to change the balance of power between employers and workers by requiring employers to deal with workers collectively, rather than as individuals. As such, a labor union operates like a monopoly in a labor market. We sometimes call negotiations between unions and firms collective bargaining. The subject of labor unions can be controversial. Supporters of labor unions view them as the workers’ primary line of defense against efforts by profit-seeking firms to hold down wages and benefits. Critics of labor unions view them as having a tendency to grab as much as they can in the short term, even if it means injuring workers in the long run by driving firms into bankruptcy or by blocking the new technologies and production methods that lead to economic growth. We will start with some facts about union membership in the United States. Facts about Union Membership and Pay According to the U.S. Bureau of Labor and Statistics, about 10.7% of all U.S. workers belong to unions. Following are some facts about unions for 2016: • 11.2% of U.S. male workers belong to unions; 10.2% of female workers do • 10.5% of white workers, 13% of black workers, and 8.8 % of Hispanic workers belong to unions • 11.8% of full-time workers and 5.7% of part-time workers are union members • 5.11% of workers ages 16–24 belong to unions, as do 13.9% of workers ages 45-54 • Occupations in which relatively high percentages of workers belong to unions are the federal government (27.4% belong to a union)
, state government (29.6%), local government (40.3%); transportation and utilities This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 331 (15.1%); natural resources, construction, and maintenance (16.3%); and production, transportation, and material moving (13.7%) • Occupations that have relatively low percentages of unionized workers are agricultural workers (1.3%), financial services (2.4%), professional and business services (2.4%), leisure and hospitality (2.7%), and wholesale and retail trade (4.2%) In summary, the percentage of workers belonging to a union is higher for men than women; higher for blacks than for whites or Hispanics; higher for the 45–64 age range; and higher among workers in government and manufacturing than workers in agriculture or service-oriented jobs. Table 14.6 lists the largest U.S. labor unions and their membership. Union Membership National Education Association (NEA) Service Employees International Union (SEIU) American Federation of Teachers (AFT) International Brotherhood of Teamsters (IBT) The American Federation of State, County, and Municipal Workers (AFSCME) United Food and Commercial Workers International Union International Brotherhood of Electrical Workers (IBEW) United Steelworkers International Association of Machinists and Aerospace Workers International Union, United Automobile, Aerospace and Agricultural Implement Workers of America (UAW) 2.9 million 1.9 million 1.5 million 1.3 million 1.3 million 1.3 million 662,000 591,000 569,000 408,000 Table 14.6 The Largest American Unions in 2015 (Source: U.S. Department of Labor, Bureau of Labor Statistics) In terms of pay, benefits, and hiring, U.S. unions offer a good news/bad news story. The good news for unions and their members is that their members earn about 20% more than nonunion workers, even after adjusting for factors such as years of work experience and education level. The bad news for unions is that the share of U.S. workers who belong to a labor union has been steadily declining for 50 years, as Figure 14.11 shows. About one-quarter of all U.S. workers belonged to a union in the mid-1950s, but only 11.1% of U.S. workers are union members today. If you leave out government workers (which includes teachers in public schools), only 6.6% of the workers employed by private firms now work for a union. 332 Chapter 14 | Labor Markets and Income Figure 14.11 Percentage of Wage and Salary Workers Who Are Union Members The share of wage and salary workers who belong to unions rose sharply in the 1930s and 1940s, but has tailed off since then to 10.7% of all workers in 2016. The following section analyzes the higher pay union workers receive compared the pay rates for nonunion workers. The section after that analyzes declining union membership levels. An overview of these two issues will allow us to discuss many aspects of how unions work. Higher Wages for Union Workers How does a union affect wages and employment? Because a union is the sole supplier of labor, it can act like a monopoly and ask for whatever wage rate it can obtain for its workers. If employers need workers, they have to meet the union’s wage demand. What are the limits on how much higher pay union workers can receive? To analyze these questions, let’s consider a situation where all firms in an industry must negotiate with a single union, and no firm is allowed to hire nonunion labor. If no labor union existed in this market, then equilibrium (E) in the labor market would occur at the intersection of the demand for labor (D) and the supply of labor (S) as we see in Figure 14.12. This is the same result as we showed in Figure 14.6 above. The union can, however, threaten that, unless firms agree to the wages they demand, the workers will strike. As a result, the labor union manages to achieve, through negotiations with the firms, a union wage of Wu for its members, above what the equilibrium wage would otherwise have been. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 333 Figure 14.12 Union Wage Negotiations Without a union, the equilibrium at E would have involved the wage We and the quantity of labor Qe. However, the union is able to use its bargaining power to raise the wage to Wu. The result is an excess supply of labor for union jobs. That is, a quantity of labor supplied, Qs is greater than firms’ quantity demanded for labor, Qd. This labor market situation resembles what a monopoly firm does in selling a product, but in this case a union is a monopoly selling labor to firms. At the higher union wage Wu, the firms in this industry will hire less labor than they would have hired in equilibrium. Moreover, an excess supply of workers want union jobs, but firms will not be hiring for such jobs. From the union point of view, workers who receive higher wages are better off. However, notice that the quantity of workers (Qd) hired at the union wage Wu is smaller than the quantity Qe that the firm would have hired at the original equilibrium wage. A sensible union must recognize that when it pushes up the wage, it also reduces the firms’ incentive to hire. This situation does not necessarily mean that union workers are fired. Instead, it may be that when union workers move on to other jobs or retire, they are not always replaced, or perhaps when a firm expands production, it expands employment somewhat less with a higher union wage than it would have done with the lower equilibrium wage. Other situations could be that a firm decides to purchase inputs from nonunion producers, rather than producing them with its own highly paid unionized workers, or perhaps the firm moves or opens a new facility in a state or country where unions are less powerful. From the firm’s point of view, the key question is whether union workers’ higher wages are matched by higher productivity. If so, then the firm can afford to pay the higher union wages and, the demand curve for “unionized” labor could actually shift to the right. This could reduce the job losses as the equilibrium employment level shifts to the right and the difference between the equilibrium and the union wages will have been reduced. If worker unionization does not increase productivity, then the higher union wage will cause lower profits or losses for the firm. Union workers might have higher productivity than nonunion workers for a number of reasons. First, higher wages may elicit higher productivity. Second, union workers tend to stay longer at a given job, a trend that reduces the employer’s costs for training and hiring and results in workers with more years of experience. Many unions also offer job training and apprenticeship programs. In addition, firms that are confronted with union demands for higher wages may choose production methods that involve more physical capital and less labor, resulting in increased labor productivity. Table 14.7 provides an example. Assume that a firm can produce a home exercise cycle with three different combinations of labor and manufacturing equipment. Say that the firm pays labor $16 an hour (including benefits) and the machines for manufacturing cost $200 each. Under these circumstances, the total cost of producing a home exercise cycle will be lowest if the firm adopts the plan of 50 hours of labor and one machine, as the table shows. Now, suppose that a union negotiates a wage of $20 an hour including benefits. In this case, it makes no difference to the firm whether it uses more hours of labor and fewer machines or less labor and more machines, although it might prefer to use more machines and to hire fewer union workers. (After all, machines never threaten to strike—but they do not buy the final 334 Chapter 14 | Labor Markets and Income product or service either.) In the final column of the table, the wage has risen to $24 an hour. In this case, the firm clearly has an incentive for using the plan that involves paying for fewer hours of labor and using three machines. If management responds to union demands for higher wages by investing more in machinery, then union workers can be more productive because they are working with more or better physical capital equipment than the typical nonunion worker. However, the firm will need to hire fewer workers. Hours of Labor Number of Machines 30 40 50 3 2 1 Cost of Labor + Cost of Machine $16/hour Cost of Labor + Cost of Machine $20/hour Cost of Labor + Cost of Machine $24/hour $480 + $600 = $1,080 $600 + $600 = $1,200 $720 + $600 = $1,320 $640 + $400 = $1,040 $800 + $400 = $1,200 $960 + $400 = $1,360 $800 + $200 = $1,000 $1,000 + $200 = $1,200 $1,200 + $200 = $1,400 Table 14.7 Three Production Choices to Manufacture a Home Exercise Cycle In some cases, unions have discouraged the use of labor-saving physical capital equipment—out of the reasonable fear that new machinery will reduce the number of union jobs. For example, in 2002, the union representing longshoremen who unload ships and the firms that operate shipping companies and port facilities staged a work stoppage that shut down the ports on the western coast of the United States. Two key issues in the dispute were the desire of the shipping companies and port operators to use handheld scanners for record-keeping and computer-operated cabs for loading and unloading ships—changes which the union opposed, along with overtime pay. President Obama threatened to use the Labor Management Relations Act of 1947—commonly known as the Taft-Hartley Act—where a court can impose an 80-day “cooling-off period” in order to allow time for negotiations to proceed without the threat of a work stoppage. Federal mediators were called in, and the two sides agreed to a deal in February 2015. The ultimate agreement allowed the new technologies, but also kept wages, health, and pension benefits high for workers. In the past, presidential use of the Taft-Hart
ley Act sometimes has made labor negotiations more bitter and argumentative but, in this case, it seems to have smoothed the road to an agreement. In other instances, unions have proved quite willing to adopt new technologies. In one prominent example, during the 1950s and 1960s, the United Mineworkers union demanded that mining companies install labor-saving machinery in the mines. The mineworkers’ union realized that over time, the new machines would reduce the number of jobs in the mines, but the union leaders also knew that the mine owners would have to pay higher wages if the workers became more productive, and mechanization was a necessary step toward greater productivity. In fact, in some cases union workers may be more willing to accept new technology than nonunion workers, because the union workers believe that the union will negotiate to protect their jobs and wages, whereas nonunion workers may be more concerned that the new technology will replace their jobs. In addition, union workers, who typically have higher job market experience and training, are likely to suffer less and benefit more than non-union workers from the introduction of new technology. Overall, it is hard to make a definitive case that union workers as a group are always either more or less welcoming to new technology than are nonunion workers The Decline in U.S. Union Membership The proportion of U.S. workers belonging to unions has declined dramatically since the early 1950s. Economists have offered a number of possible explanations: • The shift from manufacturing to service industries • The force of globalization and increased competition from foreign producers • A reduced desire for unions because of the workplace protection laws now in place • U.S. legal environment that makes it relatively more difficult for unions to organize workers and expand their membership This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 335 Let’s discuss each of these four explanations in more detail. A first possible explanation for the decline in the share of U.S. workers belonging to unions involves the patterns of job growth in the manufacturing and service sectors of the economy as Figure 14.13 shows. The U.S. economy had about 15 million manufacturing jobs in 1960. This total rose to 19 million by the late 1970s and then declined to 17 million in 2013. Meanwhile, the number of jobs in service industries and in government combined rose from 35 million in 1960 to over 118 million by 2013, according to the Bureau of Labor Statistics. Because over time unions were stronger in manufacturing than in service industries, the growth in jobs was not happening where the unions were. It is interesting to note that government workers comprise several of the biggest unions in the country, including the American Federation of State, County and Municipal Employees (AFSCME); the Service Employees International Union; and the National Education Association. Table 14.8 lists the membership of each of these unions. Outside of government employees, however, unions have not had great success in organizing the service sector. Figure 14.13 The Growth Service Jobs Jobs in services have increased dramatically in the last few decades. Jobs in government have increased modestly until 1990 and then declined slightly since then. Jobs in manufacturing peaked in the late 1970s and have declined more than a third since then. A second explanation for the decline in the share of unionized workers looks at import competition. Starting in the 1960s, U.S. carmakers and steelmakers faced increasing competition from Japanese and European manufacturers. As sales of imported cars and steel rose, the number of jobs in U.S. auto manufacturing fell. This industry is heavily unionized. Not surprisingly, membership in the United Auto Workers, which was 975,000 in 1985, had fallen to roughly 390,000 by 2015. Import competition not only decreases the employment in sectors where unions were once strong, but also decreases the bargaining power of unions in those sectors. However, as we have seen, unions that organize public-sector workers, who are not threatened by import competition, have continued to see growth. A third possible reason for the decline in the number of union workers is that citizens often call on their elected representatives to pass laws concerning work conditions, overtime, parental leave, regulation of pensions, and other issues. Unions offered strong political support for these laws aimed at protecting workers but, in an ironic twist, the 336 Chapter 14 | Labor Markets and Income passage of those laws then made many workers feel less need for unions. These first three possible reasons for the decline of unions are all somewhat plausible, but they have a common problem. Most other developed economies have experienced similar economic and political trends, such as the shift from manufacturing to services, globalization, and increasing government social benefits and regulation of the workplace. Clearly there are cultural differences between countries as to their acceptance of unions in the workplace. The share of the population belonging to unions in other countries is very high compared with the share in the United States. Table 14.8 shows the proportion of workers in a number of the world’s high-income economies who belong to unions. The United States is near the bottom, along with France and Spain. The last column shows union coverage, defined as including those workers whose wages are determined by a union negotiation even if the workers do not officially belong to the union. In the United States, union membership is almost identical to union coverage. However, in many countries, the wages of many workers who do not officially belong to a union are still determined by collective bargaining between unions and firms. Country Union Density: Percentage of Workers Belonging to a Union Union Coverage: Percentage of Workers Whose Wages Are Determined by Union Bargaining Austria France Germany Japan 37% 9% 26% 22% Netherlands 25% Spain 11.3% Sweden United Kingdom United States 82% 29% 11.1% 99% 95% 63% 23% 82% 81% 92% 35% 12.5% Table 14.8 International Comparisons of Union Membership and Coverage in 2012 (Source, CIA World Factbook, retrieved from www.cia.gov) These international differences in union membership suggest a fourth reason for the decline of union membership in the United States: perhaps U.S. laws are less friendly to the formation of unions than such laws in other countries. The close connection between union membership and a friendly legal environment is apparent in the history of U.S. unions. The great rise in union membership in the 1930s followed the passage of the National Labor-Management Relations Act of 1935, which specified that workers had a right to organize unions and that management had to give them a fair chance to do so. The U.S. government strongly encouraged forming unions during the early 1940s in the belief that unions would help to coordinate the all-out production efforts needed during World War II. However, after World War II came the passage of the Taft-Hartley Act of 1947, which gave states the power to allow workers to opt out of the union in their workplace if they so desired. This law made the legal climate less encouraging to those seeking to form unions, and union membership levels soon started declining. The procedures for forming a union differ substantially from country to country. For example, the procedures in the United States and those in Canada are strikingly different. When a group of workers wish to form a union in the United States, they announce this fact and set an election date when the firm's employees will vote in a secret ballot on whether to form a union. Supporters of the union lobby for a “yes” vote, and the firm's management lobbies for a “no” vote—often even hiring outside consultants for assistance in swaying workers to vote “no.” In Canada, by contrast, a union is formed when a sufficient proportion of workers (usually about 60%) sign an official card saying This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 337 that they want a union. There is no separate “election date.” The management of Canadian firms is limited by law in its ability to lobby against the union. In addition, although it is illegal to discriminate and fire workers based on their union activity in the United States, the penalties are slight, making this a not so costly way of deterring union activity. In short, forming unions is easier in Canada—and in many other countries—than in the United States. In summary, union membership in the United States is lower than in many other high-income countries, a difference that may be due to different legal environments and cultural attitudes toward unions. Visit this website (http://openstaxcollege.org/l/fastfoodwages) to read more about recent protests regarding minimum wage for fast food employees. 14.4 | Bilateral Monopoly By the end of this section, you will be able to explain: • How firms determine wages and employment when a specific labor market combines a union and a monopsony What happens when there is market power on both sides of the labor market, in other words, when a union meets a monopsony? Economists call such a situation a bilateral monopoly. Figure 14.14 Bilateral Monopoly Employment, L*, will be lower in a bilateral monopoly than in a competitive labor market, but the equilibrium wage is indeterminate, somewhere in the range between Wu, what the union would choose, and Wm, what the monopsony would choose. Figure 14.14 is a combination of Figure 14.6 and Figure 14.11. A monopsony wants to reduce wages as well as employment, Wm and L* in the figure. A union wants to increase wages, but at the cost of lower employment, Wu and L* in the figure. Since both sides
want to reduce employment, we can be sure that the outcome will be lower employment compared to a competitive labor market. What happens to the wage, though, is based on the monopsonist’s relative bargaining power compared to the union. The actual outcome is indeterminate in the graph, but it will be closer to Wu if the union has more power and closer to Wm if the monopsonist has more power. 338 Chapter 14 | Labor Markets and Income 14.5 | Employment Discrimination By the end of this section, you will be able to: • Analyze earnings gaps based on race and gender • Explain the impact of discrimination in a competitive market • Identify U.S. public policies designed to reduce discrimination Discrimination involves acting on the belief that members of a certain group are inferior solely because of a factor such as race, gender, or religion. There are many types of discrimination but the focus here will be on discrimination in labor markets, which arises if workers with the same skill levels—as measured by education, experience, and expertise—receive different pay receive different pay or have different job opportunities because of their race or gender. Earnings Gaps by Race and Gender A possible signal of labor market discrimination is when an employer pays one group less than another. Figure 14.15 shows the average wage of black workers as a ratio of the average wage of white workers and the average wage of female workers as a ratio of the average wage of male workers. Research by the economists Francine Blau and Laurence Kahn shows that the gap between the earnings of women and men did not move much in the 1970s, but has declined since the 1980s. According to the U.S. Census, the gap between the earnings of blacks and whites diminished in the 1970s, but has not changed in 50 years. In both gender and race, an earnings gap remains. Figure 14.15 Wage Ratios by Sex and Race The ratio of wages for black workers to white workers rose substantially in the late 1960s and through the 1970s, but has not changed much since then. The ratio of wages for female to male workers changed little through the 1970s, but has risen substantially since the 1980s. In both cases, a gap remains between the average wages of black and white workers and between the average wages of female and male workers. Source: U.S. Department of Labor, Bureau of Labor Statistics. An earnings gap between average wages, in and of itself, does not prove that discrimination is occurring in the labor market. We need to apply the same productivity characteristics to all parties (employees) involved. Gender discrimination in the labor market occurs when employers pay women less than men despite having comparable levels of education, experience, and expertise. (Read the Clear It Up about the sex-discrimination suit brought against WalMart.) Similarly, racial discrimination in the labor market exists when employers pay racially diverse employees less than their coworkers of the majority race despite having comparable levels of education, experience, and expertise. To bring a successful gender discrimination lawsuit, a female employee must prove the employer is paying her less than a male employee who holds a similar job, with similar educational attainment, and with similar expertise. Likewise, This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 339 someone who wants to sue on the grounds of racial discrimination must prove that the employer pays him or her less than an employee of another race who holds a similar job, with similar educational attainment, and with similar expertise. The FRED database includes (https://openstax.org/l/33501) . earnings by earnings by age, gender and race/ethnicity What was the sex-discrimination case against Wal-Mart? In one of the largest class-action sex-discrimination cases in U.S. history, 1.2 million female employees of Wal-Mart claimed that the company engaged in wage and promotion discrimination. In 2011, the Supreme Court threw out the case on the grounds that the group was too large and too diverse to consider the case a class action suit. Lawyers for the women regrouped and are now suing in smaller groups. Part of the difficulty for the female employees is that the court said that local managers made pay and promotion decisions that were not necessarily the company's policies as a whole. Consequently, female Wal-Mart employees in Texas are arguing that their new suit will challenge the management of a “discrete group of regional district and store managers.” They claim these managers made biased pay and promotion decisions. However, in 2013, a federal district court rejected a smaller California class action suit against the company. On other issues, Wal-Mart made the news again in 2013 when the National Labor Relations Board found WalMart guilty of illegally penalizing and firing workers who took part in labor protests and strikes. Wal-Mart has already paid $11.7 million in back wages and compensation damages to women in Kentucky who were denied jobs due to their sex. Investigating the Female/Male Earnings Gap As a result of changes in law and culture, women began to enter the paid workforce in substantial numbers in the mid- to late-twentieth century. By 2014, 58.1% of adult women held jobs while 72.0% of adult men did. Moreover, along with entering the workforce, women began to ratchet up their education levels. In 1971, 44% of undergraduate college degrees went to women. By 2014, women received 56% of bachelor’s degrees. In 1970, women received 5.4% of the degrees from law schools and 8.4% of the degrees from medical schools. By 2014, women were receiving 47% of the law degrees and 48.0% of the medical degrees. These gains in education and experience have reduced the female/male wage gap over time. However, concerns remain about the extent to which women have not yet assumed a substantial share of the positions at the top of the largest companies or in the U.S. Congress. There are factors that can lower women’s average wages. Women are likely to bear a disproportionately large share of household responsibilities. A mother of young children is more likely to drop out of the labor force for several years or work on a reduced schedule than is the father. As a result, women in their 30s and 40s are likely, on average, to have less job experience than men. In the United States, childless women with the same education and experience levels as men are typically paid comparably. However, women with families and children are typically paid about 7% to 14% less than other women of similar education and work experience. (Meanwhile, married men earn about 10% to 15% more than single men with comparable education and work experience.) We possibly could call the different patterns of family responsibilities discrimination, but it is primarily rooted in America’s social patterns of discrimination, which involve the roles that fathers and mothers play in child-rearing, rather than discrimination by employers in hiring and salary decisions. Visit this website (http://www.catalyst.org/) to read more about the persistently low numbers of women in executive roles in business and in the U.S. Congress. 340 Chapter 14 | Labor Markets and Income Investigating the Black/White Earnings Gap Blacks experienced blatant labor market discrimination during much of the twentieth century. Until the passage of the Civil Rights Act of 1964, it was legal in many states to refuse to hire a black worker, regardless of the credentials or experience of that worker. Moreover, blacks were often denied access to educational opportunities, which in turn meant that they had lower levels of qualifications for many jobs. At least one economic study has shown that the 1964 law is partially responsible for the narrowing of the gap in black–white earnings in the late 1960s and into the 1970s. For example, the ratio of total earnings of black male workers to white male workers rose from 62% in 1964 to 75.3% in 2013, according to the Bureau of Labor Statistics. However, the earnings gap between black and white workers has not changed as much as the earnings gap between men and women has in the last half century. The remaining racial gap seems related both to continuing differences in education levels and to the presence of discrimination. Table 14.9 shows that the percentage of blacks who complete a four-year college degree remains substantially lower than the percentage of whites who complete college. According to the U.S. Census, both whites and blacks have higher levels of educational attainment than Hispanics and lower levels than Asians. The lower average levels of education for black workers surely explain part of the earnings gap. In fact, black women who have the same levels of education and experience as white women receive, on average, about the same level of pay. One study shows that white and black college graduates have identical salaries immediately after college; however, the racial wage gap widens over time, an outcome that suggests the possibility of continuing discrimination. Another study conducted a field experiment by responding to job advertisements with fictitious resumes with either very African American sounding names or very white sounding names and found out that white names received 50 percent more callbacks for interviews. This is suggestive of discrimination in job opportunities. Further, as the following Clear It Up feature explains, there is evidence to support that discrimination in the housing market is connected to employment discrimination. White Hispanic Black Asian Completed four years of high school or more 93.0% 66.7% 87.0% 89.1% Completed four years of college or more 36.2% 15.5% 22.5% 53.9% Table 14.9 Educational Attainment by Race and Ethnicity in 2015 (Source: http://www.census.gov/ hhes/socdemo/education/data/cps/2014/tables.html) How is discrimination in t
he housing market connected to employment discrimination? In a recent study by the Housing and Urban Development (HUD) department, realtors show black homebuyers 18 percent fewer homes compared to white homebuyers. Realtors show Asians are shown 19 percent fewer properties. Additionally, Hispanics experience more discrimination in renting apartments and undergo stiffer This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 341 credit checks than white renters. In a 2012 U.S. Department of Housing and Urban Development and the nonprofit Urban Institute study, Hispanic testers who contacted agents about advertised rental units received information about 12 percent fewer units available and were shown seven percent fewer units than white renters. The $9 million study, based on research in 28 metropolitan areas, concluded that blatant “door slamming” forms of discrimination are on the decline but that the discrimination that does exist is harder to detect, and as a result, more difficult to remedy. According to the Chicago Tribune, HUD Secretary Shaun Donovan, who served in his role from 2009-2014, told reporters, “Just because it’s taken on a hidden form doesn’t make it any less harmful. You might not be able to move into that community with the good schools.” The lower levels of education for black workers can also be a result of discrimination—although it may be pre-labor market discrimination, rather than direct discrimination by employers in the labor market. For example, if discrimination in housing markets causes black families to live clustered together in certain poorer neighborhoods, then the black children will continue to have lower educational attainment then their white counterparts and, consequently, not be able to obtain the higher paying jobs that require higher levels of education. Another element to consider is that in the past, when blacks were effectively barred from many high-paying jobs, obtaining additional education could have seemed somewhat pointless, because the educational degrees would not pay off. Even though the government has legally abolished labor market discrimination, it can take some time to establish a culture and a tradition of valuing education highly. Additionally, a legacy of past discrimination may contribute to an attitude that blacks will have a difficult time succeeding in academic subjects. In any case, the impact of social discrimination in labor markets is more complicated than seeking to punish a few bigoted employers. Competitive Markets and Discrimination Gary Becker (b. 1930), who won the Nobel Prize in economics in 1992, was one of the first to analyze discrimination in economic terms. Becker pointed out that while competitive markets can allow some employers to practice discrimination, it can also provide profit-seeking firms with incentives not to discriminate. Given these incentives, Becker explored the question of why discrimination persists. If a business is located in an area with a large minority population and refuses to sell to minorities, it will cut into its own profits. If some businesses run by bigoted employers refuse to pay women and/or minorities a wage based on their productivity, then other profit-seeking employers can hire these workers. In a competitive market, if the business owners care more about the color of money than about the color of skin, they will have an incentive to make buying, selling, hiring, and promotion decisions strictly based on economic factors. Do not underestimate the power of markets to offer at least a degree of freedom to oppressed groups. In many countries, cohesive minority groups like Jews and emigrant Chinese have managed to carve out a space for themselves through their economic activities, despite legal and social discrimination against them. Many immigrants, including those who come to the United States, have taken advantage of economic freedom to make new lives for themselves. However, history teaches that market forces alone are unlikely to eliminate discrimination. After all, discrimination against African Americans persisted in the market-oriented U.S. economy during the century between President Abraham Lincoln’s Emancipation Proclamation, which freed the slaves in 1863, and the passage of the Civil Rights Act of 1964—and has continued since then, too. Therefore, why does discrimination persist in competitive markets? Gary Becker sought to explain this persistence. Discriminatory impulses can emerge at a number of levels: among managers, among workers, and among customers. Consider the situation of a manager who is not personally prejudiced, but who has many workers or customers who are prejudiced. If that manager treats minority groups or women fairly, the manager may find it hurts the morale of prejudiced co-workers or drives away prejudiced customers. In such a situation, a policy of nondiscrimination could reduce the firm’s profits. After all, a business firm is part of society, and a firm that does not follow the societal norms is likely to suffer. Market forces alone are unlikely to overwhelm strong social attitudes about discrimination. Visit this website (http://openstaxcollege.org/l/censusincome) to read more about wage discrimination. 342 Chapter 14 | Labor Markets and Income Public Policies to Reduce Discrimination A first public policy step against discrimination in the labor market is to make it illegal. For example, the Equal Pay Act of 1963 said that employers must pay men and women who do equal work the same. The Civil Rights Act of 1964 prohibits employment discrimination based on race, color, religion, sex, or national origin. The Age Discrimination in Employment Act of 1967 prohibited discrimination on the basis of age against individuals who are 40 years of age or older. The Civil Rights Act of 1991 provides monetary damages in cases of intentional employment discrimination. The Pregnancy Discrimination Act of 1978 was aimed at prohibiting discrimination against women in the workplace who are planning to get pregnant, are pregnant, or are returning after pregnancy. Passing a law, however, is only part of the answer, since discrimination by prejudiced employers may be less important than broader social patterns. These laws against discrimination have reduced the gender wage gap. A 2007 Department of Labor study compared salaries of men and women who have similar educational achievement, work experience, and occupation and found that the gender wage gap is only 5%. In the case of the earnings gap between blacks and whites (and also between Hispanics and whites), probably the single largest step that could be taken at this point in U.S. history to close the earnings gap would be to reduce the gap in educational achievement. Part of the answer to this issue involves finding ways to improve the performance of schools, which is a highly controversial topic in itself. In addition, the education gap is unlikely to close unless black and Hispanic families and peer groups strengthen their culture of support for educational achievement. Affirmative action is the name given to active efforts by government or businesses that give special rights to minorities in hiring and promotion to make up for past discrimination. Affirmative action, in its limited and not especially controversial form, means making an effort to reach out to a broader range of minority candidates for jobs. In its more aggressive and controversial form, affirmative action required government and companies to hire a specific number or percentage of minority employees. However, the U.S. Supreme Court has ruled against state affirmative action laws. Today, the government applies affirmative action policies only to federal contractors who have lost a discrimination lawsuit. The federal Equal Employment Opportunity Commission (EEOC) enforces this type of redress. An Increasingly Diverse Workforce Racial and ethnic diversity is on the rise in the U.S. population and work force. As Figure 14.16 shows, while the white Americans comprised 78% of the population in 2012, the U.S. Bureau of the Census projects that whites will comprise 69% of the U.S. population by 2060. Forecasters predict that the proportion of U.S. citizens who are of Hispanic background to rise substantially. Moreover, in addition to expected changes in the population, workforce diversity is increasing as the women who entered the workforce in the 1970s and 1980s are now moving up the promotion ladders within their organizations. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 343 Figure 14.16 Projected Changes in America’s Racial and Ethnic Diversity This figure shows projected changes in the ethnic makeup of the U.S. population by 2060. Note that “NHPI” stands for Native Hawaiian and Other Pacific Islander. “AIAN” stands for American Indian and Alaska Native. Source: US Department of Commerce Regarding the future, optimists argue that the growing proportions of minority workers will break down remaining discriminatory barriers. The economy will benefit as an increasing proportion of workers from traditionally disadvantaged groups have a greater opportunity to fulfill their potential. Pessimists worry that the social tensions between men and women and between ethnic groups will rise and that workers will be less productive as a result. Anti-discrimination policy, at its best, seeks to help society move toward the more optimistic outcome. The FRED database includes data on foreign and native born civilian population (https://openstax.org/l/104) and labor force (https://openstax.org/l/32442) . 14.6 | Immigration Most Americans would be outraged if a law prevented them from moving to another city or another state. However, when the conversation turns to crossing national borders and are about other people arriving in the United States, law
s preventing such movement often seem more reasonable. Some of the tensions over immigration stem from worries over how it might affect a country’s culture, including differences in language, and patterns of family, authority, or gender relationships. Economics does not have much to say about such cultural issues. Some of the worries about immigration do, however, have to do with its effects on wages and income levels, and how it affects government taxes and spending. On those topics, economists have insights and research to offer. Historical Patterns of Immigration Supporters and opponents of immigration look at the same data and see different patterns. Those who express concern about immigration levels to the United States point to graphics like Figure 14.17 which shows total inflows of immigrants decade by decade through the twentieth century. Clearly, the level of immigration has been high and rising in recent years, reaching and exceeding the towering levels of the early twentieth century. However, those who are less worried about immigration point out that the high immigration levels of the early twentieth century happened when total population was much lower. Since the U.S. population roughly tripled during the twentieth century, the seemingly high levels in immigration in the 1990s and 2000s look relatively smaller when they are divided by the population. 344 Chapter 14 | Labor Markets and Income Figure 14.17 Immigration Since 1900 The number of immigrants in each decade declined between 1900 and the 1940s, rose sharply through 2009 and started to decline from 2010 to the present. (Source: U.S. Department of Homeland Security, Yearbook of Immigration Statistics: 2011, Table 1) From where have the immigrants come? Immigrants from Europe were more than 90% of the total in the first decade of the twentieth century, but less than 20% of the total by the end of the century. By the 2000s, about half of U.S. immigration came from the rest of the Americas, especially Mexico, and about a quarter came from various countries in Asia. Economic Effects of Immigration A surge of immigration can affect the economy in a number of different ways. In this section, we will consider how immigrants might benefit the rest of the economy, how they might affect wage levels, and how they might affect government spending at the federal and local level. To understand the economic consequences of immigration, consider the following scenario. Imagine that the immigrants entering the United States matched the existing U.S. population in age range, education, skill levels, family size, and occupations. How would immigration of this type affect the rest of the U.S. economy? Immigrants themselves would be much better off, because their standard of living would be higher in the United States. Immigrants would contribute to both increased production and increased consumption. Given enough time for adjustment, the range of jobs performed, income earned, taxes paid, and public services needed would not be much affected by this kind of immigration. It would be as if the population simply increased a little. Now, consider the reality of recent immigration to the United States. Immigrants are not identical to the rest of the U.S. population. About one-third of immigrants over the age of 25 lack a high school diploma. As a result, many of the recent immigrants end up in jobs like restaurant and hotel work, lawn care, and janitorial work. This kind of immigration represents a shift to the right in the supply of unskilled labor for a number of jobs, which will lead to lower wages for these jobs. The middle- and upper-income households that purchase the services of these unskilled workers will benefit from these lower wages. However, low-skilled U.S. workers who must compete with low-skilled immigrants for jobs will tend to suffer from immigration. The difficult policy questions about immigration are not so much about the overall gains to the rest of the economy, which seem to be real but small in the context of the U.S. economy, as they are about the disruptive effects of immigration in specific labor markets. One disruptive effect, as we noted, is that immigration weighted toward lowskill workers tends to reduce wages for domestic low-skill workers. A study by Michael S. Clune found that for each 10% rise in the number of employed immigrants with no more than a high school diploma in the labor market, high school students reduced their annual number of hours worked by 3%. The effects on wages of low-skill workers are This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 345 not large—perhaps in the range of decline of about 1%. These effects are likely kept low, in part, because of the legal floor of federal and state minimum wage laws. In addition, immigrants are also thought to contribute to increased demand for local goods and services which can stimulate the local low skilled labor market. It is also possible that employers, in the face of abundant low-skill workers may choose production processes which are more labor intensive than otherwise would have been. These various factors would explain the small negative wage effect that the native low-skill workers observed as a result of immigration. Another potential disruptive effect is the impact on state and local government budgets. Many of the costs imposed by immigrants are costs that arise in state-run programs, like the cost of public schooling and of welfare benefits. However, many of the taxes that immigrants pay are federal taxes like income taxes and Social Security taxes. Many immigrants do not own property (such as homes and cars), so they do not pay property taxes, which are one of the main sources of state and local tax revenue. However, they do pay sales taxes, which are state and local, and the landlords of property they rent pay property taxes. According to the nonprofit Rand Corporation, the effects of immigration on taxes are generally positive at the federal level, but they are negative at the state and local levels in places where there are many low-skilled immigrants. Visit this website (http://openstaxcollege.org/l/nber) to obtain more context regarding immigration. Proposals for Immigration Reform The Congressional Jordan Commission of the 1990s proposed reducing overall levels of immigration and refocusing U.S. immigration policy to give priority to immigrants with higher skill levels. In the labor market, focusing on highskilled immigrants would help prevent any negative effects on low-skilled workers' wages. For government budgets, higher-skilled workers find jobs more quickly, earn higher wages, and pay more in taxes. Several other immigrationfriendly countries, notably Canada and Australia, have immigration systems where those with high levels of education or job skills have a much better chance of obtaining permission to immigrate. For the United States, high tech companies regularly ask for a more lenient immigration policy to admit a greater quantity of highly skilled workers under the H1B visa program. The Obama Administration proposed the so-called “DREAM Act” legislation, which would have offered a path to citizenship for illegal immigrants brought to the United States before the age of 16. Despite bipartisan support, the legislation failed to pass at the federal level. However, some state legislatures, such as California, have passed their own Dream Acts. Between its plans for a border wall, increased deportation of undocumented immigrants, and even reductions in the number of highly skilled legal H1B immigrants, the Trump Administration has a much less positive approach to immigration. Most economists, whether conservative or liberal, believe that while immigration harms some domestic workers, the benefits to the nation exceed the costs. However, given the Trump Administration’s opposition, any significant immigration reform is likely on hold. The FRED database includes data on foreign and native born civilian population (https://fred.stlouisfed.org/ categories/104) (https://fred.stlouisfed.org/categories/104) and labor force (https://fred.stlouisfed.org/ categories/32442) (https://fred.stlouisfed.org/categories/32442) . 346 Chapter 14 | Labor Markets and Income The Increasing Value of a College Degree The cost of college has increased dramatically in recent decades, causing many college students to take student loans to afford it. Despite this, the value of a college degree has never been higher. How can we explain this? We can estimate the value of a bachelor’s degree as the difference in lifetime earnings between the average holder of a bachelor’s degree and the average high school graduate. This difference can be nearly $1 million. College graduates also have a significantly lower unemployment rate than those with lower educational attainments. While a college degree holder’s wages have increased somewhat, the major reason for the increase in value of a bachelor’s degree has been the plummeting value of a high school diploma. In the twenty-first century, the majority of jobs require at least some post-secondary education. This includes manufacturing jobs that in the past would have afforded workers a middle class income with only a high school diploma. Those jobs are increasingly scarce. This phenomenon has also no doubt contributed to the increasing inequality of income that we observe in the U.S. today. We will discuss that topic next, in Chapter 15. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 347 KEY TERMS affirmative action active efforts by government or businesses that give special rights to minorities in hiring, promotion, or access to education to make up for past discrimination bilateral monopoly a labor market with a monopsony on the demand side and a union on the supply side collective bargaining negotiat
ions between unions and a firm or firms discrimination actions based on the belief that members of a certain group or groups are in some way inferior solely because of a factor such as race, gender, or religion first rule of labor markets productivity to the firm an employer will never pay a worker more than the value of the worker's marginal monopsony a labor market where there is only one employer perfectly competitive labor market a labor market where neither suppliers of labor nor demanders of labor have any market power; thus, an employer can hire all the workers they would like at the going market wage KEY CONCEPTS AND SUMMARY 14.1 The Theory of Labor Markets A firm demands labor because of the value of the labor’s marginal productivity. For a firm operating in a perfectly competitive output market, this will be the value of the marginal product, which we define as the marginal product of labor multiplied by the firm’s output price. For a firm which is not perfectly competitive, the appropriate concept is the marginal revenue product, which we define as the marginal product of labor multiplied by the firm’s marginal revenue. Profit maximizing firms employ labor up to the point where the market wage is equal to the firm’s demand for labor. In a competitive labor market, we determine market wage through the interaction between the market supply and market demand for labor. 14.2 Wages and Employment in an Imperfectly Competitive Labor Market A monopsony is the sole employer in a labor market. The monopsony can pay any wage it chooses, subject to the market supply of labor. This means that if the monopsony offers too low a wage, they may not find enough workers willing to work for them. Since to obtain more workers, they must offer a higher wage, the marginal cost of additional labor is greater than the wage. To maximize profits, a monopsonist will hire workers up to the point where the marginal cost of labor equals their labor demand. This results in a lower level of employment than a competitive labor market would provide, but also a lower equilibrium wage. 14.3 Market Power on the Supply Side of Labor Markets: Unions A labor union is an organization of workers that negotiates as a group with employers over compensation and work conditions. Union workers in the United States are paid more on average than other workers with comparable education and experience. Thus, either union workers must be more productive to match this higher pay or the higher pay will lead employers to find ways of hiring fewer union workers than they otherwise would. American union membership has been falling for decades. Some possible reasons include the shift of jobs to service industries; greater competition from globalization; the passage of worker-friendly legislation; and U.S. laws that are less favorable to organizing unions. 14.4 Bilateral Monopoly A bilateral monopoly is a labor market with a union on the supply side and a monopsony on the demand side. Since both sides have monopoly power, the equilibrium level of employment will be lower than that for a competitive labor market, but the equilibrium wage could be higher or lower depending on which side negotiates better. The union favors a higher wage, while the monopsony favors a lower wage, but the outcome is indeterminate in the model. 348 Chapter 14 | Labor Markets and Income 14.5 Employment Discrimination Discrimination occurs in a labor market when employers pay workers with the same economic characteristics, such as education,experience, and skill, are paid different amounts because of race, gender, religion, age, or disability status. In the United States, female workers on average earn less than male workers, and black workers on average earn less than white workers. There is controversy over to which discrimination differences in factors like education and job experience can explain these earnings gaps. Free markets can allow discrimination to occur, but the threat of a loss of sales or a loss of productive workers can also create incentives for a firm not to discriminate. A range of public policies can be used to reduce earnings gaps between men and women or between white and other racial/ethnic groups: requiring equal pay for equal work, and attaining more equal educational outcomes. 14.6 Immigration The recent level of U.S. immigration is at a historically high level if we measure it in absolute numbers, but not if we measure it as a share of population. The overall gains to the U.S. economy from immigration are real but relatively small. However, immigration also causes effects like slightly lower wages for low-skill workers and budget problems for certain state and local governments. SELF-CHECK QUESTIONS 1. Table 14.10 shows levels of employment (Labor), the marginal product at each of those levels, and the price at which the firm can sell output in the perfectly competitive market where it operates. Labor Marginal Product of Labor Price of the Product 1 2 3 4 5 6 Table 14.10 10 8 7 5 3 1 $4 $4 $4 $4 $4 $4 a. What is the value of the marginal product at each level of labor? b. If the firm operates in a perfectly competitive labor market where the going market wage is $12, what is the firm’s profit maximizing level of employment? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 349 2. Table 14.11 shows levels of employment (Labor), the marginal product at each of those levels, and a monopoly’s marginal revenue. Labor Marginal Product of Labor Price of the Product 1 2 3 4 5 6 Table 14.11 10 8 7 5 3 1 $10 $7 $5 $4 $2 $1 a. What is the monopoly’s marginal revenue product at each level of employment? b. If the monopoly operates in a perfectly competitive labor market where the going market wage is $20, what is the firm’s profit maximizing level of employment? 3. Table 14.12 shows the quantity demanded and supplied in the labor market for driving city buses in the town of Unionville, where all the bus drivers belong to a union. Wage Per Hour Quantity of Workers Demanded Quantity of Workers Supplied $14 $16 $18 $20 $22 $24 Table 14.12 12,000 10,000 8,000 6,000 4,000 2,000 6,000 7,000 8,000 9,000 10,000 11,000 a. What would the equilibrium wage and quantity be in this market if no union existed? b. Assume that the union has enough negotiating power to raise the wage to $4 per hour higher than it would otherwise be. Is there now excess demand or excess supply of labor? 4. Do unions typically oppose new technology out of a fear that it will reduce the number of union jobs? Why or why not? 5. Compared with the share of workers in most other high-income countries, is the share of U.S. workers whose wages are determined by union bargaining higher or lower? Why or why not? 6. Are firms with a high percentage of union employees more likely to go bankrupt because of the higher wages that they pay? Why or why not? 7. Do countries with a higher percentage of unionized workers usually have less growth in productivity because of strikes and other disruptions caused by the unions? Why or why not? 350 Chapter 14 | Labor Markets and Income 8. Table 14.13 shows information from the supply curve for labor for a monopsonist, that is, the wage rate required at each level of employment. Labor 1 2 3 4 5 6 Table 14.13 Wage 1 3 5 7 8 10 a. What is the monopsonist’s marginal cost of labor at each level of employment? b. If each unit of labor’s marginal revenue product is $13, what is the firm’s profit maximizing level of employment and wage? 9. Explain in each of the following situations how market forces might give a business an incentive to act in a less discriminatory fashion. a. A local flower delivery business run by a bigoted white owner notices that many of its local customers are black. b. An assembly line has traditionally only hired men, but it is having a hard time hiring sufficiently qualified workers. c. A biased owner of a firm that provides home health care services would like to pay lower wages to Hispanic workers than to other employees. 10. Does the earnings gap between the average wages of females and the average wages of males prove labor market discrimination? Why or why not? 11. If immigration is reduced, what is the impact on the wage for low-skilled labor? Explain. REVIEW QUESTIONS 12. What determines the demand for labor for a firm operating in a perfectly competitive output market? 19. What is the long-term trend in American union membership? 13. What determines the demand for labor for a firm with market power in the output market? 14. What is a perfectly competitive labor market? 15. What is a labor union? 16. Why do employers have a natural advantage in bargaining with employees? 17. What are some of the most important laws that protect employee rights? 18. How does the presence of a labor union change negotiations between employers and workers? 20. Would you expect the presence of labor unions to lead to higher or lower pay for worker-members? Would you expect a higher or lower quantity of workers hired by those employers? Explain briefly. 21. What are the main causes for the recent trends in union membership rates in the United States? Why are union rates lower in the United States than in many other developed countries? 22. What is a monopsony? 23. What is the marginal cost of labor? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 14 | Labor Markets and Income 351 24. How does monopsony affect the equilibrium wage and employment levels? 25. What is a bilateral monopoly? 26. How does a bilateral monopoly affect the equilibrium wage and employment levels compared to a perfectly competitive labor market? 27. Describe how the earnings gap between men and women has evolved in recent decades. 28. Describe how the earnings gap between blacks and whites has evolved in recent decades. 29. Does a gap between the average earnings of men and women, or between whit
es and blacks, prove that employers are discriminating in the labor market? Explain briefly. 30. Will a free market tend to encourage or discourage discrimination? Explain briefly. CRITICAL THINKING QUESTIONS 31. What policies, when used together with antidiscrimination laws, might help to reduce the earnings gap between men and women or between white and black workers? 32. Describe how affirmative action is applied in the labor market. 33. What factors can explain the relatively small effect of low-skilled immigration on the wages of low-skilled workers? 34. Have levels of immigration to the United States been relatively high or low in recent years? Explain. 35. How would you expect immigration by primarily low-skill workers to affect American low-skilled workers? 36. What is the marginal cost of labor for a firm that operates in a competitive labor market? How does this compare with the MCL for a monopsony? 37. Given the decline in union membership over the past 50 years, what does the theory of bilateral monopoly suggest will have happened to the equilibrium level of wages over time? Why? 38. Are unions and technological complementary? Why or why not? improvements 39. Will union membership continue to decline? Why or why not? If it is not profitable to discriminate, why does 40. discrimination persist? 41. If a company has discriminated against minorities in the past, should it be required to give priority to minority applicants today? Why or why not? 42. If the United States allows a greater quantity of highly skilled workers, what will be the impact on the average wages of highly skilled employees? If all countries eliminated all barriers 43. to immigration, would global economic growth increase? Why or why not? 352 Chapter 14 | Labor Markets and Income This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 353 15 | Poverty and Economic Inequality Figure 15.1 Occupying Wall Street On September 17, 2011, Occupy Wall Street began in New York City’s Wall Street financial district. (Credit: modification of work by David Shankbone/Flickr Creative Commons) Occupy Wall Street In September 2011, a group of protesters gathered in Zuccotti Park in New York City to decry what they perceived as increasing social and economic inequality in the United States. Calling their protest “Occupy Wall Street,” they argued that the concentration of wealth among the richest 1% in the United States was both economically unsustainable and inequitable, and needed to be changed. The protest then spread to other major cities, and the Occupy movement was born. Why were people so upset? How much wealth is concentrated among the top 1% in our society? How did they acquire so much wealth? These are very real, very important questions in the United States now, and this chapter on poverty and economic inequality will help us address the causes behind this sentiment. Introduction to Poverty and Economic Inequality In this chapter, you will learn about: • Drawing the Poverty Line • The Poverty Trap • The Safety Net • Income Inequality: Measurement and Causes 354 Chapter 15 | Poverty and Economic Inequality • Government Policies to Reduce Income Inequality The labor markets that determine the pay that workers receive do not take into account how much income a family needs for food, shelter, clothing, and health care. Market forces do not worry about what happens to families when a major local employer goes out of business. Market forces do not take time to contemplate whether those who are earning higher incomes should pay an even higher share of taxes. However, labor markets do create considerable income inequalities. In 2014, the median American family income was $57,939 (the median is the level where half of all families had more than that level and half had less). According to the U.S. Census Bureau, the federal government classified almost nine million U.S. families as below the poverty line in that year. Think about a family of three—perhaps a single mother with two children—attempting to pay for the basics of life on perhaps $17,916 per year. After paying for rent, healthcare, clothing, and transportation, such a family might have $6,000 to spend on food. Spread over 365 days, the food budget for the entire family would be about $17 per day. To put this in perspective, most cities have restaurants where $17 will buy you an appetizer for one. This chapter explores how the U.S. government defines poverty, the balance between assisting the poor without discouraging work, and how federal antipoverty programs work. It also discusses income inequality—how economists measure inequality, why inequality has changed in recent decades, the range of possible government policies to reduce inequality, and the danger of a tradeoff that too great a reduction in inequality may reduce incentives for producing output. 15.1 | Drawing the Poverty Line By the end of this section, you will be able to: • Explain economic inequality and how the poverty line is determined • Analyze the U.S. poverty rate over time, noting its prevalence among different groups of citizens Comparisons of high and low incomes raise two different issues: economic inequality and poverty. Poverty is measured by the number of people who fall below a certain level of income—called the poverty line—that defines the income one needs for a basic standard of living. Income inequality compares the share of the total income (or wealth) in society that different groups receive. For example, compare the share of income that the top 10% receive to the share of income that the bottom 10% receive. In the United States, the official definition of the poverty line traces back to a single person: Mollie Orshansky. In 1963, Orshansky, who was working for the Social Security Administration, published an article called “Children of the Poor” in a highly useful and dry-as-dust publication called the Social Security Bulletin. Orshansky’s idea was to define a poverty line based on the cost of a healthy diet. Her previous job had been at the U.S. Department of Agriculture, where she had worked in an agency called the Bureau of Home Economics and Human Nutrition. One task of this bureau had been to calculate how much it would cost to feed a nutritionally adequate diet to a family. Orshansky found that the average family spent one-third of its income on food. She then proposed that the poverty line be the amount one requires to buy a nutritionally adequate diet, given the size of the family, multiplied by three. The current U.S. poverty line is essentially the same as the Orshansky poverty line, although the government adjusts the dollar amounts to represent the same buying power over time. The U.S. poverty line in 2015 ranged from $11,790 for a single individual to $25,240 for a household of four people. Figure 15.2 shows the U.S. poverty rate over time; that is, the percentage of the population below the poverty line in any given year. The poverty rate declined through the 1960s, rose in the early 1980s and early 1990s, but seems to have been slightly lower since the mid-1990s. However, in no year in the last four decades has the poverty rate been less than 11% of the U.S. population—that is, at best about one American in nine is below the poverty line. In recent years, the poverty rate appears to have peaked at 15.9% in 2011 before dropping to 14.5% in 2013. Table 15.1 compares poverty rates for different groups in 2011. As you will see when we delve further into these numbers, poverty rates are relatively low for whites, for the elderly, for the well-educated, and for male-headed households. Poverty rates for females, Hispanics, and African Americans are much higher than for whites. While Hispanics and This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 355 African Americans have a higher percentage of individuals living in poverty than others, most people in the United States living below the poverty line are white. Visit this website (http://openstaxcollege.org/l/povertyprogram) for more information on U.S. poverty. Figure 15.2 The U.S. Poverty Rate since 1960 The poverty rate fell dramatically during the 1960s, rose in the early 1980s and early 1990s, and, after declining in the 1990s through mid-2000s, rose to 15.9% in 2011, which is close to the 1960 levels. In 2013, the poverty dropped slightly to 14.5%. (Source: U.S. Census Bureau) Group Poverty Rate Females Males White Black Hispanic Table 15.1 Poverty Rates by Group, 2013 15.8% 13.1% 9.6% 27.1% 23.5% 356 Chapter 15 | Poverty and Economic Inequality Group Poverty Rate Under age 18 Ages 18–24 Ages 25–34 Ages 35–44 Ages 45–54 Ages 55–59 Ages 60–64 Ages 65 and older Table 15.1 Poverty Rates by Group, 2013 19.9% 20.6% 15.9% 12.2% 10.9% 10.7% 10.8% 9.5% The concept of a poverty line raises many tricky questions. In a vast country like the United States, should there be a national poverty line? After all, according to the Federal Register, the median household income for a family of four was $102,552 in New Jersey and $57,132 in Mississippi in 2013, and prices of some basic goods like housing are quite different between states. The poverty line is based on cash income, which means it does not account for government programs that provide assistance to the poor in a non-cash form, like Medicaid (health care for lowincome individuals and families) and food aid. Also, low-income families can qualify for federal housing assistance. (We will discuss these and other government aid programs in detail later in this chapter.) Should the government adjust the poverty line to account for the value of such programs? Many economists and policymakers wonder whether we should rethink the concept of what poverty means in the twenty-first century. The following Clear It Up feature explains the poverty lines set by the World Bank
for low-income countries around the world. How do economists measure poverty in low-income countries? The World Bank sets two poverty lines for low-income countries around the world. One poverty line is set at an income of $1.25/day per person. The other is at $2/day. By comparison, the U.S. 2015 poverty line of $20,090 annually for a family of three works out to $18.35 per person per day. Clearly, many people around the world are far poorer than Americans, as Table 15.2 shows. China and India both have more than a billion people; Nigeria is the most populous country in Africa; and Egypt is the most populous country in the Middle East. In all four of those countries, in the mid-2000s, a substantial share of the population subsisted on less than $2/day. About half the world lives on less than $2.50 a day, and 80 percent of the world lives on less than $10 per day. (Of course, the cost of food, clothing, and shelter in those countries can be very different from those costs in the United States, so the $2 and $2.50 figures may mean greater purchasing power than they would in the United States.) This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 357 Country Share of Population below $1.25/ Day Share of Population below $2.00/ Day Brazil (in 2009) 6.1% China (in 2009) Egypt (in 2008) 11.8% 1.7% India (in 2010) 32.7% Mexico (in 2010) Nigeria (in 2010) 0.7% 68.0% 10.8% 27.2% 15.4% 68.8% 4.5% 84.5% Table 15.2 Poverty Lines for Low-Income Countries, mid-2000s (Source: http://data.worldbank.org/indicator/SI.POV.DDAY) Any poverty line will be somewhat arbitrary, and it is useful to have a poverty line whose basic definition does not change much over time. If Congress voted every few years to redefine poverty, then it would be difficult to compare rates over time. After all, would a lower poverty rate change the definition, or that people were actually better off? Government statisticians at the U.S. Census Bureau have ongoing research programs to address questions like these. 15.2 | The Poverty Trap By the end of this section, you will be able to: • Explain the poverty trap, noting how government programs impact it • • Calculate a budget constraint line that represents the poverty trap Identify potential issues in government programs that seek to reduce poverty Can you give people too much help, or the wrong kind of help? When people are provided with food, shelter, healthcare, income, and other necessities, assistance may reduce their incentive to work. Consider a program to fight poverty that works in this reasonable-sounding manner: the government provides assistance to the poor, but as the poor earn income to support themselves, the government reduces the level of assistance it provides. With such a program, every time a poor person earns $100, the person loses $100 in government support. As a result, the person experiences no net gain for working. Economists call this problem the poverty trap. Consider the situation a single-parent family faces. Figure 15.3 illustrates a single mother (earning $8 an hour) with two children. First, consider the labor-leisure budget constraint that this family faces in a situation without government assistance. On the horizontal axis is hours of leisure (or time spent with family responsibilities) increasing in quantity from right to left. Also on the horizontal axis is the number of hours at paid work, going from zero hours on the right to the maximum of 2,500 hours on the left. On the vertical axis is the amount of income per year rising from low to higher amounts of income. The budget constraint line shows that at zero hours of leisure and 2,500 hours of work, the maximum amount of income is $20,000 ($8 × 2,500 hours). At the other extreme of the budget constraint line, an individual would work zero hours, earn zero income, but enjoy 2,500 hours of leisure. At point A on the budget constraint line, by working 40 hours a week, 50 weeks a year, the utility-maximizing choice is to work a total of 2,000 hours per year and earn $16,000. 358 Chapter 15 | Poverty and Economic Inequality Now suppose that a government antipoverty program guarantees every family with a single mother and two children $18,000 in income. This is represented on the graph by a horizontal line at $18,000. With this program, each time the mother earns $1,000, the government will deduct $1,000 of its support. Table 15.3 shows what will happen at each combination of work and government support. Figure 15.3 The Poverty Trap in Action The original choice is 500 hours of leisure, 2,000 hours of work at point A, and income of $16,000. With a guaranteed income of $18,000, this family would receive $18,000 whether it provides zero hours of work or 2,000 hours of work. Only if the family provides, say, 2,300 hours of work does its income rise above the guaranteed level of $18,000—and even then, the marginal gain to income from working many hours is small. Amount Worked (hours) Total Earnings Government Support Total Income 0 500 1,000 1,500 2,000 2,500 0 $4,000 $8,000 $12,000 $16,000 $20,000 $18,000 $14,000 $10,000 $6,000 $2,000 0 $18,000 $18,000 $18,000 $18,000 $18,000 $20,000 Table 15.3 Total Income at Various Combinations of Work and Support The new budget line, with the antipoverty program in place, is the horizontal and heavy line that is flat at $18,000. If the mother does not work at all, she receives $18,000, all from the government. If she works full time, giving up 40 hours per week with her children, she still ends up with $18,000 at the end of the year. Only if she works 2,300 hours in the year—which is an average of 44 hours per week for 50 weeks a year—does household income rise to $18,400. Even in this case, all of her year’s work means that household income rises by only $400 over the income she would receive if she did not work at all. She would need to work 50 hours a week to reach $20,000. The poverty trap is even stronger than this simplified example shows, because a working mother will have extra expenses like clothing, transportation, and child care that a nonworking mother will not face, making the economic gains from working even smaller. Moreover, those who do not work fail to build up job experience and contacts, which makes working in the future even less likely. To reduce the poverty trap the government could design an antipoverty program so that, instead of reducing This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 359 government payments by $1 for every $1 earned, the government would reduce payments by some smaller amount instead. Imposing requirements for work as a condition of receiving benefits and setting a time limit on benefits can also reduce the harshness of the poverty trap. Figure 15.4 illustrates a government program that guarantees $18,000 in income, even for those who do not work at all, but then reduces this amount by 50 cents for each $1 earned. The new, higher budget line in Figure 15.4 shows that, with this program, additional hours of work will bring some economic gain. Because of the reduction in government income when an individual works, an individual earning $8.00 will really net only $4.00 per hour. The vertical intercept of this higher budget constraint line is at $28,000 ($18,000 + 2,500 hours × $4.00 = $28,000). The horizontal intercept is at the point on the graph where $18,000 and 2500 hours of leisure is set. Table 15.4 shows the total income differences with various choices of labor and leisure. However, this type of program raises other issues. First, even if it does not eliminate the incentive to work by reducing government payments by $1 for every $1 earned, enacting such a program may still reduce the incentive to work. At least some people who would be working 2,000 hours each year without this program might decide to work fewer hours but still end up with more income—that is, their choice on the new budget line would be like S, above and to the right of the original choice P. Of course, others may choose a point like R, which involves the same amount of work as P, or even a point to the left of R that involves more work. The second major issue is that when the government phases out its support payments more slowly, the antipoverty program costs more money. Still, it may be preferable in the long run to spend more money on a program that retains a greater incentive to work, rather than spending less money on a program that nearly eliminates any gains from working. Figure 15.4 Loosening the Poverty Trap: Reducing Government Assistance by 50 Cents for Every $1 Earned On the original labor-leisure opportunity set, the lower budget set shown by the smaller dashed line in the figure, the preferred choice P is 500 hours of leisure and $16,000 of income. Then, the government created an antipoverty program that guarantees $18,000 in income even to those who work zero hours, shown by the larger dashed line. In addition, every $1 earned means phasing out 50 cents of benefits. This program leads to the higher budget set, which the diagram shows. The hope is that this program will provide incentives to work the same or more hours, despite receiving income assistance. However, it is possible that the recipients will choose a point on the new budget set like S, with less work, more leisure, and greater income, or a point like R, with the same work and greater income. 360 Chapter 15 | Poverty and Economic Inequality Amount Worked (hours) Total Earnings Government Support Total Income 0 500 1,000 1,500 2,000 2,500 0 $4,000 $8,000 $12,000 $16,000 $20,000 $18,000 $16,000 $14,000 $12,000 $10,000 $8,000 $18,000 $20,000 $22,000 $24,000 $26,000 $28,000 Table 15.4 The Labor-Leisure Tradeoff with Assistance Reduced by 50 Cents for Every Dollar Earned The next module will consider a variety of government support programs focused specifi
cally on the poor, including welfare, SNAP (Supplemental Nutrition Assistance Program), Medicaid, and the earned income tax credit (EITC). Although these programs vary from state to state, it is generally a true statement that in many states from the 1960s into the 1980s, if poor people worked, their level of income barely rose—or did not rise at all—after factoring in the reduction in government support payments. The following Work It Out feature shows how this happens. Calculating a Budget Constraint Line Jason earns $9.00 an hour, and a government antipoverty program provides a floor of $10,000 guaranteed income. The government reduces government support by $0.50 for each $1.00 earned. What are the horizontal and vertical intercepts of the budget constraint line? Assume the maximum hours for work or leisure is 2,500 hours. Step 1. Determine the amount of the government guaranteed income. In this case, it is $10,000. Step 2. Plot that guaranteed income as a horizontal line on the budget constraint line. Step 3. Determine what Jason earns if he has no income and enjoys 2,500 hours of leisure. In this case, he will receive the guaranteed $10,000 (the horizontal intercept). Step 4. Calculate how much Jason’s salary will be reduced due to the reduction in government income. In Jason’s case, it will be reduced by one half. He will, in effect, net only $4.50 an hour. Step 5. If Jason works 1,000 hours, at a maximum what income will Jason receive? Jason will receive $10,000 in government assistance. He will net only $4.50 for every hour he chooses to work. If he works 1,000 hours at $4.50, his earned income is $4,500 plus the $10,000 in government income. Thus, the total maximum income (the vertical intercept) is $10,000 + $4,500 = $14,500. 15.3 | The Safety Net By the end of this section, you will be able to: Identify the antipoverty government programs that comprise the safety net • • Explain the the safety net programs' primary goals and how these programs have changed over time • Discuss the complexities of these safety net programs and why they can be controversial The U.S. government has implemented a number of programs to assist those below the poverty line and those who have incomes just above the poverty line, to whom we refer as the near-poor. Such programs are called the safety This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 361 net, to recognize that they offer some protection for those who find themselves without jobs or income. Temporary Assistance for Needy Families From the Great Depression until 1996, the United States’ most visible antipoverty program was Aid to Families with Dependent Children (AFDC), which provided cash payments to mothers with children who were below the poverty line. Many just called this program “welfare.” In 1996, Congress passed and President Bill Clinton signed into law the Personal Responsibility and Work Opportunity Reconciliation Act, more commonly called the “welfare reform act.” The new law replaced AFDC with Temporary Assistance for Needy Families (TANF). Visit this website (http://openstaxcollege.org/l/Clinton_speech) to watch a video of President Bill Clinton’s Welfare Reform speech. TANF brought several dramatic changes in how welfare operated. Under the old AFDC program, states set the level of welfare benefits that they would pay to the poor, and the federal government guaranteed it would chip in some of the money as well. The federal government’s welfare spending would rise or fall depending on the number of poor people, and on how each state set its own welfare contribution. Under TANF, however, the federal government gives a fixed amount of money to each state. The state can then use the money for almost any program with an antipoverty component: for example, the state might use the money to give cash to poor families, or to reduce teenage pregnancy, or even to raise the high school graduation rate. However, the federal government imposed two key requirements. First, if states are to keep receiving the TANF grants, they must impose work requirements so that most of those receiving TANF benefits are working (or attending school). Second, no one can receive TANF benefits with federal money for more than a total of five years over his or her lifetime. The old AFDC program had no such work requirements or time limits. TANF attempts to avoid the poverty trap by requiring that welfare recipients work and by limiting the length of time they can receive benefits. In its first few years, the program was quite successful. The number of families receiving payments in 1995, the last year of AFDC, was 4.8 million. By 2012, according to the Congressional Research Service, the average number of families receiving payments under TANF was 1.8 million—a decline of more than half. TANF benefits to poor families vary considerably across states. For example, again according to the Congressional Research Service, in 2011 the highest monthly payment in Alaska to a single mother with two children was $923, while in Mississippi the highest monthly payment to that family was $170. These payments reflect differences in states’ cost of living. Total spending on TANF was approximately $16.6 billion in 1997. As of 2012, spending was at $12 billion, an almost 28% decrease, split about evenly between the federal and state governments. When you take into account the effects of inflation, the decline is even greater. Moreover, there seemed little evidence that poor families were suffering a reduced standard of living as a result of TANF—although, on the other side, there was not much evidence that poor families had greatly improved their total levels of income, either. The Earned Income Tax Credit (EITC) The earned income tax credit (EITC), first passed in 1975, is a method of assisting the working poor through the tax system. The EITC is one of the largest assistance program for low-income groups, and projections for 2013 expected 26 million households to take advantage of it at an estimated cost of $50 billion. In 2013, for example, a single parent with two children would have received a tax credit of $5,372 up to an income level of $17,530. The amount of the tax break increases with the amount of income earned, up to a point. The earned income tax credit has often been 362 Chapter 15 | Poverty and Economic Inequality popular with both economists and the general public because of the way it effectively increases the payment received for work. What about the danger of the poverty trap that every additional $1 earned will reduce government support payments by close to $1? To minimize this problem, the earned income tax credit is phased out slowly. According to the Tax Policy Center, for a single-parent family with two children in 2013, the credit is not reduced at all (but neither is it increased) as earnings rise from $13,430 to $17,530. Then, for every $1 earned above $17,530, the amount received from the credit is reduced by 21.06 cents, until the credit phases out completely at an income level of $46,227. Figure 15.5 illustrates that the earned income tax credits, child tax credits, and the TANF program all cost the federal government money—either in direct outlays or in loss of tax revenues. CTC stands for the government tax cuts for the child tax credit. Figure 15.5 Real Federal Spending on CTC, EITC, and TANF, 1975-2013 EITC increased from more than $20 billion in 2000 to over an estimated $50 billion by 2013, far exceeding estimated 2013 outlays in the CTC (Child Tax Credits) and TANF of over $20 billion and $10 billion, respectively. (Source: Office of Management and Budget) In recent years, the EITC has become a hugely expensive government program for providing income assistance to the poor and near-poor, costing about $60 billion in 2012. In that year, the EITC provided benefits to about 27 million families and individuals and, on average, is worth about $2,296 per family (with children), according to the Tax Policy Center. One reason that the TANF law worked as well as it did is that the government greatly expanded EITC in the late 1980s and again in the early 1990s, which increased the returns to work for low-income Americans. Supplemental Nutrition Assistance Program (SNAP) Often called “food stamps,” Supplemental Nutrition Assistance Program (SNAP) is a federally funded program, started in 1964, in which each month poor people receive a card like a debit card that they can use to buy food. The amount of food aid for which a household is eligible varies by income, number of children, and other factors but, in general, households are expected to spend about 30% of their own net income on food, and if 30% of their net income is not enough to purchase a nutritionally adequate diet, then those households are eligible for SNAP. SNAP can contribute to the poverty trap. For every $100 earned, the government assumes that a family can spend $30 more for food, and thus reduces its eligibility for food aid by $30. This decreased benefit is not a complete disincentive to work—but combined with how other programs reduce benefits as income increases, it adds to the problem. SNAP, however, does try to address the poverty trap with its own set of work requirements and time limits. Why give debit cards and not just cash? Part of the political support for SNAP comes from a belief that since recipients must spend the the cards on food, they cannot “waste” them on other forms of consumption. From an economic point of view, however, the belief that cards must increase spending on food seems wrong-headed. After all, say that a poor family is spending $2,500 per year on food, and then it starts receiving $1,000 per year in SNAP aid. The family might react by spending $3,500 per year on food (income plus aid), or it might react by continuing to spend $2,500 per year on food, but use the $1,000 in food aid to free up $1,000 th
at it can now spend on other goods. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 363 Thus, it is reasonable to think of SNAP cards as an alternative method, along with TANF and the earned income tax credit, of transferring income to the working poor. Anyone eligible for TANF is also eligible for SNAP, although states can expand eligibility for food aid if they wish to do so. In some states, where TANF welfare spending is relatively low, a poor family may receive more in support from SNAP than from TANF. In 2014, about 40 million people received food aid at an annual cost of about $76 billion, with an average monthly benefit of about $287 per person per month. SNAP participation increased by 70% between 2007 and 2011, from 26.6 million participants to 45 million. According to the Congressional Budget Office, the 2008-2009 Great Recession and rising food prices caused this dramatic rise in participation. The federal government deploys a range of income security programs that it funds through departments such as Health and Human Services, Agriculture, and Housing and Urban Development (HUD) (see Figure 15.6). According to the Office of Management and Budget, collectively, these three departments provided an estimated $62 billion of aid through programs such as supplemental feeding programs for women and children, subsidized housing, and energy assistance. The federal government also transfers funds to individual states through special grant programs. Figure 15.6 Expenditure Comparison of TANF, SNAP, HUD, and Other Income Security Programs, 1988–2013 (est.) Total expenditures on income security continued to rise between 1988 and 2010, while payments for TANF have increased from $13 billion in 1998 to an estimated $17.3 billion in 2013. SNAP has seen relatively small increments. These two programs comprise a relatively small portion of the estimated $106 billion dedicated to income security in 2013. Note that other programs and housing programs increased dramatically during the 2008 and 2010 time periods. (Source: Table 12.3 Section 600 Income Security, https://www.whitehouse.gov/sites/default/files/omb/ budget/fy2013/assets/hist.pdf) The safety net includes a number of other programs: government-subsidized school lunches and breakfasts for children from low-income families; the Special Supplemental Food Program for Women, Infants and Children (WIC), which provides food assistance for pregnant women and newborns; the Low Income Home Energy Assistance Program, which provides help with home heating bills; housing assistance, which helps pay the rent; and Supplemental Security Income, which provides cash support for the disabled and the elderly poor. Medicaid Congress created Medicaid in 1965. This is a joint health insurance program between both the states and the federal government. The federal government helps fund Medicaid, but each state is responsible for administering the program, determining the level of benefits, and determining eligibility. It provides medical insurance for certain lowincome people, including those below the poverty line, with a focus on families with children, the elderly, and the disabled. About one-third of Medicaid spending is for low-income mothers with children. While an increasing share of the program funding in recent years has gone to pay for nursing home costs for the elderly poor. The program ensures that participants receive a basic level of benefits, but because each state sets eligibility requirements and provides varying levels of service, the program differs from state to state. 364 Chapter 15 | Poverty and Economic Inequality In the past, a common problem has been that many low-paying jobs pay enough to a breadwinner so that a family could lose its eligibility for Medicaid, yet the job does not offer health insurance benefits. A poor parent considering such a job might choose not to work rather than lose health insurance for his or her children. In this way, health insurance can become a part of the poverty trap. Many states recognized this problem in the 1980s and 1990s and expanded their Medicaid coverage to include not just the poor, but the near-poor earning up to 135% or even 185% of the poverty line. Some states also guaranteed that children would not lose coverage if their parents worked. These expanded guarantees cost the government money, of course, but they also helped to encourage those on welfare to enter the labor force. As of 2014, approximately 69.7 million people participated in Medicaid. Of those enrolled, almost half are children. Healthcare expenditures, however, are highest for the elderly population, which comprises approximately 25% of participants. As Figure 15.7 (a) indicates, the largest number of households that enroll in Medicaid are those with children. Lower-income adults are the next largest group enrolled in Medicaid at 28%. The blind and disabled are 16% of those enrolled, and seniors are 9% of those enrolled. Figure 15.7 (b) shows how much actual Medicaid dollars the government spends for each group. Out of total Medicaid spending, the government spends more on seniors (20%) and the blind and disabled (44%). Thus, 64% of all Medicaid spending goes to seniors, the blind, and disabled. Children receive 21% of all Medicaid spending, followed by adults at 15%. Figure 15.7 Medicaid Enrollment and Spending Part (a) shows the Medicaid enrollment by different populations, with children comprising the largest percentage at 47%, followed by adults at 28%, and the blind and disabled at 16%. Part (b) shows that Medicaid spending is principally for the blind and disabled, followed by the elderly. Although children are the largest population that Medicaid covers, expenditures on children are only at 21%. 15.4 | Income Inequality: Measurement and Causes By the end of this section, you will be able to: • Explain the distribution of income, and analyze the sources of income inequality in a market economy • Measure income distribution in quintiles • Calculate and graph a Lorenz curve • Show income inequality through demand and supply diagrams Poverty levels can be subjective based on the overall income levels of a country. Typically a government measures poverty based on a percentage of the median income. Income inequality, however, has to do with the distribution of that income, in terms of which group receives the most or the least income. Income inequality involves comparing those with high incomes, middle incomes, and low incomes—not just looking at those below or near the poverty line. In turn, measuring income inequality means dividing the population into various groups and then comparing the groups, a task that we can be carry out in several ways, as the next Clear It Up feature shows. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 365 How do you separate poverty and income inequality? Poverty can change even when inequality does not move at all. Imagine a situation in which income for everyone in the population declines by 10%. Poverty would rise, since a greater share of the population would now fall below the poverty line. However, inequality would be the same, because everyone suffered the same proportional loss. Conversely, a general rise in income levels over time would keep inequality the same, but reduce poverty. It is also possible for income inequality to change without affecting the poverty rate. Imagine a situation in which a large number of people who already have high incomes increase their incomes by even more. Inequality would rise as a result—but the number of people below the poverty line would remain unchanged. Why did inequality of household income increase in the United States in recent decades? A trend toward greater income inequality has occurred in many countries around the world, although the effect has been more powerful in the U.S. economy. Economists have focused their explanations for the increasing inequality on two factors that changed more or less continually from the 1970s into the 2000s. One set of explanations focuses on the changing shape of American households. The other focuses on greater inequality of wages, what some economists call “winner take all” labor markets. We will begin with how we measure inequality, and then consider the explanations for growing inequality in the United States. Measuring Income Distribution by Quintiles One common way of measuring income inequality is to rank all households by income, from lowest to highest, and then to divide all households into five groups with equal numbers of people, known as quintiles. This calculation allows for measuring the distribution of income among the five groups compared to the total. The first quintile is the lowest fifth or 20%, the second quintile is the next lowest, and so on. We can measure income inequality by comparing what share of the total income each quintile earns. U.S. income distribution by quintile appears in Table 15.5. In 2011, for example, the bottom quintile of the income distribution received 3.2% of income; the second quintile received 8.4%; the third quintile, 14.3%; the fourth quintile, 23.0%; and the top quintile, 51.14%. The final column of Table 15.5 shows what share of income went to households in the top 5% of the income distribution: 22.3% in 2011. Over time, from the late 1960s to the early 1980s, the top fifth of the income distribution typically received between about 43% to 44% of all income. The share of income that the top fifth received then begins to rise. Census Bureau researchers trace, much of this increase in the share of income going to the top fifth to an increase in the share of income going to the top 5%. The quintile measure shows how income inequality has increased in recent decades. Year 1967 1970 1975 1980 1985 1990 Lowest Quintile Second Quintile Thir
d Quintile Fourth Quintile Highest Quintile 4.0 4.1 4.3 4.2 3.9 3.8 10.8 10.8 10.4 10.2 9.8 9.6 17.3 17.4 17.0 16.8 16.2 15.9 24.2 24.5 24.7 24.7 24.4 24.0 43.6 43.3 43.6 44.1 45.6 46.6 Top 5% 17.2 16.6 16.5 16.5 17.6 18.5 Table 15.5 Share of Aggregate Income Received by Each Fifth and Top 5% of Households, 1967–2013 (Source: U.S. Census Bureau, Table 2) 366 Year 1995 2000 2005 2010 2013 Chapter 15 | Poverty and Economic Inequality Lowest Quintile Second Quintile Third Quintile Fourth Quintile Highest Quintile 3.7 3.6 3.4 3.3 3.2 9.1 8.9 8.6 8.5 8.4 15.2 14.8 14.6 14.6 14.4 23.3 23.0 23.0 23.4 23.0 48.7 49.8 50.4 50.3 51 Top 5% 21.0 22.1 22.2 21.3 22.2 Table 15.5 Share of Aggregate Income Received by Each Fifth and Top 5% of Households, 1967–2013 (Source: U.S. Census Bureau, Table 2) It can also be useful to divide the income distribution in ways other than quintiles; for example, into tenths or even into percentiles (that is, hundredths). A more detailed breakdown can provide additional insights. For example, the last column of Table 15.5 shows the income received by the top 5% percent of the income distribution. Between 1980 and 2013, the share of income going to the top 5% increased by 5.7 percentage points (from 16.5% in 1980 to 22.2% in 2013). From 1980 to 2013 the share of income going to the top quintile increased by 7.0 percentage points (from 44.1% in 1980 to 51% in 2013). Thus, the top 20% of householders (the fifth quintile) received over half (51%) of all the income in the United States in 2013. Lorenz Curve We can present the data on income inequality in various ways. For example, you could draw a bar graph that showed the share of income going to each fifth of the income distribution. Figure 15.8 presents an alternative way of showing inequality data in a Lorenz curve. This curve shows the cumulative share of population on the horizontal axis and the cumulative percentage of total income received on the vertical axis. Figure 15.8 The Lorenz Curve A Lorenz curve graphs the cumulative shares of income received by everyone up to a certain quintile. The income distribution in 1980 was closer to the perfect equality line than the income distribution in 2011—that is, the U.S. income distribution became more unequal over time. Every Lorenz curve diagram begins with a line sloping up at a 45-degree angle. We show it as a dashed line in Figure 15.8. The points along this line show what perfect equality of the income distribution looks like. It would mean, for example, that the bottom 20% of the income distribution receives 20% of the total income, the bottom 40% gets 40% of total income, and so on. The other lines reflect actual U.S. data on inequality for 1980 and 2011. The trick in graphing a Lorenz curve is that you must change the shares of income for each specific quintile, which we show in the first column of numbers in Table 15.6, into cumulative income, which we show in the second column of numbers. For example, the bottom 40% of the cumulative income distribution will be the sum of the first and second quintiles; the bottom 60% of the cumulative income distribution will be the sum of the first, second, and third This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 367 quintiles, and so on. The final entry in the cumulative income column needs to be 100%, because by definition, 100% of the population receives 100% of the income. Income Category Share of Income in 1980 (%) Cumulative Share of Income in 1980 (%) Share of Income in 2013 (%) Cumulative Share of Income in 2013 (%) First quintile Second quintile Third quintile Fourth quintile Fifth quintile 4.2 10.2 16.8 24.7 44.1 4.2 14.4 31.2 55.9 100.0 3.2 8.4 14.4 23.0 51.0 3.2 11.6 26.0 49.0 100.0 Table 15.6 Calculating the Lorenz Curve In a Lorenz curve diagram, a more unequal distribution of income will loop farther down and away from the 45-degree line, while a more equal distribution of income will move the line closer to the 45-degree line. Figure Figure 15.8 illustrates the greater inequality of the U.S. income distribution between 1980 and 2013 because the Lorenz curve for 2013 is farther from the 45-degree line than for 1980. The Lorenz curve is a useful way of presenting the quintile data that provides an image of all the quintile data at once. The next Clear It Up feature shows how income inequality differs in various countries compared to the United States. How does economic inequality vary around the world? The U.S. economy has a relatively high degree of income inequality by global standards. As Table 15.7 shows, based on a variety of national surveys for a selection of years in the last five years of the 2000s (with the exception of Germany, and adjusted to make the measures more comparable), the U.S. economy has greater inequality than Germany (along with most Western European countries). The region of the world with the highest level of income inequality is Latin America, illustrated in the numbers for Brazil and Mexico. The level of inequality in the United States is lower than in some of the low-income countries of the world, like China and Nigeria, or some middle-income countries like the Russian Federation. However, not all poor countries have highly unequal income distributions. India provides a counterexample. 368 Chapter 15 | Poverty and Economic Inequality Country United States Germany Brazil Mexico China India Russia Nigeria Survey Year First Quintile Second Quintile Third Quintile Fourth Quintile Fifth Quintile 2013 3.2% 8.4% 14.4% 23.0% 51.0% 2000 2009 2010 2009 2010 2009 2010 8.5% 2.9% 4.9% 4.7% 8.5% 6.1% 4.4% 13.7% 7.1% 8.8% 9.7% 12.1% 10.4% 8.3% 17.8% 12.4% 13.3% 15.3% 15.7% 14.8% 13.0% 23.1% 19.0% 20.2% 23.2% 20.8% 21.3% 20.3% 36.9% 58.6% 52.8% 47.1% 42.8% 47.1% 54.0% Table 15.7 Income Distribution in Select Countries (Source: U.S. data from U.S. Census Bureau Table 2. Other data from The World Bank Poverty and Inequality Data Base, http://databank.worldbank.org/data/views/reports/tableview.aspx#) Visit this website (http://openstaxcollege.org/l/inequality/) to watch a video of wealth inequality across the world. Causes of Growing Inequality: The Changing Composition of American Households In 1970, 41% of married women were in the labor force, but by 2015, according to the Bureau of Labor Statistics, 56.7% of married women were in the labor force. One result of this trend is that more households have two earners. Moreover, it has become more common for one high earner to marry another high earner. A few decades ago, the common pattern featured a man with relatively high earnings, such as an executive or a doctor, marrying a woman who did not earn as much, like a secretary or a nurse. Often, the woman would leave paid employment, at least for a few years, to raise a family. However, now doctors are marrying doctors and executives are marrying executives, and mothers with high-powered careers are often returning to work while their children are quite young. This pattern of households with two high earners tends to increase the proportion of high-earning households. According to data in the National Journal, even as two-earner couples have increased, so have single-parent households. Of all U.S. families, 13.1% were headed by single mothers. The poverty rate among single-parent households tends to be relatively high. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 369 These changes in family structure, including the growth of single-parent families who tend to be at the lower end of the income distribution, and the growth of two-career high-earner couples near the top end of the income distribution, account for roughly half of the rise in income inequality across households in recent decades. Visit this website (http://openstaxcollege.org/l/US_wealth) to watch a video that illustrates the distribution of wealth in the United States. Causes of Growing Inequality: A Shift in the Distribution of Wages Another factor behind the rise in U.S. income inequality is that earnings have become less equal since the late 1970s. In particular, the earnings of high-skilled labor relative to low-skilled labor have increased. Winner-take-all labor markets result from changes in technology, which have increased global demand for “stars,”—whether the best CEO, doctor, basketball player, or actor. This global demand pushes salaries far above productivity differences versus educational differences. One way to measure this change is to take workers' earnings with at least a four-year college bachelor’s degree (including those who went on and completed an advanced degree) and divide them by workers' earnings with only a high school degree. The result is that those in the 25–34 age bracket with college degrees earned about 1.67 times as much as high school graduates in 2010, up from 1.59 times in 1995, according to U.S. Census data. Winner-take-all labor market theory argues that the salary gap between the median and the top 1 percent is not due to educational differences. Economists use the demand and supply model to reason through the most likely causes of this shift. According to the National Center for Education Statistics, in recent decades, the supply of U.S. workers with college degrees has increased substantially. For example, 840,000 four-year bachelor’s degrees were conferred on Americans in 1970. In 2013-2014, 1,894,934 such degrees were conferred—an increase of over 90%. In Figure 15.9, this shift in supply to the right, from S0 to S1, should result in a lower equilibrium wage for high-skilled labor. Thus, we can explain the increase in the price of high-skilled labor by a greater demand, like the movement from D0 to D1. Evidently, combining both the increase in supply and in demand has resulted in a shift from E0 to E1, and a resulting higher wage. 370 Chapter 15 | Poverty and Economi
c Inequality Figure 15.9 Why Would Wages Rise for High-Skilled Labor? The proportion of workers attending college has increased in recent decades, so the supply curve for high-skilled labor has shifted to the right, from S0 to S1. If the demand for high-skilled labor had remained at D0, then this shift in supply would have led to lower wages for highskilled labor. However, the wages for high-skilled labor, especially if there is a large global demand, have increased even with the shift in supply to the right. The explanation must lie in a shift to the right in demand for high-skilled labor, from D0 to D1. The figure shows how a combination of the shift in supply, from S0 to S1, and the shift in demand, from D0 to D1, led to both an increase in the quantity of high-skilled labor hired and also to a rise in the wage for such labor, from W0 to W1. What factors would cause the demand for high-skilled labor to rise? The most plausible explanation is that while the explosion in new information and communications technologies over the last several decades has helped many workers to become more productive, the benefits have been especially great for high-skilled workers like top business managers, consultants, and design professionals. The new technologies have also helped to encourage globalization, the remarkable increase in international trade over the last few decades, by making it more possible to learn about and coordinate economic interactions all around the world. In turn, the rising impact of foreign trade in the U.S. economy has opened up greater opportunities for high-skilled workers to sell their services around the world, and lower-skilled workers have to compete with a larger supply of similarly skilled workers around the globe. We can view the market for high-skilled labor as a race between forces of supply and demand. Additional education and on-the-job training will tend to increase the high-skilled labor supply and to hold down its relative wage. Conversely, new technology and other economic trends like globalization tend to increase the demand for high-skilled labor and push up its relative wage. We can view the greater inequality of wages as a sign that demand for skilled labor is increasing faster than supply. Alternatively, if the supply of lower skilled workers exceeds the demand, then average wages in the lower quintiles of the income distribution will decrease. The combination of forces in the highskilled and low-skilled labor markets leads to increased income disparity. 15.5 | Government Policies to Reduce Income Inequality By the end of this section, you will be able to: • Explain the arguments for and against government intervention in a market economy • • Show the tradeoff between incentives and income equality Identify beneficial ways to reduce the economic inequality in a society No society should expect or desire complete equality of income at a given point in time, for a number of reasons. First, most workers receive relatively low earnings in their first few jobs, higher earnings as they reach middle age, and then lower earnings after retirement. Thus, a society with people of varying ages will have a certain amount of income inequality. Second, people’s preferences and desires differ. Some are willing to work long hours to have income for large houses, fast cars and computers, luxury vacations, and the ability to support children and grandchildren. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 371 These factors all imply that a snapshot of inequality in a given year does not provide an accurate picture of how people’s incomes rise and fall over time. Even if we expect some degree of economic inequality at any point in time, how much inequality should there be? There is also the difference between income and wealth, as the following Clear It Up feature explains. How do you measure wealth versus income inequality? Income is a flow of money received, often measured on a monthly or an annual basis. Wealth is the sum of the value of all assets, including money in bank accounts, financial investments, a pension fund, and the value of a home. In calculating wealth, one must subtract all debts, such as debt owed on a home mortgage and on credit cards. A retired person, for example, may have relatively little income in a given year, other than a pension or Social Security. However, if that person has saved and invested over time, the person’s accumulated wealth can be quite substantial. In the United States, the wealth distribution is more unequal than the income distribution, because differences in income can accumulate over time to make even larger differences in wealth. However, we can measure the degree of inequality in the wealth distribution with the same tools we use to measure the inequality in the income distribution, like quintile measurements. Once every three years the Federal Reserve Bank publishes the Survey of Consumer Finance which reports a collection of data on wealth. Even if they cannot answer the question of how much inequality is too much, economists can still play an important role in spelling out policy options and tradeoffs. If a society decides to reduce the level of economic inequality, it has three main sets of tools: redistribution from those with high incomes to those with low incomes; trying to assure that a ladder of opportunity is widely available; and a tax on inheritance. Redistribution Redistribution means taking income from those with higher incomes and providing income to those with lower incomes. Earlier in this chapter, we considered some of the key government policies that provide support for the poor: the welfare program TANF, the earned income tax credit, SNAP, and Medicaid. If a reduction in inequality is desired, these programs could receive additional funding. The federal income tax, which is a progressive tax system designed in such a way that the rich pay a higher percent in income taxes than the poor funds the programs. Data from household income tax returns in 2009 shows that the top 1% of households had an average income of $1,219,700 per year in pre-tax income and paid an average federal tax rate of 28.9%. The effective income tax, which is total taxes paid divided by total income (all sources of income such as wages, profits, interest, rental income, and government transfers such as veterans’ benefits), was much lower. The effective tax paid by that top 1% of householders paid was 20.4%, while the bottom two quintiles actually paid negative effective income taxes, because of provisions like the earned income tax credit. News stories occasionally report on a high-income person who has managed to pay very little in taxes, but while such individual cases exist, according to the Congressional Budget Office, the typical pattern is that people with higher incomes pay a higher average share of their income in federal income taxes. Of course, the fact that some degree of redistribution occurs now through the federal income tax and government antipoverty programs does not settle the questions of how much redistribution is appropriate, and whether more redistribution should occur. The Ladder of Opportunity Economic inequality is perhaps most troubling when it is not the result of effort or talent, but instead is determined by the circumstances under which a child grows up. One child attends a well-run grade school and high school and heads on to college, while parents help out by supporting education and other interests, paying for college, a first car, and a first house, and offering work connections that lead to internships and jobs. Another child attends a poorly run grade school, barely makes it through a low-quality high school, does not go to college, and lacks family and peer support. These two children may be similar in their underlying talents and in the effort they put forth, but their 372 Chapter 15 | Poverty and Economic Inequality economic outcomes are likely to be quite different. Public policy can attempt to build a ladder of opportunities so that, even though all children will never come from identical families and attend identical schools, each child has a reasonable opportunity to attain an economic niche in society based on their interests, desires, talents, and efforts. Table 15.8 shows some of those initiatives. Children College Level Adults • Improved day care • Widespread loans and grants for those in financial need • Opportunities for retraining and acquiring new skills • Enrichment programs for preschoolers • Improved public schools • After school and community activities • Internships and apprenticeships • Public support for a range of institutions from two-year community colleges to large research universities • Prohibiting discrimination in job markets and housing on the basis of race, gender, age, and disability - - - - - - Table 15.8 Public Policy Initiatives Some have called the United States a land of opportunity. Although the general idea of a ladder of opportunity for all citizens continues to exert a powerful attraction, specifics are often quite controversial. Society can experiment with a wide variety of proposals for building a ladder of opportunity, especially for those who otherwise seem likely to start their lives in a disadvantaged position. The government needs to carry out such policy experiments in a spirit of open-mindedness, because some will succeed while others will not show positive results or will cost too much to enact on a widespread basis. Inheritance Taxes There is always a debate about inheritance taxes. It goes like this: Why should people who have worked hard all their lives and saved up a substantial nest egg not be able to give their money and possessions to their children and grandchildren? In particular, it would seem un-American if children were unable to inherit a family business or a family home. Alternative
ly, many Americans are far more comfortable with inequality resulting from high-income people who earned their money by starting innovative new companies than they are with inequality resulting from high-income people who have inherited money from rich parents. The United States does have an estate tax—that is, a tax imposed on the value of an inheritance—which suggests a willingness to limit how much wealth one can pass on as an inheritance. However, according to the Center on Budget and Policy Priorities, in 2015 the estate tax applied only to those leaving inheritances of more than $5.43 million and thus applies to only a tiny percentage of those with high levels of wealth. The Tradeoff between Incentives and Income Equality Government policies to reduce poverty or to encourage economic equality, if carried to extremes, can injure incentives for economic output. The poverty trap, for example, defines a situation where guaranteeing a certain level of income can eliminate or reduce the incentive to work. An extremely high degree of redistribution, with very high taxes on the rich, would be likely to discourage work and entrepreneurship. Thus, it is common to draw the tradeoff between economic output and equality, as Figure 15.10 (a) shows. In this formulation, if society wishes a high level of economic output, like point A, it must also accept a high degree of inequality. Conversely, if society wants a high level of equality, like point B, it must accept a lower level of economic output because of reduced incentives for This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 373 production. This view of the tradeoff between economic output and equality may be too pessimistic, and Figure 15.10 (b) presents an alternate vision. Here, the tradeoff between economic output and equality first slopes up, in the vicinity of choice C, suggesting that certain programs might increase both output and economic equality. For example, the policy of providing free public education has an element of redistribution, since the value of the public schooling received by children of low-income families is clearly higher than what low-income families pay in taxes. A well-educated population, however, is also an enormously powerful factor in providing the skilled workers of tomorrow and helping the economy to grow and expand. In this case, equality and economic growth may complement each other. Moreover, policies to diminish inequality and soften the hardship of poverty may sustain political support for a market economy. After all, if society does not make some effort toward reducing inequality and poverty, the alternative might be that people would rebel against market forces. Citizens might seek economic security by demanding that their legislators pass laws forbidding employers from ever laying off workers or reducing wages, or laws that would impose price floors and price ceilings and shut off international trade. From this viewpoint, policies to reduce inequality may help economic output by building social support for allowing markets to operate. Figure 15.10 The Tradeoff between Incentives and Economic Equality (a) Society faces a trade-off where any attempt to move toward greater equality, like moving from choice A to B, involves a reduction in economic output. (b) Situations can arise like point C, where it is possible both to increase equality and also to increase economic output, to a choice like D. It may also be possible to increase equality with little impact on economic output, like the movement from choice D to E. However, at some point, too aggressive a push for equality will tend to reduce economic output, as in the shift from E to F. The tradeoff in Figure 15.10 (b) then flattens out in the area between points D and E, which reflects the pattern that a number of countries that provide similar levels of income to their citizens—the United States, Canada, European Union nations, Japan, and Australia—have different levels of inequality. The pattern suggests that countries in this range could choose a greater or a lesser degree of inequality without much impact on economic output. Only if these countries push for a much higher level of equality, like at point F, will they experience the diminished incentives that lead to lower levels of economic output. In this view, while a danger always exists that an agenda to reduce poverty or inequality can be poorly designed or pushed too far, it is also possible to discover and design policies that improve equality and do not injure incentives for economic output by very much—or even improve such incentives. Occupy Wall Street The Occupy movement took on a life of its own over the last few months of 2011, bringing to light issues that many people faced on the lower end of the income distribution. The contents of this chapter indicate that there is a significant amount of income inequality in the United States. The question is: What should be done about 374 it? Chapter 15 | Poverty and Economic Inequality The 2008-2009 Great Recession caused unemployment to rise and incomes to fall. Many people attribute the recession to mismanagement of the financial system by bankers and financial managers—those in the 1% of the income distribution—but those in lower quintiles bore the greater burden of the recession through unemployment. This seemed to present the picture of inequality in a different light: the group that seemed responsible for the recession was not the group that seemed to bear the burden of the decline in output. A burden shared can bring a society closer together. A burden pushed off onto others can polarize it. On one level, the problem with trying to reduce income inequality comes down to whether you still believe in the American Dream. If you believe that one day you will have your American Dream—a large income, large house, happy family, or whatever else you would like to have in life—then you do not necessarily want to prevent anyone else from living out their dream. You certainly would not want to run the risk that someone would want to take part of your dream away from you. Thus, there is some reluctance to engage in a redistributive policy to reduce inequality. However, when those for whom the likelihood of living the American Dream is very small are considered, there are sound arguments in favor of trying to create greater balance. As the text indicated, a little more income equality, gained through long-term programs like increased education and job training, can increase overall economic output. Then everyone is made better off, and the 1% will not seem like such a small group any more. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 375 KEY TERMS earned income tax credit (EITC) a method of assisting the working poor through the tax system effective income tax percentage of total taxes paid divided by total income estate tax a tax imposed on the value of an inheritance income a flow of money received, often measured on a monthly or an annual basis income inequality when one group receives a disproportionate share of total income or wealth than others Lorenz curve a graph that compares the cumulative income actually received to a perfectly equal distribution of income; it shows the share of population on the horizontal axis and the cumulative percentage of total income received on the vertical axis Medicaid a federal–state joint program enacted in 1965 that provides medical insurance for certain (not all) low-income people, including the near-poor as well as those below the poverty line, and focusing on low-income families with children, the low-income elderly, and the disabled near-poor those who have incomes just above the poverty line poverty the situation of being below a certain level of income one needs for a basic standard of living poverty line the specific amount of income one requires for a basic standard of living poverty rate percentage of the population living below the poverty line poverty trap antipoverty programs set up so that government benefits decline substantially as people earn more income—as a result, working provides little financial gain progressive tax system a tax system in which the rich pay a higher percentage of their income in taxes, rather than a higher absolute amount quintile dividing a group into fifths, a method economists often use to look at distribution of income redistribution taking income from those with higher incomes and providing income to those with lower incomes safety net the group of government programs that provide assistance to the poor and the near-poor Supplemental Nutrition Assistance Program (SNAP) a federally funded program, started in 1964, in which each month poor people receive SNAP cards they can use to buy food wealth the sum of the value of all assets, including money in bank accounts, financial investments, a pension fund, and the value of a home KEY CONCEPTS AND SUMMARY 15.1 Drawing the Poverty Line Wages are influenced by Supply and demand in labor markets influence wages. This can lead to very low incomes for some people and very high incomes for others. Poverty and income inequality are not the same thing. Poverty applies to the condition of people who cannot afford the necessities of life. Income inequality refers to the disparity between those with higher and lower incomes. The poverty rate is what percentage of the population lives below the poverty line, which the amount of income that it takes to purchase the necessities of life determines. Choosing a poverty line will always be somewhat controversial. 376 Chapter 15 | Poverty and Economic Inequality 15.2 The Poverty Trap A poverty trap occurs when government-support payments for the poor decline as the poor earn more income. As a result, the poor do not end up with much more income when they work,
because the loss of government support largely or completely offsets any income that one earns by working. Phasing out government benefits more slowly, as well as imposing requirements for work as a condition of receiving benefits and a time limit on benefits can reduce the harshness of the poverty trap. 15.3 The Safety Net We call the group of government programs that assist the poor the safety net. In the United States, prominent safety net programs include Temporary Assistance to Needy Families (TANF), the Supplemental Nutrition Assistance Program (SNAP), the earned income tax credit (EITC), Medicaid, and the Special Supplemental Food Program for Women, Infants, and Children (WIC). 15.4 Income Inequality: Measurement and Causes Measuring inequality involves making comparisons across the entire distribution of income, not just the poor. One way of doing this is to divide the population into groups, like quintiles, and then calculate what share of income each group receives. An alternative approach is to draw Lorenz curves, which compare the cumulative income actually received to a perfectly equal distribution of income. Income inequality in the United States increased substantially from the late 1970s and early 1980s into the 2000s. The two most common explanations that economists cite are changes in household structures that have led to more two-earner couples and single-parent families, and the effect of new information and communications technology on wages. 15.5 Government Policies to Reduce Income Inequality Policies that can affect the level of economic inequality include redistribution between rich and poor, making it easier for people to climb the ladder of opportunity; and estate taxes, which are taxes on inheritances. Pushing too aggressively for economic equality can run the risk of decreasing economic incentives. However, a moderate push for economic equality can increase economic output, both through methods like improved education and by building a base of political support for market forces. SELF-CHECK QUESTIONS 1. Describe how each of these changes is likely to affect poverty and inequality: a. b. Incomes rise for low-income and high-income workers, but rise more for the high-income earners. Incomes fall for low-income and high-income workers, but fall more for high-income earners. 2. Jonathon is a single father with one child. He can work as a server for $6 per hour for up to 1,500 hours per year. He is eligible for welfare, and so if he does not earn any income, he will receive a total of $10,000 per year. He can work and still receive government benefits, but for every $1 of income, his welfare stipend is $1 less. Create a table similar to Table 15.4 that shows Jonathan’s options. Use four columns, the first showing number of hours to work, the second showing his earnings from work, the third showing the government benefits he will receive, and the fourth column showing his total income (earnings + government support). Sketch a labor-leisure diagram of Jonathan’s opportunity set with and without government support. 3. Imagine that the government reworks the welfare policy that was affecting Jonathan in question 1, so that for each dollar someone like Jonathan earns at work, his government benefits diminish by only 30 cents. Reconstruct the table from question 1 to account for this change in policy. Draw Jonathan’s labor-leisure opportunity sets, both for before this welfare program is enacted and after it is enacted. 4. We have discovered that the welfare system discourages recipients from working because the more income they earn, the less welfare benefits they receive. How does the earned income tax credit attempt to loosen the poverty trap? 5. How does the TANF attempt to loosen the poverty trap? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 377 6. A group of 10 people have the following annual incomes: $24,000, $18,000, $50,000, $100,000, $12,000, $36,000, $80,000, $10,000, $24,000, $16,000. Calculate the share of total income that each quintile receives from this income distribution. Do the top and bottom quintiles in this distribution have a greater or larger share of total income than the top and bottom quintiles of the U.S. income distribution? 7. Table 15.9 shows the share of income going to each quintile of the income distribution for the United Kingdom in 1979 and 1991. Use this data to calculate what the points on a Lorenz curve would be, and sketch the Lorenz curve. How did inequality in the United Kingdom shift over this time period? How can you see the patterns in the quintiles in the Lorenz curves? Share of Income 1979 1991 Top quintile Fourth quintile Middle quintile Second quintile Bottom quintile 39.7% 24.8% 17.0% 11.5% 7.0% 42.9% 22.7% 16.3% 11.5% 6.6% Table 15.9 Income Distribution in the United Kingdom, 1979 and 1991 8. Using two demand and supply diagrams, one for the low-wage labor market and one for the high-wage labor market, explain how information technology can increase income inequality if it is a complement to high-income workers like salespeople and managers, but a substitute for low-income workers like file clerks and telephone receptionists. 9. Using two demand and supply diagrams, one for the low-wage labor market and one for the high-wage labor market, explain how a program that increased educational levels for a substantial number of low-skill workers could reduce income inequality. 10. Here is one hypothesis: A well-funded social safety net can increase economic equality but will reduce economic output. Explain why this might be so, and sketch a production possibility curve that shows this tradeoff. 11. Here is a second hypothesis: A well-funded social safety net may lead to less regulation of the market economy. Explain why this might be so, and sketch a production possibility curve that shows this tradeoff. 12. Which set of policies is more likely to cause a tradeoff between economic output and equality: policies of redistribution or policies aimed at the ladder of opportunity? Explain how the production possibility frontier tradeoff between economic equality and output might look in each case. 13. Why is there reluctance on the part of some in the United States to redistribute income so that greater equality can be achieved? REVIEW QUESTIONS 14. How is the poverty rate calculated? 15. What is the poverty line? 16. What is the difference between poverty and income inequality? 17. How does the poverty trap discourage people from working? 18. How can the effect of the poverty trap be reduced? 19. Who are the near-poor? 20. What is the safety net? 378 Chapter 15 | Poverty and Economic Inequality 21. Briefly explain the differences between TANF, the earned income tax credit, SNAP, and Medicaid. 22. Who is included in the top income quintile? 23. What is measured on the two axes of a Lorenz curve? If a country had perfect income equality what 24. would the Lorenz curve look like? 25. How has the inequality of income changed in the U.S. economy since the late 1970s? 26. What are some reasons why a certain degree of inequality of income would be expected in a market economy? 27. What are the main reasons economists give for the increase in inequality of incomes? Identify some public policies that can reduce the 28. level of economic inequality. 29. Describe how a push for economic equality might reduce incentives to work and produce output. Then describe how a push for economic inequality might not have such effects. CRITICAL THINKING QUESTIONS 30. What goods and services would you include in an estimate of the basic necessities for a family of four? 31. If a family of three earned $20,000, would they be able to make ends meet given the official poverty threshold? 32. Exercise 15.2 and Exercise 15.3 asked you to describe the labor-leisure tradeoff for Jonathon. Since, in the first example, there is no monetary incentive for Jonathon to work, explain why he may choose to work anyway. Explain what the opportunity costs of working and not working might be for Jonathon in each example. Using your tables and graphs from Exercise 15.2 and Exercise 15.3, analyze how the government welfare system affects Jonathan’s incentive to work. 33. Explain how you would create a government program that would give an incentive for labor to increase hours and keep labor from falling into the poverty trap. 34. Many critics of government programs to help lowincome individuals argue that these programs create a poverty trap. Explain how programs such as TANF, low-income EITC, SNAP, and Medicaid will affect individuals and whether or not you think these programs will benefit families and children. increases; 35. Think about the business cycle: during a recession, an unemployment expansionary phase. Explain what happens to TANF, SNAP, and Medicaid programs at each phase of the business cycle (recession, trough, expansion, and peak). decreases in it 36. Explain how a country may experience greater still equality in the distribution of experience high rates of poverty. Hint: Look at the Clear It Up "How do governments measure poverty in low-income countries?" and compare to Table 15.5. income, yet 37. The demand for skilled workers in the United States has been increasing. To increase the supply of skilled workers, many argue that immigration reform to allow more skilled labor into the United States is needed. Explain whether you agree or disagree. 38. Explain a situation using the supply and demand for skilled labor in which the increased number of college graduates leads to depressed wages. Given the rising cost of going to college, explain why a college education will or will not increase income inequality. 39. What do you think is more important to focus on when considering inequality: income inequality or wealth inequality? 40. To reduce income inequality, should the marginal tax rates on the top 1% b
e increased? tax and government 41. Redistribution of income federal programs. Explain whether or not redistribution redistribution should occur. income occurs through the antipoverty level of and whether more appropriate this is 42. How does a society or a country make the decision about the tradeoff between equality and economic output? Hint: Think about the political system. Explain what 43. short-term the consequences are of not promoting equality or working to reduce poverty. long- and This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 15 | Poverty and Economic Inequality 379 47. A group of 10 people have the following annual incomes: $55,000, $30,000, $15,000, $20,000, $35,000, $80,000, $40,000, $45,000, $30,000, $50,000. Calculate the share of total income each quintile of this income distribution received. Do the top and bottom quintiles in this distribution have a greater or larger share of total income than the top and bottom quintiles of the U.S. income distribution for 2005? PROBLEMS 44. In country A, the population is 300 million and 50 million people are living below the poverty line. What is the poverty rate? 45. In country B, the population is 900 million and 100 million people are living below the poverty line. What is the poverty rate? 46. Susan is a single mother with three children. She can earn $8 per hour and works up to 2,000 hours per year. However, if she does not earn any income at all, she will receive government benefits totaling $16,000 per year. For every $1 of income she earns, her level of government support will be reduced by $1. Create a table, patterned after Table 15.8. The first column should show Susan’s choices of how many hours to work per year, up to 2,000 hours. The second column should show her earnings from work. The third column should show her level of government support, given her earnings. The final column should show her total income, combining earnings and government support. 380 Chapter 15 | Poverty and Economic Inequality This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 381 16 | Information, Risk, and Insurance Figure 16.1 Former President Obama’s Health Care Reform The Patient Protection and Affordable Care Act has become a controversial topic—one which relates strongly to the topic of this chapter. (Credit: modification of work by Daniel Borman/Flickr Creative Commons) What’s the Big Deal with Obamacare? In August 2009, many members of the U.S. Congress used their summer recess to return to their home districts and hold town hall-style meetings to discuss President Obama’s proposed changes to the U.S. healthcare system. This was officially known as the Patient Protection and Affordable Care Act (PPACA) or as the Affordable Care Act (ACA), but was more popularly known as Obamacare. The bill’s opponents’ claims ranged from the charge that the changes were unconstitutional and would add $750 billion to the deficit, to extreme claims about the inclusion of things like the implantation of microchips and so-called “death panels” that decide which critically-ill patients receive care and which do not. Why did people react so strongly? After all, the intent of the law is to make healthcare insurance more affordable, to allow more people to obtain insurance, and to reduce the costs of healthcare. For each year from 2000 to 2011, these costs grew at least double the rate of inflation. In 2014, healthcare spending accounted for around 24% of all federal government spending. In the United States, we spend more for our healthcare than any other high-income nation, yet our health outcomes are worse than comparable high-income countries. In 2015, over 32 million people in the United States, about 12.8% of the non-elderly adult population, were without insurance. Even today, however, several years after the Act was signed into law and after the Supreme 382 Chapter 16 | Information, Risk, and Insurance Court mostly upheld it, a 2015 Kaiser Foundation poll found that 43% of likely voters viewed it unfavorably. Why is this? The debate over the ACA and healthcare reform could take an entire textbook, but what this chapter will do is introduce the basics of insurance and the problems insurance companies face. It is these problems, and how insurance companies respond to them that, in part, explain the ACA. Introduction to Information, Risk, and Insurance In this chapter, you will learn about: • The Problem of Imperfect Information and Asymmetric Information • Insurance and Imperfect Information Every purchase is based on a belief about the satisfaction that the good or service will provide. In turn, these beliefs are based on the information that the buyer has available. For many products, the information available to the buyer or the seller is imperfect or unclear, which can either make buyers regret past purchases or avoid making future ones. This chapter discusses how imperfect and asymmetric information affect markets. The first module of the chapter discusses how asymmetric information affects markets for goods, labor, and financial capital. When buyers have less information about the quality of the good (for example, a gemstone) than sellers do, sellers may be tempted to mislead buyers. If a buyer cannot have at least some confidence in the quality of what he or she is purchasing, then he or she will be reluctant or unwilling to purchase the products. Thus, we require mechanisms to bridge this information gap, so buyers and sellers can engage in a transaction. The second module of the chapter discusses insurance markets, which also face similar problems of imperfect information. For example, a car insurance company would prefer to sell insurance only to those who are unlikely to have auto accidents—but it is hard for the firm to identify those perfectly safe drivers. Conversely, car insurance buyers would like to persuade the auto insurance company that they are safe drivers and should pay only a low price for coverage. If insurance markets cannot find ways to grapple with these problems of imperfect information, then even people who have low or average risks of making claims may not be able to purchase insurance. The chapter on financial markets (markets for stocks and bonds) will show that the problems of imperfect information can be especially poignant. We cannot eliminate imperfect information, but we can often manage it. 16.1 | The Problem of Imperfect Information and Asymmetric Information By the end of this section, you will be able to: • Analyze the impact of both imperfect information and asymmetric information • Evaluate the role of advertisements in creating imperfect information • • Explain how imperfect information can affect price, quantity, and quality Identify ways to reduce the risk of imperfect information Consider a purchase that many people make at important times in their lives: buying expensive jewelry. In May 1994, celebrity psychologist Doree Lynn bought an expensive ring from a jeweler in Washington, D.C., which included an emerald that cost $14,500. Several years later, the emerald fractured. Lynn took it to another jeweler who found that cracks in the emerald had been filled with an epoxy resin. Lynn sued the original jeweler in 1997 for selling her a treated emerald without telling her, and won. The case publicized a number of little-known facts about precious stones. Most emeralds have internal flaws, and so they are soaked in clear oil or an epoxy resin to hide the flaws and make the color more deep and clear. Clear oil can leak out over time, and epoxy resin can discolor with age or heat. However, using clear oil or epoxy to “fill” emeralds is completely legal, as long as it is disclosed. After Doree Lynn’s lawsuit, the NBC news show “Dateline” bought emeralds at four prominent jewelry stores in New This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 383 York City in 1997. All the sales clerks at these stores, unaware that they were being recorded on a hidden camera, said the stones were untreated. When the emeralds were tested at a laboratory, however, technicians discovered they had all been treated with oil or epoxy. Emeralds are not the only gemstones that are treated. Diamonds, topaz, and tourmaline are also often irradiated to enhance colors. The general rule is that all treatments to gemstones should be revealed, but often sellers do not disclose this. As such, many buyers face a situation of asymmetric information, where two parties involved in an economic transaction have an unequal amount of information (one party knows much more than the other). Many economic transactions occur in a situation of imperfect information, where either the buyer, the seller, or both, are less than 100% certain about the qualities of what they are buying and selling. Also, one may characterize the transaction as asymmetric information, in which one party has more information than the other regarding the economic transaction. Let’s begin with some examples of how imperfect information complicates transactions in goods, labor, and financial capital markets. The presence of imperfect information can easily cause a decline in prices or quantities of products sold. However, buyers and sellers also have incentives to create mechanisms that will allow them to make mutually beneficial transactions even in the face of imperfect information. If you are unclear about the difference between asymmetric information and imperfect information, read the following Clear It Up feature. is the difference between imperfect and asymmetric What information? For a market to reach equilibrium sellers and buyers must have full information about the product’s price and quality. If there is limited information, then buyers and sellers may not be able to transact or will possibly make poor decisio
ns. Imperfect information refers to the situation where buyers and/or sellers do not have all of the necessary information to make an informed decision about the product's price or quality. The term imperfect information simply means that the buyers and/or sellers do not have all the information necessary to make an informed decision. Asymmetric information is the condition where one party, either the buyer or the seller, has more information about the product's quality or price than the other party. In either case (imperfect or asymmetric information) buyers or sellers need remedies to make more informed decisions. “Lemons” and Other Examples of Imperfect Information Consider Marvin, who is trying to decide whether to buy a used car. Let’s assume that Marvin is truly clueless about what happens inside a car’s engine. He is willing to do some background research, like reading Consumer Reports or checking websites that offer information about used cars makes and models and what they should cost. He might pay a mechanic to inspect the car. Even after devoting some money and time collecting information, however, Marvin still cannot be absolutely sure that he is buying a high-quality used car. He knows that he might buy the car, drive it home, and use it for a few weeks before discovering that car is a “lemon,” which is slang for a defective product (especially a car). Imagine that Marvin shops for a used car and finds two that look very similar in terms of mileage, exterior appearances, and age. One car costs $4,000, while the other car costs $4,600. Which car should Marvin buy? If Marvin were choosing in a world of perfect information, the answer would be simple: he should buy the cheaper car. However, Marvin is operating in a world of imperfect information, where the sellers likely know more about the car’s problems than he does, and have an incentive to hide the information. After all, the more problems the sellers disclose, the lower the car’s selling price. What should Marvin do? First, he needs to understand that even with imperfect information, prices still reflect information. Typically, used cars are more expensive on some dealer lots because the dealers have a trustworthy reputation to uphold. Those dealers try to fix problems that may not be obvious to their customers, in order to create good word of mouth about their vehicles’ long term reliability. The short term benefits of selling their customers a 384 Chapter 16 | Information, Risk, and Insurance “lemon” could cause a quick collapse in the dealer’s reputation and a loss of long term profits. On other lots that are less well-established, one can find cheaper used cars, but the buyer takes on more risk when a dealer’s reputation has little at stake. The cheapest cars of all often appear on Craigslist, where the individual seller has no reputation to defend. In sum, cheaper prices do carry more risk, so Marvin should balance his appetite for risk versus the potential headaches of many more unanticipated trips to the repair shop. Similar problems with imperfect information arise in labor and financial capital markets. Consider Greta, who is applying for a job. Her potential employer, like the used car buyer, is concerned about ending up with a “lemon”—in this case a poor quality employee. The employer will collect information about Greta’s academic and work history. In the end, however, a degree of uncertainty will inevitably remain regarding Greta’s abilities, which are hard to demonstrate without actually observing her on the job. How can a potential employer screen for certain attributes, such as motivation, timeliness, and ability to get along with others? Employers often look to trade schools and colleges to pre-screen candidates. Employers may not even interview a candidate unless he has a degree and, sometimes, a degree from a particular school. Employers may also view awards, a high grade point average, and other accolades as a signal of hard work, perseverance, and ability. Employers may also seek references for insights into key attributes such as energy level and work ethic. How Imperfect Information Can Affect Equilibrium Price and Quantity The presence of imperfect information can discourage both buyers and sellers from participating in the market. Buyers may become reluctant to participate because they cannot determine the product's quality. Sellers of high-quality or medium-quality goods may be reluctant to participate, because it is difficult to demonstrate the quality of their goods to buyers—and since buyers cannot determine which goods have higher quality, they are likely to be unwilling to pay a higher price for such goods. Economists sometimes refer to a market with few buyers and few sellers as a thin market. By contrast, they call a market with many buyers and sellers a thick market. When imperfect information is severe and buyers and sellers are discouraged from participating, markets may become extremely thin as a relatively small number of buyer and sellers attempt to communicate enough information that they can agree on a price. When Price Mixes with Imperfect Information about Quality A buyer confronted with imperfect information will often believe that the price reveals something about the product's quality. For example, a buyer may assume that a gemstone or a used car that costs more must be of higher quality, even though the buyer is not an expert on gemstones. Think of the expensive restaurant where the food must be good because it is so expensive or the shop where the clothes must be stylish because they cost so much, or the gallery where the art must be great, because the price tags are high. If you are hiring a lawyer, you might assume that a lawyer who charges $400 per hour must be better than a lawyer who charges $150 per hour. In these cases, price can act as a signal of quality. When buyers use the market price to draw inferences about the products' quality, then markets may have trouble reaching an equilibrium price and quantity. Imagine a situation where a used car dealer has a lot full of used cars that do not seem to be selling, and so the dealer decides to cut the car prices to sell a greater quantity. In a market with imperfect information, many buyers may assume that the lower price implies low-quality cars. As a result, the lower price may not attract more customers. Conversely, a dealer who raises prices may find that customers assume that the higher price means that cars are of higher quality. As a result of raising prices, the dealer might sell more cars. (Whether or not consumers always behave rationally, as an economist would see it, is the subject of the following Clear It Up feature.) The idea that higher prices might cause a greater quantity demanded and that lower prices might cause a lower quantity demanded runs exactly counter to the basic model of demand and supply (as we outlined in the Demand and Supply chapter). These contrary effects, however, will reach natural limits. At some point, if the price is high enough, the quantity demanded will decline. Conversely, when the price declines far enough, buyers will increasingly find value even if the quality is lower. In addition, information eventually becomes more widely known. An overpriced restaurant that charges more than the quality of its food is worth to many buyers will not last forever. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 385 Is consumer behavior rational? There is much human behavior that mainstream economists have tended to call “irrational” since it is consistently at odds with economists’ utility maximizing models. The typical response is for economists to brush these behaviors aside and call them “anomalies” or unexplained quirks. “If only you knew more economics, you would not be so irrational,” is what many mainstream economists seem to be saying. A group known as behavioral economists has challenged this notion, because so much of this so-called “quirky” behavior is extremely common among us. For example, a conventional economist would say that if you lost a $10 bill today, and also received an extra $10 in your paycheck, you should feel perfectly neutral. After all, –$10 + $10 = $0. You are the same financially as you were before. However, behavioral economists have conducted research that shows many people will feel some negative emotion—anger or frustration—after those two things happen. We tend to focus more on the loss than the gain. Economists Daniel Kahneman and Amos Tversky in a famous 1979 Econometrica paper called this "loss aversion", where a $1 loss pains us 2.25 times more than a $1 gain helps us. This has implications for investing, as people tend to “overplay” the stock market by reacting more to losses than to gains. Behavioral economics also tries to explain why people make seemingly irrational decisions in the presence of different situations, or how they "frame" the decision. We outline a popular example here: Imagine you have the opportunity to buy an alarm clock for $20 in Store A. Across the street, you learn, is the exact same clock at Store B for $10. You might say it is worth your time—a five-minute walk—to save $10. Now, take a different example: You are in Store A buying a $300 phone. Five minutes away, at Store B, the same phone is $290. You again save $10 by taking a five-minute walk. Do you do it? Surprisingly, it is likely that you would not. Mainstream economists would say “$10 is $10” and that it would be irrational to make a five minute walk for $10 in one case and not the other. However, behavioral economists have pointed out that most of us evaluate outcomes relative to a reference point—here the cost of the product—and think of gains and losses as percentages rather than using actual savings. Which view is right? Both have their advantages, but behavioral economists have at least shed a light on trying t
o describe and explain systematic behavior which some previously had dismissed as irrational. If most of us are engaged in some “irrational behavior,” perhaps there are deeper underlying reasons for this behavior in the first place. Mechanisms to Reduce the Risk of Imperfect Information If you were selling a good like emeralds or used cars where imperfect information is likely to be a problem, how could you reassure possible buyers? If you were buying a good where imperfect information is a problem, what would it take to reassure you? Buyers and sellers in the goods market rely on reputation as well as guarantees, warrantees, and service contracts to assure product quality. The labor market uses occupational licenses and certifications to assure competency, while the financial capital market uses cosigners and collateral as insurance against unforeseen, detrimental events. In the goods market, the seller might offer a money-back guarantee, an agreement that functions as a promise of quality. This strategy may be especially important for a company that sells goods through mail-order catalogs or over the web, whose customers cannot see the actual products, because it encourages people to buy something even if they are not certain they want to keep it. L.L. Bean started using money-back-guarantees in 1911, when the founder stitched waterproof shoe rubbers together with leather shoe tops, and sold them as hunting shoes. He guaranteed satisfaction. However, the stitching came apart and, out of the first batch of 100 pairs that were sold, customers returned 90 pairs. L.L. Bean took out a bank loan, repaired all of the shoes, and replaced them. The L.L. Bean reputation for customer satisfaction began to spread. Many firms today offer money-back-guarantees for a few weeks or months, but L.L. Bean offers a complete moneyback guarantee. Customers can always return anything they have bought from L.L. Bean, no matter how many years later or what condition the product is in, for a full money-back guarantee. 386 Chapter 16 | Information, Risk, and Insurance L.L. Bean has very few stores. Instead, most of its sales are made by mail, telephone, or, now, through their website. For this kind of firm, imperfect information may be an especially difficult problem, because customers cannot see and touch what they are buying. A combination of a money-back guarantee and a reputation for quality can help for a mail-order firm to flourish. Visit this website (http://openstaxcollege.org/l/guarantee) to read about the origin of Eddie Bauer’s 100% customer satisfaction guarantee. Sellers may offer a warranty, which is a promise to fix or replace the good, at least for a certain time period. The seller may also offer a buyer a chance to buy a service contract, where the buyer pays an extra amount and the seller agrees to fix anything that goes wrong for a set time period. Service contracts are often an option for buyers of large purchases such as cars, appliances and even houses. Guarantees, warranties, and service contracts are examples of explicit reassurance that sellers provide. In many cases, firms also offer unstated guarantees. For example, some movie theaters might refund the ticket cost to a customer who walks out complaining about the show. Likewise, while restaurants do not generally advertise a money-back guarantee or exchange policies, many restaurants allow customers to exchange one dish for another or reduce the price of the bill if the customer is not satisfied. The rationale for these policies is that firms want repeat customers, who in turn will recommend the business to others. As such, establishing a good reputation is of paramount importance. When buyers know that a firm is concerned about its reputation, they are less likely to worry about receiving a poor-quality product. For example, a well-established grocery store with a good reputation can often charge a higher price than a temporary stand at a local farmer’s market, where the buyer may never see the seller again. Sellers of labor provide information through resumes, recommendations, school transcripts, and examples of their work. The labor market also uses occupational licenses to establish quality in the labor market. Occupational licenses, which government agencies typically issue, show that a worker has completed a certain type of education or passed a certain test. Some of the professionals who must hold a license are doctors, teachers, nurses, engineers, accountants, and lawyers. In addition, most states require a license to work as a barber, an embalmer, a dietitian, a massage therapist, a hearing aid dealer, a counselor, an insurance agent, and a real estate broker. Some other jobs require a license in only one state. Minnesota requires a state license to be a field archeologist. North Dakota has a state license for bait retailers. In Louisiana, one needs a state license to be a “stress analyst” and California requires a state license to be a furniture upholsterer. According to a 2013 study from the University of Chicago, about 29% of U.S. workers have jobs that require occupational licenses. Occupational licenses have their downside as well, as they represent a barrier to entry to certain industries. This makes it more difficult for new entrants to compete with incumbents, which can lead to higher prices and less consumer choice. In occupations that require licenses, the government has decided that the additional information provided by licenses outweighs the negative effect on competition. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 387 Are advertisers allowed to benefit from imperfect information? Many advertisements seem full of imperfect information—at least by what they imply. Driving a certain car, drinking a particular soda, or wearing a certain shoe are all unlikely to bring fashionable friends and fun automatically, if at all. The government rules on advertising, enforced by the Federal Trade Commission (FTC), allow advertising to contain a certain amount of exaggeration about the general delight of using a product. They, however, also demand that if one presents a claim as a fact, it must be true. Legally, deceptive advertising dates back to the 1950s when Colgate-Palmolive created a television advertisement that seemed to show Rapid Shave shaving cream being spread on sandpaper and then the sand was shaved off the sandpaper. What the television advertisement actually showed was sand sprinkled on Plexiglas—without glue—and then scraped aside by the razor. In the 1960s, in magazine advertisements for Campbell’s vegetable soup, the company was having problems getting an appetizing soup picture, because the vegetables kept sinking. To remedy this, they filled a bowl with marbles and poured the soup over the top, so that the bowl appeared to be crammed with vegetables. In the late 1980s, the Volvo Company filmed a television advertisement that showed a monster truck driving over cars, crunching their roofs—all except for the Volvo, which did not crush. However, the FTC found in 1991 that the Volvo's roof from the filming had been reinforced with an extra steel framework, while they cut the roof supports on the other car brands. The Wonder Bread Company ran television advertisements featuring “Professor Wonder,” who said that because Wonder Bread contained extra calcium, it would help children’s minds work better and improve their memory. The FTC objected, and in 2002 the company agreed to stop running the advertisements. As we can see in each of these cases, the Federal Trade Commission (FTC) often checks factual claims about the product’s performance, at least to some extent. Language and images that are exaggerated or ambiguous, but not actually false, are allowed in advertising. Untrue “facts” are not permitted. In any case, an old Latin saying applies when watching advertisements: Caveat emptor—that is, “let the buyer beware.” On the buyer’s side of the labor market, a standard precaution against hiring a “lemon” of an employee is to specify that the first few months of employment are officially a trial or probationary period, and that the employer can dismiss the worker for any reason or no reason after that time. Sometimes workers also receive lower pay during this trial period. In the financial capital market, before a bank makes a loan, it requires a prospective borrower to fill out forms regarding incomes sources. In addition, the bank conducts a credit check on the individual’s past borrowing. Another approach is to require a cosigner on a loan; that is, another person or firm who legally pledges to repay some or all of the money if the original borrower does not do so. Another approach is to require collateral, often property or equipment that the bank would have a right to seize and sell if borrower does not repay the loan. Buyers of goods and services cannot possibly become experts in evaluating the quality of gemstones, used cars, lawyers, and everything else they buy. Employers and lenders cannot be perfectly omniscient about whether possible workers will turn out well or potential borrowers will repay loans on time. However, the mechanisms that we mentioned above can reduce the risks associated with imperfect information so that the buyer and seller are willing to proceed. 388 Chapter 16 | Information, Risk, and Insurance 16.2 | Insurance and Imperfect Information By the end of this section, you will be able to: Identify and evaluate various forms of government and social insurance • Explain how insurance works • • Discuss the problems caused by moral hazard and adverse selection • Analyze the impact of government regulation of insurance Insurance is a method that households and firms use to prevent any single event from having a significant detrimental financial effect. Generally, households or firms with insurance make regular payments, called premi
ums. The insurance company prices these premiums based on the probability of certain events occurring among a pool of people. Members of the group who then suffer a specified bad experience receive payments from this pool of money. Many people have several kinds of insurance: health insurance that pays when they receive medical care; car insurance that pays if their car is in an automobile accident; house or renter’s insurance that pays for stolen possessions or items damaged by fire; and life insurance, which pays for the family if the insured individual dies. Table 16.1 lists a set of insurance markets. Type of Insurance Who Pays for It? It Pays Out When . . . Health insurance Employers and individuals Medical expenses are incurred Life insurance Employers and individuals Policyholder dies Automobile insurance Individuals Car is damaged, stolen, or causes damage to others Property and homeowner’s insurance Homeowners and renters Dwelling is damaged or burglarized Liability insurance Firms and individuals An injury occurs for which you are partly responsible Malpractice insurance Doctors, lawyers, and other professionals A poor quality of service is provided that causes harm to others Table 16.1 Some Insurance Markets All insurance involves imperfect information in both an obvious way and in a deeper way. At an obvious level, we cannot predict future events with certainty. For example, we cannot know with certainty who will have a car accident, become ill, die, or have his home robbed in the next year. Imperfect information also applies to estimating the risk that something will happen to any individual. It is difficult for an insurance company to estimate the risk that, say, a particular 20-year-old male driver from New York City will have an accident, because even within that group, some drivers will drive more safely than others. Thus, adverse events occur out of a combination of people’s characteristics and choices that make the risks higher or lower and then the good or bad luck of what actually happens. How Insurance Works A simplified example of automobile insurance might work this way. Suppose we divide a group of 100 drivers into three groups. In a given year, 60 of those people have only a few door dings or chipped paint, which costs $100 each. Another 30 of the drivers have medium-sized accidents that cost an average of $1,000 in damages, and 10 of the drivers have large accidents that cost $15,000 in damages. For the moment, let’s imagine that at the beginning of any year, there is no way of identifying the drivers who are low-risk, medium-risk, or high-risk. The total damage incurred by car accidents in this group of 100 drivers will be $186,000, that is: This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 389 Total damage = (60 × $100) + (30 × $1,000) + (10 × $15,000) = $6,000 + $30,000 + $150,000 = $186,000 If each of the 100 drivers pays a $1,860 premium each year, the insurance company will collect the $186,000 that is needed to cover the costs of the accidents that occur. Since insurance companies have such a large number of clients, they are able to negotiate with health care and other service providers for lower rates than the individual would be able to get, thus increasing the benefit to consumers of becoming insured and saving the insurance company itself money when it pays out claims. Insurance companies receive income, as Figure 16.2 shows, from insurance premiums and investment income. The companies derive income from investing the funds that insurance companies received in the past but did not pay out as insurance claims in prior years. The insurance company receives a rate of return from investing these funds or reserves. The companies typically invest in fairly safe, liquid (easy to convert into cash) investments, as the insurance companies need to be able to readily access these funds when a major disaster strikes. Figure 16.2 An Insurance Company: What Comes In, What Goes Out Money flows into an insurance company through premiums and investments and out through the payment of claims and operating expenses. Government and Social Insurance Federal and state governments run a number of insurance programs. Some of the programs look much like private insurance, in the sense that the members of a group make steady payments into a fund, and those in the group who suffer an adverse experience receive payments. Other programs protect against risk, but without an explicit fund set up. Following are some examples. • Unemployment insurance: Employers in every state pay a small amount for unemployment insurance, which goes into a fund to pay benefits to workers who lose their jobs and do not find new jobs, for a period of time, usually up to six months. • Pension insurance: Employers that offer pensions to their retired employees are required by law to pay a small fraction of what they are setting aside for pensions to the Pension Benefit Guarantee Corporation, which pays at least some pension benefits to workers if a company goes bankrupt and cannot pay the pensions it has promised. • Deposit insurance: Banks are required by law to pay a small fraction of their deposits to the Federal Deposit Insurance Corporation, which goes into a fund that pays depositors the value of their bank deposits up to $250,000 (the amount was raised from $100,000 to $250,000 in 2008) if the bank should go bankrupt. • Workman’s compensation insurance: Employers are required by law to pay a small percentage of the salaries that they pay into funds, typically run at the state level, that pay benefits to workers who suffer an injury on the job. • Retirement insurance: All workers pay a percentage of their income into Social Security and into Medicare, which then provides income and health care benefits to the elderly. Social Security and Medicare are not literally “insurance” in the sense that those currently contributing to the fund are not eligible for benefits. They function like insurance, however, in the sense that individuals make regular payments into the programs today in exchange for benefits they will receive in the case of a later event—either becoming old or becoming sick when old. A name for such programs is “social insurance.” The major additional costs to insurance companies, other than the payment of claims, are the costs of running a business: the administrative costs of hiring workers, administering accounts, and processing insurance claims. For most insurance companies, the insurance premiums coming in and the claims payments going out are much larger than the amounts earned by investing money or the administrative costs. 390 Chapter 16 | Information, Risk, and Insurance Thus, while factors like investment income earned on reserves, administrative costs, and groups with different risks complicate the overall picture, a fundamental law of insurance must hold true: The average person’s payments into insurance over time must cover 1) the average person’s claims, 2) the costs of running the company, and 3) leave room for the firm’s profits. Risk Groups and Actuarial Fairness Not all of those who purchase insurance face the same risks. Some people may be more likely, because of genetics or personal habits, to fall sick with certain diseases. Some people may live in an area where car theft or home robbery is more likely than in other areas. Some drivers are safer than others. We can define a risk group can be defined as a group that shares roughly the same risks of an adverse event occurring. Insurance companies often classify people into risk groups, and charge lower premiums to those with lower risks. If people are not separated into risk groups, then those with low risk must pay for those with high risks. In the simple example of how car insurance works, 60 drivers had very low damage of $100 each, 30 drivers had medium-sized accidents that cost $1,000 each, and 10 of the drivers had large accidents that cost $15,000. If all 100 of these drivers pay the same $1,860, then those with low damages are in effect paying for those with high damages. If it is possible to classify drivers according to risk group, then the insurance company can charge each group according to its expected losses. For example, the insurance company might charge the 60 drivers who seem safest of all $100 apiece, which is the average value of the damages they cause. Then the intermediate group could pay $1,000 apiece and the high-cost group $15,000 each. When the level of insurance premiums that someone pays is equal to the amount that an average person in that risk group would collect in insurance payments, the level of insurance is said to be “actuarially fair.” Classifying people into risk groups can be controversial. For example, if someone had a major automobile accident last year, should the insurance company classify that person as a high-risk driver who is likely to have similar accidents in the future, or as a low-risk driver who was just extremely unlucky? The driver is likely to claim to be low-risk, and thus someone who should be in a risk group with those who pay low insurance premiums in the future. The insurance company is likely to believe that, on average, having a major accident is a signal of being a high-risk driver, and thus try to charge this driver higher insurance premiums. The next two sections discuss the two major problems of imperfect information in insurance markets—called moral hazard and adverse selection. Both problems arise from attempts to categorize those purchasing insurance into risk groups. The Moral Hazard Problem Moral hazard refers to the case when people engage in riskier behavior with insurance than they would if they did not have insurance. For example, if you have health insurance that covers the cost of visiting the doctor, you may be less likely to take precautions against catching an illness that might require
a doctor’s visit. If you have car insurance, you will worry less about driving or parking your car in ways that make it more likely to get dented. In another example, a business without insurance might install absolute top-level security and fire sprinkler systems to guard against theft and fire. If it is insured, that same business might only install a minimum level of security and fire sprinkler systems. We cannot eliminate moral hazard, but insurance companies have some ways of reducing its effect. Investigations to prevent insurance fraud are one way of reducing the extreme cases of moral hazard. Insurance companies can also monitor certain kinds of behavior. To return to the example from above, they might offer a business a lower rate on property insurance if the business installs a top-level security and fire sprinkler system and has those systems inspected once a year. Another method to reduce moral hazard is to require the injured party to pay a share of the costs. For example, insurance policies often have deductibles, which is an amount that the insurance policyholder must pay out of his or her own pocket before the insurance coverage starts paying. For example, auto insurance might pay for all losses greater than $500. Health insurance policies often have a copayment, in which the policyholder must pay a small amount. For example, a person might have to pay $20 for each doctor visit, and the insurance company would cover the rest. Another method of cost sharing is coinsurance, which means that the insurance company covers a certain percentage of the cost. For example, insurance might pay for 80% of the costs of repairing a home after a fire, but the homeowner would pay the other 20%. All of these forms of cost sharing discourage moral hazard, because people know that they will have to pay something out of their own pocket when they make an insurance claim. The effect can be powerful. One prominent study found that when people face moderate deductibles and copayments for their health insurance, they consume about one-third This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 391 less in medical care than people who have complete insurance and do not pay anything out of pocket, presumably because deductibles and copayments reduce the level of moral hazard. However, those who consumed less health care did not seem to have any difference in health status. A final way of reducing moral hazard, which is especially applicable to health care, is to focus on healthcare provider incentives of providers rather than consumers. Traditionally, most health care in the United States has been provided on a fee-for-service basis, which means that medical care providers are paid for the services they provide and are paid more if they provide additional services. However, in the last decade or so, the structure of healthcare provision has shifted to an emphasis on health maintenance organizations (HMOs). A health maintenance organization (HMO) provides healthcare that receives a fixed amount per person enrolled in the plan—regardless of how many services are provided. In this case, a patient with insurance has an incentive to demand more care, but the healthcare provider, which is receiving only a fixed payment, has an incentive to reduce the moral hazard problem by limiting the quantity of care provided—as long as it will not lead to worse health problems and higher costs later. Today, many doctors are paid with some combination of managed care and fee-for-service; that is, a flat amount per patient, but with additional payments for the treatment of certain health conditions. Imperfect information is the cause of the moral hazard problem. If an insurance company had perfect information on risk, it could simply raise its premiums every time an insured party engages in riskier behavior. However, an insurance company cannot monitor all the risks that people take all the time and so, even with various checks and cost sharing, moral hazard will remain a problem. Visit this website (http://openstaxcollege.org/l/healtheconomics) to read about the relationship between health care and behavioral economics. The Adverse Selection Problem Adverse selection refers to the problem in which insurance buyers have more information about whether they are high-risk or low-risk than the insurance company does. This creates an asymmetric information problem for the insurance company because buyers who are high-risk tend to want to buy more insurance, without letting the insurance company know about their higher risk. For example, someone purchasing health insurance or life insurance probably knows more about their family’s health history than an insurer can reasonably find out even with a costly investigation. Someone purchasing car insurance may know that he or she are a high-risk driver who has not yet had a major accident—but it is hard for the insurance company to collect information about how people actually drive. To understand how adverse selection can strangle an insurance market, recall the situation of 100 drivers who are buying automobile insurance, where 60 drivers had very low damages of $100 each, 30 drivers had medium-sized accidents that cost $1,000 each, and 10 of the drivers had large accidents that cost $15,000. That would equal $186,000 in total payouts by the insurance company. Imagine that, while the insurance company knows the overall size of the losses, it cannot identify the high-risk, medium-risk, and low-risk drivers. However, the drivers themselves know their risk groups. Since there is asymmetric information between the insurance company and the drivers, the insurance company would likely set the price of insurance at $1,860 per year, to cover the average loss (not including the cost of overhead and profit). The result is that those with low risks of only $100 will likely decide not to buy insurance; after all, it makes no sense for them to pay $1,860 per year when they are likely only to experience losses of $100. Those with medium risks of a $1,000 accident will not buy insurance either. Therefore, the insurance company ends up only selling insurance for $1,860 to high-risk drivers who will average $15,000 in claims apiece, and as 392 Chapter 16 | Information, Risk, and Insurance a consequence, the insurance company ends up losing considerable money. If the insurance company tries to raise its premiums to cover the losses of those with high risks, then those with low or medium risks will be even more discouraged from buying insurance. Rather than face such a situation of adverse selection, the insurance company may decide not to sell insurance in this market at all. If an insurance market is to exist, then one of two things must happen. First, the insurance company might find some way of separating insurance buyers into risk groups with some degree of accuracy and charging them accordingly, which in practice often means that the insurance company tries not to sell insurance to those who may pose high risks. Another scenario is that those with low risks must buy insurance, even if they have to pay more than the actuarially fair amount for their risk group. The notion that people can be required to purchase insurance raises the issue of government laws and regulations that influence the insurance industry. U.S. Health Care in an International Context The United States is the only high-income country in the world where private firms pay and provide for most health insurance. Greater government involvement in the provision of health insurance is one possible way of addressing moral hazard and adverse selection problems. The moral hazard problem with health insurance is that when people have insurance, they will demand higher quantities of health care. In the United States, private healthcare insurance tends to encourage an ever-greater demand for healthcare services, which healthcare providers are happy to fulfill. Table 16.2 shows that on a per-person basis, U.S. healthcare spending towers above healthcare spending of other countries. Note that while healthcare expenditures in the United States are far higher than healthcare expenditures in other countries, the health outcomes in the United States, as measured by life expectancy and lower rates of childhood mortality, tend to be lower. Health outcomes, however, may not be significantly affected by healthcare expenditures. Many studies have shown that a country’s health is more closely related to diet, exercise, and genetic factors than to healthcare expenditure. This fact further emphasizes that the United States is spending very large amounts on medical care with little obvious health gain. In the U.S. health insurance market, the main way of solving this adverse selection problem is that health insurance is often sold through groups based on place of employment, or, under The Affordable Care Act, from a state government sponsored health exchange market. From an insurance company’s point of view, selling insurance through an employer mixes together a group of people—some with high risks of future health problems and some with lower risks—and thus reduces the insurance firm’s fear of attracting only those who have high risks. However, many small companies do not provide health insurance to their employees, and many lower-paying jobs do not include health insurance. Even after we take into account all U.S. government programs that provide health insurance for the elderly and the poor, approximately 32 million Americans were without health insurance in 2015. While a governmentcontrolled system can avoid the adverse selection problem entirely by providing at least basic health insurance for all, another option is to mandate that all Americans buy health insurance from some provider by preventing providers from denying individuals based on preexisting conditions. The Patient Protection and Af
fordable Care Act adopted this approach, which we will discuss later on in this chapter. Health Care Spending per Person (in 2008) $7,538 Country United States Germany $3,737 France $3,696 Male Life Expectancy at Birth, in Years (in 2012) Female Life Expectancy at Birth, in Years (in 2012) Male Chance of Dying before Age 5, per 1,000 (in 2012) Female Chance of Dying before Age 5, per 1,000 (in 2012) 76 78 78 81 83 85 8 4 4 7 4 4 Table 16.2 A Comparison of Healthcare Spending Across Select Countries (Source: 2010 OECD study and World Fact Book) This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 393 Country Health Care Spending per Person (in 2008) Male Life Expectancy at Birth, in Years (in 2012) Female Life Expectancy at Birth, in Years (in 2012) Male Chance of Dying before Age 5, per 1,000 (in 2012) Female Chance of Dying before Age 5, per 1,000 (in 2012) Canada $4,079 United Kingdom $3,129 79 78 84 83 6 5 5 4 Table 16.2 A Comparison of Healthcare Spending Across Select Countries (Source: 2010 OECD study and World Fact Book) At its best, the largely private U.S. system of health insurance and healthcare delivery provides an extraordinarily high quality of care, along with generating a seemingly endless parade of life-saving innovations. However, the system also struggles to control its high costs and to provide basic medical care to all. Other countries have lower costs and more equal access, but they often struggle to provide rapid access to health care and to offer the near-miracles of the most up-to-date medical care. The challenge is a healthcare system that strikes the right balance between quality, access, and cost. Government Regulation of Insurance The U.S. insurance industry is primarily regulated at the state level. Since 1871 there has been a National Association of Insurance Commissioners that brings together these state regulators to exchange information and strategies. The state insurance regulators typically attempt to accomplish two things: to keep the price of insurance low and to ensure that everyone has insurance. These goals, however, can conflict with each other and also become easily entangled in politics. If insurance premiums are set at actuarially fair levels, so that people end up paying an amount that accurately reflects their risk group, certain people will end up paying considerable amounts. For example, if health insurance companies were trying to cover people who already have a chronic disease like AIDS, or who were elderly, they would charge these groups very high premiums for health insurance, because their expected health care costs are quite high. Women in the age bracket 18–44 consume, on average, about 65% more in health care spending than men. Young male drivers have more car accidents than young female drivers. Thus, actuarially fair insurance would tend to charge young men much more for car insurance than young women. Because people in high-risk groups would find themselves charged so heavily for insurance, they might choose not to buy insurance at all. State insurance regulators have sometimes reacted by passing rules that attempt to set low premiums for insurance. Over time, however, the fundamental law of insurance must hold: the average amount individuals receive cannot exceed the average amount paid in premiums. When rules are passed to keep premiums low, insurance companies try to avoid insuring any high-risk or even medium-risk parties. If a state legislature passes strict rules requiring insurance companies to sell to everyone at low prices, the insurance companies always have the option of withdrawing from doing business in that state. For example, the insurance regulators in New Jersey are well-known for attempting to keep auto insurance premiums low, and more than 20 different insurance companies stopped doing business in the state in the late 1990s and early 2000s. Similarly, in 2009, State Farm announced that it was withdrawing from selling property insurance in Florida. In short, government regulators cannot force companies to charge low prices and provide high levels of insurance coverage—and thus take losses—for a sustained period of time. If insurance premiums are set below the actuarially fair level for a certain group, some other group will have to make up the difference. There are two other groups who can make up the difference: taxpayers or other insurance buyers. In some industries, the U.S. government has decided free markets will not provide insurance at an affordable price, and so the government pays for it directly. For example, private health insurance is too expensive for many people whose incomes are too low. To combat this, the U.S. government, together with the states, runs the Medicaid program, which provides health care to those with low incomes. Private health insurance also does not work well for the elderly, because their average health care costs can be very high. Thus, the U.S. government started the Medicare program, 394 Chapter 16 | Information, Risk, and Insurance which provides health insurance to all those over age 65. Other government-funded health-care programs are aimed at military veterans, as an added benefit, and children in families with relatively low incomes. Another common government intervention in insurance markets is to require that everyone buy certain kinds of insurance. For example, most states legally require car owners to buy auto insurance. Likewise, when a bank loans someone money to buy a home, the person is typically required to have homeowner’s insurance, which protects against fire and other physical damage (like hailstorms) to the home. A legal requirement that everyone must buy insurance means that insurance companies do not need to worry that those with low risks will avoid buying insurance. Since insurance companies do not need to fear adverse selection, they can set their prices based on an average for the market, and those with lower risks will, to some extent, end up subsidizing those with higher risks. However, even when laws are passed requiring people to purchase insurance, insurance companies cannot be compelled to sell insurance to everyone who asks—at least not at low cost. Thus, insurance companies will still try to avoid selling insurance to those with high risks whenever possible. The government cannot pass laws that make the problems of moral hazard and adverse selection disappear, but the government can make political decisions that certain groups should have insurance, even though the private market would not otherwise provide that insurance. Also, the government can impose the costs of that decision on taxpayers or on other buyers of insurance. The Patient Protection and Affordable Care Act In March of 2010, President Obama signed into law the Patient Protection and Affordable Care Act (PPACA). The government started to phase in this highly contentious law over time starting in October of 2013. The goal of the act is to bring the United States closer to universal coverage. Some of the key features of the plan include: • Individual mandate: All individuals, who do not receive health care through their employer or through a government program (for example, Medicare), are required to have health insurance or pay a fine. The individual mandate's goal was to reduce the adverse selection problem and keep prices down by requiring all consumers—even the healthiest ones—to have health insurance. Without the need to guard against adverse selection (whereby only the riskiest consumers buy insurance) by raising prices, health insurance companies could provide more reasonable plans to their customers. • Each state is required to have health insurance exchanges, or utilize the federal exchange, whereby insurance companies compete for business. The goal of the exchanges is to improve competition in the market for health insurance. • Employer mandate: All employers with more than 50 employees must offer health insurance to their employees. The Affordable Care Act (ACA) is funded through additional taxes that include: • Increasing the Medicare tax by 0.9 percent and adding a 3.8 percent tax on unearned income for high income taxpayers. • Charging an annual fee on health insurance providers. • Imposing other taxes such as a 2.3% tax on manufacturers and importers of certain medical devices. Many people and politicians, including Donald Trump, have sought to overturn the bill. Those who oppose the bill believe it violates an individual’s right to choose whether to have insurance or not. In 2012, a number of states challenged the law on the basis that the individual mandate provision is unconstitutional. In June 2012, the U.S. Supreme Court ruled in a 5–4 decision that the individual mandate is actually a tax, so it is constitutional as the federal government has the right to tax the populace. What’s the Big Deal with Obamacare? What is it that the Affordable Care Act (ACA) will actually do? To begin with, we should note that it is a massively complex law, with a large number of parts, some of which the Obama administration implemented immediately, and others that the government is supposed to phase in every year from 2013 through 2020. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 395 Three of these parts are coverage for the uninsured—those without health insurance, coverage for individuals with preexisting conditions, and the so-called employer and individual mandates, which require employers to offer and people to purchase health insurance. However, with the new Trump administration, the ACA is under scrutiny and many components face repeal or drastic overhauling. As we noted in the chapter, people face ever-increasing healthcare costs in the United States. Over the years, the ranks of the uninsured in the United States have grown as rising prices
have pushed employers and individuals out of the market. Insurance companies have increasingly used pre-existing medical conditions to determine if someone is high risk, for whom insurance companies either charge higher prices, or they choose to deny insurance coverage to these individuals. Whatever the cause, we noted at the beginning of the chapter that prior to the ACA, more than 32 million Americans were uninsured. People who are uninsured tend to use emergency rooms for treatment—the most expensive form of healthcare, which has contributed significantly to rising costs. The ACA introduced regulations designed to control increases in healthcare costs. One example is a cap on the amount healthcare providers can spend on administrative costs. Another is a requirement that healthcare providers switch to electronic medical records (EMRs), which will reduce administrative costs. The ACA required that states establish health insurance exchanges, or markets, where people without health insurance, and businesses that do not provide it for their employees, can shop for different insurance plans. The purpose of these exchanges was to increase competition in insurance markets and thus reduce prices of policies. Finally, the ACA mandated that people with preexisting conditions could no longer be denied health insurance. The U.S. Department of Health and Human Services estimates that the those without insurance in the US has fallen from 20.3% in 2012 to 11.5% in 2016. Accordingly, 20 million Americans gained coverage under the ACA. What was the cost of this increased coverage and how was it paid? An insurance policy works by insuring against the possibility of needing healthcare. If there are high risk individuals in the insurance pool, the pool must be expanded to include enough low risk individuals to keep average premiums affordable. To that end, the ACA imposed the individual mandate, requiring all individuals to purchase insurance (or pay a penalty) whether they were high risk or not. Many young adults would choose to skip health insurance since the likelihood of their needing significant healthcare is small. The individual mandate brought in a significant amount of money to pay for the ACA. In addition, there were three other funding sources. The ACA took $716 billion which otherwise would have gone to Medicare spending. The ACA also increased the Medicare tax that wealthy Americans paid by an additional 0.9%. Furthermore, the government levied a 40% excess tax on high end (Cadillac) healthcare plans valued above a certain amount. Despite these funding sources, the Congressional Budget Office estimates that the ACA will increase the federal debt by $137 billion over the next decade. The impact of the Patient Protection and Affordable Care Act has been a rise in Americans with health the increased costs for those buying Premium (Cadillac) health insurance plans, insurance. However, increased tax on the wealthy, and increased deficit spending, the ACA faces substantial opposition. The Trump administration vowed to repeal it on the campaign trail but no alternative bill has made its way before congress. Only time will tell if the Affordable Care Act will leave a legacy or will quickly be swept by the wayside, jeopardizing the 20 million newly insured Americans. At the time of this writing, the final impact of the Patient Protection and Affordable Care Act is not clear. Millions of previously uninsured Americans now have coverage, but the increased cost of premium health insurance plans, increased Medicare tax on the wealthy and increased deficit spending have created significant political opposition. The Trump administration vowed to repeal the ACA, but his administration has not announced an alternative. Only time will tell. 396 Chapter 16 | Information, Risk, and Insurance KEY TERMS adverse selection when groups with inherently higher risks than the average person seek out insurance, thus straining the insurance system asymmetric information a situation where the seller or the buyer has more information than the other regarding the quality of the item for sale coinsurance when an insurance policyholder pays a percentage of a loss, and the insurance company pays the remaining cost collateral something valuable—often property or equipment—that a lender would have a right to seize and sell if the buyer does not repay the loan copayment when an insurance policyholder must pay a small amount for each service, before insurance covers the rest cosigner another person or firm who legally pledges to repay some or all of the money on a loan if the original borrower does not deductible an amount that the insurance policyholders must pay out of their own pocket before the insurance coverage pays anything fee-for-service when medical care providers are paid according to the services they provide health maintenance organization (HMO) an organization that provides health care and is paid a fixed amount per person enrolled in the plan—regardless of how many services are provided imperfect information a situation where either the buyer or the seller, or both, are uncertain about the qualities of what they are buying and selling insurance method of protecting a person from financial loss, whereby policy holders make regular payments to an insurance entity; the insurance firm then remunerates a group member who suffers significant financial damage from an event covered by the policy money-back guarantee a promise that the seller will refund the buyer’s money under certain conditions moral hazard occurring when people have insurance against a certain event, they are less likely to guard against that event occupational license licenses issued by government agencies, which indicate that a worker has completed a certain type of education or passed a certain test premium payment made to an insurance company risk group a group that shares roughly the same risks of an adverse event occurring service contract the buyer pays an extra amount and the seller agrees to fix anything specified in the contract that goes wrong for a set time period warranty a promise to fix or replace the good for a certain period of time KEY CONCEPTS AND SUMMARY 16.1 The Problem of Imperfect Information and Asymmetric Information Many make economic transactions in a situation of imperfect information, where either the buyer, the seller, or both This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 397 are less than 100% certain about the qualities of what they are buying or selling. When information about the quality of products is highly imperfect, it may be difficult for a market to exist. A “lemon” is a product that turns out, after the purchase, to have low quality. When the seller has more accurate information about the product's quality than the buyer, the buyer will be hesitant to buy, out of fear of purchasing a “lemon.” Markets have many ways to deal with imperfect information. In goods markets, buyers facing imperfect information about products may depend upon money-back guarantees, warranties, service contracts, and reputation. In labor markets, employers facing imperfect information about potential employees may turn to resumes, recommendations, occupational licenses for certain jobs, and employment for trial periods. In capital markets, lenders facing imperfect information about borrowers may require detailed loan applications and credit checks, cosigners, and collateral. 16.2 Insurance and Imperfect Information Insurance is a way of sharing risk. People in a group pay premiums for insurance against some unpleasant event, and those in the group who actually experience the unpleasant event then receive some compensation. The fundamental law of insurance is that what the average person pays in over time cannot be less than what the average person gets out. In an actuarially fair insurance policy, the premiums that a person pays to the insurance company are the same as the average amount of benefits for a person in that risk group. Moral hazard arises in insurance markets because those who are insured against a risk will have less reason to take steps to avoid the costs from that risk. Many insurance policies have deductibles, copayments, or coinsurance. A deductible is the maximum amount that the policyholder must pay out-of-pocket before the insurance company pays the rest of the bill. A copayment is a flat fee that an insurance policy-holder must pay before receiving services. Coinsurance requires the policyholder to pay a certain percentage of costs. Deductibles, copayments, and coinsurance reduce moral hazard by requiring the insured party to bear some of the costs before collecting insurance benefits. In a fee-for-service health financing system, medical care providers receive reimbursement according to the cost of services they provide. An alternative method of organizing health care is through health maintenance organizations (HMOs), where medical care providers receive reimbursement according to the number of patients they handle, and it is up to the providers to allocate resources between patients who receive more or fewer health care services. Adverse selection arises in insurance markets when insurance buyers know more about the risks they face than does the insurance company. As a result, the insurance company runs the risk that low-risk parties will avoid its insurance because it is too costly for them, while high-risk parties will embrace it because it looks like a good deal to them. SELF-CHECK QUESTIONS 1. For each of the following purchases, say whether you would expect the degree of imperfect information to be relatively high or relatively low: a. Buying apples at a roadside stand b. Buying dinner at the neighborhood restaurant around the corner c. Buying a used laptop computer at a garage sale d. Ordering flowers over the internet for your friend in a different ci
ty 2. Why is there asymmetric information in the labor market? What signals can an employer look for that might indicate the traits they are seeking in a new employee? 3. Why is it difficult to measure health outcomes? REVIEW QUESTIONS 4. Why might it be difficult for a buyer and seller to agree on a price when imperfect information exists? 5. What do economists (and used-car dealers) mean by a “lemon”? 6. What are some ways a seller of goods might reassure faced with imperfect a possible buyer who is information? 398 Chapter 16 | Information, Risk, and Insurance 13. How can moral hazard lead to more costly insurance premiums than one was expected? 14. Define deductibles, copayments, and coinsurance. How can 15. deductibles, coinsurance reduce moral hazard? copayments, and 16. What is the key difference between a fee-forservice healthcare system and a system based on health maintenance organizations? 17. How might adverse selection make it difficult for an insurance market to operate? 18. What are some of the metrics economists use to measure health outcomes? 21. How do you think the problem of moral hazard might have affected the safety of sports such as football and boxing when safety regulations started requiring that players wear more padding? 22. To what sorts of customers would an insurance company offer a policy with a high copay? What about a high premium with a lower copay? 7. What are some ways a seller of labor (that is, someone looking for a job) might reassure a possible employer who is faced with imperfect information? 8. What are some ways that someone looking for a loan might reassure a bank that is faced with imperfect information about whether the borrower will repay the loan? 9. What is an insurance premium? 10. In an insurance system, would you expect each person to receive in benefits pretty much what they pay in premiums or is it just that the average benefits paid will equal the average premiums paid? 11. What is an actuarially fair insurance policy? 12. What is the problem of moral hazard? CRITICAL THINKING QUESTIONS 19. You are on the board of directors of a private high school, which is hiring new tenth-grade science teachers. As you think about hiring someone for a job, what are some mechanisms you might use to overcome the problem of imperfect information? 20. A website offers a place for people to buy and sell emeralds, but information about emeralds can be quite imperfect. The website then enacts a rule that all sellers in the market must pay for two independent examinations of their emerald, which are available to the customer for inspection. a. How would improved information to affect demand for emeralds on this website? b. How would improved information to affect the quantity of high-quality emeralds sold on the website? expect expect you you this this PROBLEMS 23. Using Exercise 16.20, sketch the effects in parts (a) and (b) on a single supply and demand diagram. What prediction would you make about how the improved information alters the equilibrium quantity and price? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 16 | Information, Risk, and Insurance 399 24. Imagine that you can divide 50-year-old men into two groups: those who have a family history of cancer and those who do not. For the purposes of this example, say that 20% of a group of 1,000 men have a family history of cancer, and these men have one chance in 50 of dying in the next year, while the other 80% of men have one chance in 200 of dying in the next year. The insurance company is selling a policy that will pay $100,000 to the estate of anyone who dies in the next year. a. If the insurance company were selling life insurance separately to each group, what would be the actuarially fair premium for each group? If an insurance company were offering life insurance to the entire group, but could not find out about family cancer histories, what would be the actuarially fair premium for the group as a whole? b. c. What will happen to the insurance company if it tries to charge the actuarially fair premium to the group as a whole rather than to each group separately? 400 Chapter 16 | Information, Risk, and Insurance This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 401 17 | Financial Markets Figure 17.1 Building Home Equity Many people choose to purchase their home rather than rent. This chapter explores how the global financial crisis has influenced home ownership. (Credit: modification of work by Diana Parkhouse/Flickr Creative Commones) The Housing Bubble and the 2007 Financial Crisis In 2006, housing equity in the United States peaked at $13 trillion. That means that the market prices of homes, less what was still owed on the loans they used to buy these houses, equaled $13 trillion. This was a very good number, since the equity represented the value of the financial asset most U.S. citizens owned. However, by 2008 this number declined to $8.8 trillion, and it plummeted further still in 2009. Combined with the decline in value of other financial assets held by U.S. citizens, by 2010, U.S. homeowners’ wealth had shrunk $14 trillion! This is a staggering result, and it affected millions of lives: people had to alter their retirement, housing, and other important consumption decisions. Just about every other large economy in the world suffered a decline in the market value of financial assets, as a result of the 2008-2009 global financial crisis. This chapter will explain why people purchase houses (other than as a place to live), why they buy other types of financial assets, and why businesses sell those financial assets in the first place. The chapter will also give us insight into why financial markets and assets go through boom and bust cycles like the one we described here. Introduction to Financial Markets In this chapter, you will learn about: 402 Chapter 17 | Financial Markets • How Businesses Raise Financial Capital • How Households Supply Financial Capital • How to Accumulate Personal Wealth When a firm needs to buy new equipment or build a new facility, it often must go to the financial market to raise funds. Usually firms will add capacity during an economic expansion when profits are on the rise and consumer demand is high. Business investment is one of the critical ingredients needed to sustain economic growth. Even in the sluggish 2009 economy, U.S. firms invested $1.4 trillion in new equipment and structures, in the hope that these investments would generate profits in the years ahead. Between the end of the recession in 2009 through the second quarter 2013, profits for the S&P 500 companies grew to 9.7 % despite the weak economy, with cost cutting and reductions in input costs driving much of that amount, according to the Wall Street Journal. Figure 17.2 shows corporate profits after taxes (adjusted for inventory and capital consumption). Despite the steep decline in quarterly net profit in 2008, profits have recovered and surpassed pre-recession levels. Figure 17.2 Corporate Profits After Tax (Adjusted for Inventory and Capital Consumption) Prior to 2008, corporate profits after tax more often than not increased each year. There was a significant drop in profits during 2008 and into 2009. The profit trend has since continued to increase each year, though at a less steady or consistent rate. (Source: Federal Reserve Economic Data (FRED) https://research.stlouisfed.org/fred2/series/CPATAX) Many firms, from huge companies like General Motors to startup firms writing computer software, do not have the financial resources within the firm to make all the desired investments. These firms need financial capital from outside investors, and they are willing to pay interest for the opportunity to obtain a rate of return on the investment for that financial capital. On the other side of the financial capital market, financial capital suppliers, like households, wish to use their savings in a way that will provide a return. Individuals cannot, however, take the few thousand dollars that they save in any given year, write a letter to General Motors or some other firm, and negotiate to invest their money with that firm. Financial capital markets bridge this gap: that is, they find ways to take the inflow of funds from many separate financial capital suppliers and transform it into the funds of financial capital demanders desire. Such financial markets include stocks, bonds, bank loans, and other financial investments. Visit this website (http://openstaxcollege.org/l/marketoverview) to read more about financial markets. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 403 Our perspective then shifts to consider how these financial investments appear to capital suppliers such as the households that are saving funds. Households have a range of investment options: bank accounts, certificates of deposit, money market mutual funds, bonds, stocks, stock and bond mutual funds, housing, and even tangible assets like gold. Finally, the chapter investigates two methods for becoming rich: a quick and easy method that does not work very well at all, and a slow, reliable method that can work very well over a lifetime. 17.1 | How Businesses Raise Financial Capital By the end of this section, you will be able to: • Describe financial capital and how it relates to profits • Discuss the purpose and process of borrowing, bonds, and corporate stock • Explain how firms choose between sources of financial capital Firms often make decisions that involve spending money in the present and expecting to earn profits in the future. Examples include when a firm buys a machine that will last 10 years, or builds a new plant that will last for 30 years, or starts a research and development project. Firms can raise the financial capital they need to pay for such projects in four main
ways: (1) from early-stage investors; (2) by reinvesting profits; (3) by borrowing through banks or bonds; and (4) by selling stock. When business owners choose financial capital sources, they also choose how to pay for them. Early-Stage Financial Capital Firms that are just beginning often have an idea or a prototype for a product or service to sell, but few customers, or even no customers at all, and thus are not earning profits. Such firms face a difficult problem when it comes to raising financial capital: How can a firm that has not yet demonstrated any ability to earn profits pay a rate of return to financial investors? For many small businesses, the original source of money is the business owner. Someone who decides to start a restaurant or a gas station, for instance, might cover the startup costs by dipping into his or her own bank account, or by borrowing money (perhaps using a home as collateral). Alternatively, many cities have a network of well-todo individuals, known as “angel investors,” who will put their own money into small new companies at an early development stage, in exchange for owning some portion of the firm. Venture capital firms make financial investments in new companies that are still relatively small in size, but that have potential to grow substantially. These firms gather money from a variety of individual or institutional investors, including banks, institutions like college endowments, insurance companies that hold financial reserves, and corporate pension funds. Venture capital firms do more than just supply money to small startups. They also provide advice on potential products, customers, and key employees. Typically, a venture capital fund invests in a number of firms, and then investors in that fund receive returns according to how the fund as a whole performs. The amount of money invested in venture capital fluctuates substantially from year to year: as one example, venture capital firms invested more than $48.3 billion in 2014, according to the National Venture Capital Association. All early-stage investors realize that the majority of small startup businesses will never hit it big; many of them will go out of business within a few months or years. They also know that getting in on the ground floor of a few huge successes like a Netflix or an Amazon.com can make up for multiple failures. Therefore, early-stage investors are willing to take large risks in order to position themselves to gain substantial returns on their investment. 404 Chapter 17 | Financial Markets Profits as a Source of Financial Capital If firms are earning profits (their revenues are greater than costs), they can choose to reinvest some of these profits in equipment, structures, and research and development. For many established companies, reinvesting their own profits is one primary source of financial capital. Companies and firms just getting started may have numerous attractive investment opportunities, but few current profits to invest. Even large firms can experience a year or two of earning low profits or even suffering losses, but unless the firm can find a steady and reliable financial capital source so that it can continue making real investments in tough times, the firm may not survive until better times arrive. Firms often need to find financial capital sources other than profits. Borrowing: Banks and Bonds When a firm has a record of at least earning significant revenues, and better still of earning profits, the firm can make a credible promise to pay interest, and so it becomes possible for the firm to borrow money. Firms have two main borrowing methods: banks and bonds. A bank loan for a firm works in much the same way as a loan for an individual who is buying a car or a house. The firm borrows an amount of money and then promises to repay it, including some rate of interest, over a predetermined period of time. If the firm fails to make its loan payments, the bank (or banks) can often take the firm to court and require it to sell its buildings or equipment to make the loan payments. Another source of financial capital is a bond. A bond is a financial contract: a borrower agrees to repay the amount that it borrowed and also an interest rate over a period of time in the future. A corporate bond is issued by firms, but bonds are also issued by various levels of government. For example, a municipal bond is issued by cities, a state bond by U.S. states, and a Treasury bond by the federal government through the U.S. Department of the Treasury. A bond specifies an amount that one will borrow, the interest rate that one will pay, and the time until repayment. A large company, for example, might issue bonds for $10 million. The firm promises to make interest payments at an annual rate of 8%, or $800,000 per year and then, after 10 years, will repay the $10 million it originally borrowed. When a firm issues bonds, the total amount it divides. A firm seeks to borrow $50 million by issuing bonds, might actually issue 10,000 bonds of $5,000 each. In this way, an individual investor could, in effect, loan the firm $5,000, or any multiple of that amount. Anyone who owns a bond and receives the interest payments is called a bondholder. If a firm issues bonds and fails to make the promised interest payments, the bondholders can take the firm to court and require it to pay, even if the firm needs to raise the money by selling buildings or equipment. However, there is no guarantee the firm will have sufficient assets to pay off the bonds. The bondholders may recoup only a portion of what it loaned the firm. Bank borrowing is more customized than issuing bonds, so it often works better for relatively small firms. The bank can get to know the firm extremely well—often because the bank can monitor sales and expenses quite accurately by looking at deposits and withdrawals. Relatively large and well-known firms often issue bonds instead. They use bonds to raise new financial capital that pays for investments, or to raise capital to pay off old bonds, or to buy other firms. However, the idea that firms or individuals use banks for relatively smaller loans and bonds for larger loans is not an ironclad rule: sometimes groups of banks make large loans and sometimes relatively small and lesser-known firms issue bonds. Corporate Stock and Public Firms A corporation is a business that “incorporates”—that is owned by shareholders that have limited liability for the company's debt but share in its profits (and losses). Corporations may be private or public, and may or may not have publicly traded stock. They may raise funds to finance their operations or new investments by raising capital through selling stock or issuing bonds. Those who buy the stock become the firm's owners, or shareholders. Stock represents firm ownership; that is, a person who owns 100% of a company’s stock, by definition, owns the entire company. The company's stock is divided into shares. Corporate giants like IBM, AT&T, Ford, General Electric, Microsoft, Merck, and Exxon all have millions of stock shares. In most large and well-known firms, no individual owns a majority of the stock shares. Instead, large numbers of shareholders—even those who hold thousands of shares—each have only a small slice of the firm's overall ownership. When a large number of shareholders own a company, there are three questions to ask: 1. How and when does the company obtain money from its sale? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 405 2. What rate of return does the company promise to pay when it sells stock? 3. Who makes decisions in a company owned by a large number of shareholders? First, a firm receives money from the stock sale only when the company sells its own stock to the public (the public includes individuals, mutual funds, insurance companies, and pension funds). We call a firm’s first stock sale to the public an initial public offering (IPO). The IPO is important for two reasons. For one, the IPO, and any stock issued thereafter, such as stock held as treasury stock (shares that a company keeps in their own treasury) or new stock issued later as a secondary offering, provides the funds to repay the early-stage investors, like the angel investors and the venture capital firms. A venture capital firm may have a 40% ownership in the firm. When the firm sells stock, the venture capital firm sells its part ownership of the firm to the public. A second reason for the importance of the IPO is that it provides the established company with financial capital for substantially expanding its operations. However, most of the time when one buys and sells corporate stock the firm receives no financial return at all. If you buy General Motors stock, you almost certainly buy them from the current share owner, and General Motors does not receive any of your money. This pattern should not seem particularly odd. After all, if you buy a house, the current owner receives your money, not the original house builder. Similarly, when you buy stock shares, you are buying a small slice of the firm's ownership from the existing owner—and the firm that originally issued the stock is not a part of this transaction. Second, when a firm decides to issue stock, it must recognize that investors will expect to receive a rate of return. That rate of return can come in two forms. A firm can make a direct payment to its shareholders, called a dividend. Alternatively, a financial investor might buy a share of stock in Wal-Mart for $45 and then later sell it to someone else for $60, for $15 gain. We call the increase in the stock value (or of any asset) between when one buys and sells it a capital gain. Third: Who makes the decisions about when a firm will issue stock, or pay dividends, or re-invest profits? To understand the answers to these questions, it is useful to separate firms into two groups: private and public.
A private company is owned by the people who run it on a day-to-day basis. Individuals can run a private company. We call this a sole proprietorship. If a group runs it, we call it a partnership. A private company can also be a corporation, but with no publicly issued stock. A small law firm run by one person, even if it employs some other lawyers, would be a sole proprietorship. Partners may jointly own a larger law firm. Most private companies are relatively small, but there are some large private corporations, with tens of billions of dollars in annual sales, that do not have publicly issued stock, such as farm products dealer Cargill, the Mars candy company, and the Bechtel engineering and construction firm. When a firm decides to sell stock, which financial investors can buy and sell, we call it a public company. Shareholders own a public company. Since the shareholders are a very broad group, often consisting of thousands or even millions of investors, the shareholders vote for a board of directors, who in turn hire top executives to run the firm on a day-to-day basis. The more stock a shareholder owns, the more votes that shareholder is entitled to cast for the company’s board of directors. In theory, the board of directors helps to ensure that the firm runs in the interests of the true owners—the shareholders. However, the top executives who run the firm have a strong voice in choosing the candidates who will serve on their board of directors. After all, few shareholders are knowledgeable enough or have enough personal incentive to spend energy and money nominating alternative board members. How Firms Choose between Financial Capital Sources There are clear patterns in how businesses raise financial capital. We can explain these patterns in terms of imperfect information, which as we discussed in Information, Risk, and Insurance, is a situation where buyers and sellers in a market do not both have full and equal information. Those who are actually running a firm will almost always have more information about whether the firm is likely to earn profits in the future than outside investors who provide financial capital. Any young startup firm is a risk. Some startup firms are only a little more than an idea on paper. The firm’s founders inevitably have better information about how hard they are willing to work, and whether the firm is likely to succeed, than anyone else. When the founders invested their own money into the firm, they demonstrate a belief in its prospects. At this early stage, angel investors and venture capitalists try to overcome the imperfect information, at least in part, by knowing the managers and their business plan personally and by giving them advice. 406 Chapter 17 | Financial Markets Accurate information is sometimes not available because corporate governance, the name economists give to the institutions that are supposed to watch over top executives, fails, as the following Clear It Up feature on Lehman Brothers shows. How did lack of corporate governance lead to the Lehman Brothers failure? In 2008, Lehman Brothers was the fourth largest U.S. investment bank, with 25,000 employees. The firm had been in business for 164 years. On September 15, 2008, Lehman Brothers filed for Chapter 11 bankruptcy protection. There are many causes of the Lehman Brothers failure. One area of apparent failure was the lack of oversight by the Board of Directors to keep managers from undertaking excessive risk. We can attribute part of the oversight failure, according to Tim Geithner’s April 10, 2010, testimony to Congress, to the Executive Compensation Committee’s emphasis on short-term gains without enough consideration of the risks. In addition, according to the court examiner’s report, the Lehman Brother’s Board of Directors paid too little attention to the details of the operations of Lehman Brothers and also had limited financial service experience. The board of directors, elected by the shareholders, is supposed to be the first line of corporate governance and oversight for top executives. A second institution of corporate governance is the auditing firm the company hires to review the company's financial records and certify that everything looks reasonable. A third institution of corporate governance is outside investors, especially large shareholders like those who invest large mutual funds or pension funds. In the case of Lehman Brothers, corporate governance failed to provide investors with accurate financial information about the firm’s operations. As a firm becomes at least somewhat established and its strategy appears likely to lead to profits in the near future, knowing the individual managers and their business plans on a personal basis becomes less important, because information has become more widely available regarding the company’s products, revenues, costs, and profits. As a result, other outside investors who do not know the managers personally, like bondholders and shareholders, are more willing to provide financial capital to the firm. At this point, a firm must often choose how to access financial capital. It may choose to borrow from a bank, issue bonds, or issue stock. The great disadvantage of borrowing money from a bank or issuing bonds is that the firm commits to scheduled interest payments, whether or not it has sufficient income. The great advantage of borrowing money is that the firm maintains control of its operations and is not subject to shareholders. Issuing stock involves selling off company ownership to the public and becoming responsible to a board of directors and the shareholders. The benefit of issuing stock is that a small and growing firm increases its visibility in the financial markets and can access large amounts of financial capital for expansion, without worrying about repaying this money. If the firm is successful and profitable, the board of directors will need to decide upon a dividend payout or how to reinvest profits to further grow the company. Issuing and placing stock is expensive, requires the expertise of investment bankers and attorneys, and entails compliance with reporting requirements to shareholders and government agencies, such as the federal Securities and Exchange Commission (SEC). 17.2 | How Households Supply Financial Capital By the end of this section, you will be able to: • Show the relationship between savers, banks, and borrowers • Calculate bond yield • Contrast bonds, stocks, mutual funds, and assets • Explain the tradeoffs between return and risk This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 407 The ways in which firms would prefer to raise funds are only half the story of financial markets. The other half is what those households and individuals who supply funds desire, and how they perceive the available choices. The focus of our discussion now shifts from firms on the demand side of financial capital markets to households on the supply side of those markets. We can divide the mechanisms for savings available to households into several categories: deposits in bank accounts; bonds; stocks; money market mutual funds; stock and bond mutual funds; and housing and other tangible assets like owning gold. We need to analyze each of these investments in terms of three factors: (1) the expected rate of return it will pay; (2) the risk that the return will be much lower or higher than expected; and (3) the investment's liquidity, which refers to how easily one can exchange money or financial assets for a good or service. We will do this analysis as we discuss each of these investments in the sections below. First, however, we need to understand the difference between expected rate of return, risk, and actual rate of return. Expected Rate of Return, Risk, and Actual Rate of Return The expected rate of return refers to how much a project or an investment is expected to return to the investor, either in future interest payments, capital gains, or increased profitability. It is usually the average return over a period of time, usually in years or even decades. We normally measure it as a percentage rate. Risk measures the uncertainty of that project’s profitability. There are several types of risk, including default risk and interest rate risk. Default risk, as its name suggests, is the risk that the borrower fails to pay back the bond or loan. Interest rate risk is the danger that you might buy a long term bond at a 6% interest rate right before market rates suddenly rise, so had you waited, you could have received a similar bond that paid 9%. A high-risk investment is one for which a wide range of potential payoffs is reasonably probable. A low-risk investment may have actual returns that are fairly close to its expected rate of return year after year. A high-risk investment will have actual returns that are much higher than the expected rate of return in some months or years and much lower in other months or years. The actual rate of return refers to the total rate of return, including capital gains and interest paid on an investment at the end of a time period. Bank Accounts An intermediary is one who stands between two other parties. For example, a person who arranges a blind date between two other people is one kind of intermediary. In financial capital markets, banks are an example of a financial intermediary—that is, an institution that operates between a saver who deposits funds in a bank and a borrower who receives a loan from that bank. When a bank serves as a financial intermediary, unlike the situation with a couple on a blind date, the saver and the borrower never meet. In fact, it is not even possible to make direct connections between those who deposit funds in banks and those who borrow from banks, because all deposited funds end up in one big pool, which the financial institution then lends out. Figure 17.3 illustrates the position of banks as a financia
l intermediary, with a pattern of deposits flowing into a bank and loans flowing out, and then repayment of the loans flowing back to the bank, with interest payments for the original savers. Figure 17.3 Banks as Financial Intermediaries Banks are a financial intermediary because they stand between savers and borrowers. Savers place deposits with banks, and then receive interest payments and withdraw money. Borrowers receive loans from banks, and repay the loans with interest. Banks offer a range of accounts to serve different needs. A checking account typically pays little or no interest, but 408 Chapter 17 | Financial Markets it facilitates transactions by giving you easy access to your money, either by writing a check or by using a debit card (that is, a card which works like a credit card, except that purchases are immediately deducted from your checking account rather than billed separately through a credit card company). A savings account typically pays some interest rate, but getting the money typically requires you to make a trip to the bank or an automatic teller machine (or you can access the funds electronically). The lines between checking and savings accounts have blurred in the last couple of decades, as many banks offer checking accounts that will pay an interest rate similar to a savings account if you keep a certain minimum amount in the account, or conversely, offer savings accounts that allow you to write at least a few checks per month. Another way to deposit savings at a bank is to use a certificate of deposit (CD). With a CD, you agree to deposit a certain amount of money, often measured in thousands of dollars, in the account for a stated period of time, typically ranging from a few months to several years. In exchange, the bank agrees to pay a higher interest rate than for a regular savings account. While you can withdraw the money before the allotted time, as the advertisements for CDs always warn, there is “a substantial penalty for early withdrawal.” Figure 17.4 shows the annual rate of interest paid on a six-month, one-year, and five-year CD since 1984, as reported by Bankrate.com. The interest rates that savings accounts pay are typically a little lower than the CD rate, because financial investors need to receive a slightly higher rate of interest as compensation for promising to leave deposits untouched for a period of time in a CD, and thus forfeiting some liquidity. Figure 17.4 Interest Rates on Six-Month, One-Year, and Five-Year Certificates of Deposit The interest rates on certificates of deposit have fluctuated over time. The high interest rates of the early 1980s are indicative of the relatively high inflation rate in the United States at that time. Interest rates fluctuate with the business cycle, typically increasing during expansions and decreasing during a recession. Note the steep decline in CD rates since 2008, the beginning of the Great Recession. The great advantages of bank accounts are that financial investors have very easy access to their money, and also money in bank accounts is extremely safe. In part, this safety arises because a bank account offers more security than keeping a few thousand dollars in the toe of a sock in your underwear drawer. In addition, the Federal Deposit Insurance Corporation (FDIC) protects the savings of the average person. Every bank is required by law to pay a fee to the FDIC, based on the size of its deposits. Then, if a bank should go bankrupt and not be able to repay depositors, the FDIC guarantees that all customers will receive their deposits back up to $250,000. The bottom line on bank accounts looks like this: low risk means low rate of return but high liquidity. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 409 Bonds An investor who buys a bond expects to receive a rate of return. However, bonds vary in the rates of return that they offer, according to the riskiness of the borrower. We always can divide an interest rate into three components (as we explained in Choice in a World of Scarcity): compensation for delaying consumption, an adjustment for an inflationary rise in the overall level of prices, and a risk premium that takes the borrower’s riskiness into account. The U.S. government is an extremely safe borrower, so when the U.S. government issues Treasury bonds, it can pay a relatively low interest rate. Firms that appear to be safe borrowers, perhaps because of their sheer size or because they have consistently earned profits over time, will still pay a higher interest rate than the U.S. government. Firms that appear to be riskier borrowers, perhaps because they are still growing or their businesses appear shaky, will pay the highest interest rates when they issue bonds. We call bonds that offer high interest rates to compensate for their relatively high chance of default high yield bonds or junk bonds. A number of today’s well-known firms issued junk bonds in the 1980s when they were starting to grow, including Turner Broadcasting and Microsoft. Visit this website (http://openstaxcollege.org/l/bondsecurities) to read about Treasury bonds. A bond issued by the U.S. government or a large corporation may seem to be relatively low risk: after all, the bond issuer has promised to make certain payments over time, and except for rare bankruptcy cases, these payments will occur. If a corporate bond issuer fails to make the payments that it owes to its bondholders, the bondholders can require that the company declare bankruptcy, sell off its assets, and pay them as much as it can. Even in the case of junk bonds, a wise investor can reduce the risk by purchasing bonds from a wide range of different companies since, even if a few firms go broke and do not pay, they are not all likely to go bankrupt. As we noted before, bonds carry an interest rate risk. For example, imagine you decide to buy a 10-year bond that would pay an annual interest rate of 8%. Soon after you buy the bond, interest rates on bonds rise, so that now similar companies are paying an annual rate of 12%. Anyone who buys a bond now can receive annual payments of $120 per year, but since your bond was issued at an interest rate of 8%, you have tied up $1,000 and receive payments of only $80 per year. In the meaningful sense of opportunity cost, you are missing out on the higher payments that you could have received. Furthermore, you can calculate the amount you should be willing to pay now for future payments. To place a present discounted value on a future payment, decide what you would need in the present to equal a certain amount in the future. This calculation will require an interest rate. For example, if the interest rate is 25%, then a payment of $125 a year from now will have a present discounted value of $100—that is, you could take $100 in the present and have $125 in the future. (We discuss this further in the appendix on Present Discounted Value.) In financial terms, a bond has several parts. A bond is basically an “I owe you” note that an investor receives in exchange for capital (money). The bond has a face value. This is the amount the borrower agrees to pay the investor at maturity. The bond has a coupon rate or interest rate, which is usually semi-annual, but can be paid at different times throughout the year. (Bonds used to be paper documents with coupons that investors clipped and turned in to the bank to receive interest.) The bond has a maturity date when the borrower will pay back its face value as well as its last interest payment. Combining the bond’s face value, interest rate, and maturity date, and market interest rates, allows a buyer to compute a bond’s present value, which is the most that a buyer would be willing to pay for a given bond. This may or may not be the same as the face value. The bond yield measures the rate of return a bond is expected to pay over time. Investors can buy bonds when they are issued and they can buy and sell them during their lifetimes. When buying a bond that has been around for a few 410 Chapter 17 | Financial Markets years, investors should know that the interest rate printed on a bond is often not the same as the bond yield, even on new bonds. Read the next Work It Out feature to see how this happens. Calculating the Bond Yield You have bought a $1,000 bond whose coupon rate is 8%. To calculate your return or yield, follow these steps: 1. Assume the following: Face value of a bond: $1,000 Coupon rate: 8 % Annual payment: $80 per year 2. Consider the risk of the bond. If this bond carries no risk, then it would be safe to assume that the bond will sell for $1,000 when it is issued and pay the purchaser $80 per year until its maturity, at which time the final interest payment will be made and the original $1,000 will be repaid. Now, assume that over time the interest rates prevailing in the economy rise to 12% and that there is now only one year left to this bond’s maturity. This makes the bond an unattractive investment, since an investor can find another bond that perhaps pays 12%. To induce the investor to buy the 8% bond, the bond seller will lower its price below its face value of $1,000. 3. Calculate the bond's price when its interest rate is less than the market interest rate. The expected payments from the bond one year from now are $1,080, because in the bond’s last year the bond's issuer will make the final interest payment and then also repay the original $1,000. Given that interest rates are now 12%, you know that you could invest $964 in an alternative investment and receive $1,080 a year from now; that is, $964(1 + 0.12) = $1080. Therefore, you will not pay more than $964 for the original $1,000 bond. 4. Consider that the investor will receive the $1,000 face value, plus $80 for the last year’s interest payment. The yield on the bond will be ($1080 – $964)/$964 = 12%. The yield, or total return, means interest payments, plus
capital gains. Note that the interest or coupon rate of 8% did not change. When interest rates rise, bonds previously issued at lower interest rates will sell for less than face value. Conversely, when interest rates fall, bonds previously issued at higher interest rates will sell for more than face value. Figure 17.5 shows bond yield for two kinds of bonds: 10-year Treasury bonds (which are officially called “notes”) and corporate bonds issued by firms that have been given an AAA rating as relatively safe borrowers by Moody’s, an independent firm that publishes such ratings. Even though corporate bonds pay a higher interest rate, because firms are riskier borrowers than the federal government, the rates tend to rise and fall together. Treasury bonds typically pay more than bank accounts, and corporate bonds typically pay a higher interest rate than Treasury bonds. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 411 Figure 17.5 Interest Rates for Corporate Bonds and Ten-Year U.S. Treasury Bonds The interest rates for corporate bonds and U.S. Treasury bonds (officially “notes”) rise and fall together, depending on conditions for borrowers and lenders in financial markets for borrowing. The corporate bonds always pay a higher interest rate, to make up for the higher risk they have of defaulting compared with the U.S. government. The bottom line for bonds: rate of return—low to moderate, depending on the borrower's risk; risk—low to moderate, depending on whether interest rates in the economy change substantially after the bond is issued; liquidity—moderate, because the investor needs to sell the bond before the investor regains the cash. Stocks As we stated earlier, the rate of return on a financial investment in a share of stock can come in two forms: as dividends paid by the firm and as a capital gain achieved by selling the stock for more than you paid. The range of possible returns from buying stock is mind-bending. Firms can decide to pay dividends or not. A stock price can rise to a multiple of its original price or sink all the way to zero. Even in short periods of time, well-established companies can see large movements in their stock prices. For example, in July 1, 2011, Netflix stock peaked at $295 per share; one year later, on July 30, 2012, it was at $53.91 per share; in 2015, it had recovered to $414. When Facebook went public, its shares of stock sold for around $40 per share, but in 2015, they were selling for slightly over $83. We will discuss the reasons why stock prices fall and rise so abruptly below, but first you need to know how we measure stock market performance. There are a number of different ways to measure the overall performance of the stock market, based on averaging different subsets of companies' stock prices. Perhaps the best-known stock market measure is the Dow Jones Industrial Average, which is based on 30 large U.S. companies' stock prices. Another stock market performance gauge, the Standard & Poor’s 500, follows the stock prices of the 500 largest U.S. companies. The Wilshire 5000 tracks the stock prices of essentially all U.S. companies that have stock the public can buy and sell. Other stock market measures focus on where stocks are traded. For example, the New York Stock Exchange monitors the performance of stocks that are traded on that exchange in New York City. The Nasdaq stock market includes about 3,600 stocks, with a concentration of technology stocks. Table 17.1 lists some of the most commonly cited measures of U.S. and international stock markets. Measure of the Stock Market Comments Dow Jones Industrial Average (DJIA): http://indexes.dowjones.com Based on 30 large companies from a diverse set of representative industries, chosen by analysts at Dow Jones and Company. The index was started in 1896. Table 17.1 Some Stock Market Measures 412 Chapter 17 | Financial Markets Measure of the Stock Market Comments Standard & Poor’s 500: http://www.standardandpoors.com Based on 500 large U.S. firms, chosen by analysts at Standard & Poor’s to represent the economy as a whole. Wilshire 5000: http://www.wilshire.com Includes essentially all U.S. companies with stock ownership. Despite the name, this index includes about 7,000 firms. New York Stock Exchange: http://www.nyse.com The oldest and largest U.S. stock market, dating back to 1792. It trades stocks for 2,800 companies of all sizes. It is located at 18 Broad St. in New York City. NASDAQ: http://www.nasdaq.com Founded in 1971 as an electronic stock market, allowing people FTSE: http://www.ftse.com Nikkei: http://www.nikkei.co.jp/ nikkeiinfo/en/ DAX: http://www.exchange.de to buy or sell from many physical locations. It has about 3,600 companies. Includes the 100 largest companies on the London Stock Exchange. Pronounced “footsie.” Originally stood for Financial Times Stock Exchange. Nikkei stands for Nihon Keizai Shimbun, which translates as the Japan Economic Journal, a major business newspaper in Japan. Index includes the 225 largest and most actively traded stocks on the Tokyo Stock Exchange. Tracks 30 of the largest companies on the Frankfurt, Germany, stock exchange. DAX is an abbreviation for Deutscher Aktien Index (German Stock Index). Table 17.1 Some Stock Market Measures The trend in the stock market is generally up over time, but with some large dips along the way. Figure 17.6 shows the path of the Standard & Poor’s 500 index (which is measured on the left-hand vertical axis) and the Dow Jones Index (which is measured on the right-hand vertical axis). Broad stock market measures, like the ones we list here, tend to move together. The S&P 500 Index is the weighted average market capitalization of the firms selected to be in the index. The Dow Jones Industrial Average is the price weighted average of 30 industrial stocks tracked on the New York Stock Exchange. When the Dow Jones average rises from 5,000 to 10,000, you know that the average price of the stocks in that index has roughly doubled. Figure 17.6 shows that stock prices did not rise much in the 1970s, but then started a steady climb in the 1980s. From 2000 to 2013, stock prices bounced up and down, but ended up at about the same level. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 413 Figure 17.6 The Dow Jones Industrial Index and the Standard & Poor’s 500, 1965–2017 Stock prices rose dramatically from the 1980s up to about 2000. From 2000 to 2013, stock prices bounced up and down, but ended up at about the same level. Table 17.2 shows the total annual rate of return an investor would have received from buying the stocks in the S&P 500 index over recent decades. The total return here includes both dividends paid by these companies and also capital gains arising from increases in the stock value. (For technical reasons related to how we calculate the numbers, the dividends and capital gains do not add exactly to the total return.) From the 1950s to the 1980s, the average firm paid annual dividends equal to about 4% of its stock value. Since the 1990s, dividends have dropped and now often provide a return closer to 1% to 2%. In the 1960s and 1970s, the gap between percent earned on capital gains and dividends was much closer than it has been since the 1980s. In the 1980s and 1990s, capital gains were far higher than dividends. In the 2000s, dividends remained low and, while stock prices fluctuated, they ended the decade roughly where they had started. Period Total Annual Return Capital Gains Dividends 1950–1959 19.25% 1960–1969 1970–1979 1980–1989 1990–1999 2000–2009 7.78% 5.88% 17.55% 18.21% −1.00% 13.58% 4.39% 1.60% 12.59% 15.31% −2.70% 4.99% 3.25% 4.20% 4.40% 2.51% 1.70% Table 17.2 Annual Returns on S&P 500 Stocks, 1950–2012 414 2010 2011 2012 Chapter 17 | Financial Markets Period Total Annual Return Capital Gains Dividends 15.06% 2.11% 16.00% 13.22% 0.04% 13.87% 1.84% 2.07% 2.13% Table 17.2 Annual Returns on S&P 500 Stocks, 1950–2012 The overall pattern is that stocks as a group have provided a high rate of return over extended periods of time, but this return comes with risks. The market value of individual companies can rise and fall substantially, both over short time periods and over the long run. During extended periods of time like the 1970s or the first decade of the 2000s, the overall stock market return can be quite modest. The stock market can sometimes fall sharply, as it did in 2008. The bottom line on investing in stocks is that the rate of return over time will be high, but the risks are also high, especially in the short run. Liquidity is also high since one can sell stock in publicly held companies readily for spendable money. Mutual Funds Buying stocks or bonds issued by a single company is always somewhat risky. An individual firm may find itself buffeted by unfavorable supply and demand conditions or hurt by unlucky or unwise managerial decisions. Thus, a standard recommendation from financial investors is diversification, which means buying stocks or bonds from a wide range of companies. A saver who diversifies is following the old proverb: “Don’t put all your eggs in one basket.” In any broad group of companies, some firms will do better than expected and some will do worse—but the diversification has a tendency to cancel out extreme increases and decreases in value. Purchasing a diversified group of stocks or bonds has become easier in the internet age, but it remains something of a task. To simplify the process, companies offer mutual funds, which consist of a variety of stocks or bonds from different companies. The financial investor buys mutual fund shares, and then receives a return based on how the fund as a whole performs. In 2012, according to the Investment Company Factbook, about 44% of U.S. households had a financial investment in a mutual fund—including many people who have their retirement s
avings or pension money invested in this way. Mutual funds can focus in certain areas: one mutual fund might invest only in company stocks based in Indonesia, or only in bonds issued by large manufacturing companies, or only in biotechnology companies' stock. At the other end of the spectrum, a mutual fund might be quite broad. At the extreme, some mutual funds own a tiny share of every firm in the stock market, and thus the mutual fund's value will fluctuate with the overall stock market's average. We call a mutual fund that seeks only to mimic the market's overall performance an index fund. Diversification can offset some of the risks of individual stocks rising or falling. Even investors who buy an indexed mutual fund designed to mimic some measure of the broad stock market, like the Standard & Poor’s 500, had better prepare against some ups and downs, like those the stock market experienced in the first decade of the 2000s. In 2008 average U.S. stock funds declined 38%, reducing individual and household wealth. This steep drop in value hit hardest those who were close to retirement and were counting on their stock funds to supplement retirement income. The bottom line on investing in mutual funds is that the rate of return over time will be high. The risks are also high, but the risks and returns for an individual mutual fund will be lower than those for an individual stock. As with stocks, liquidity is also high provided the mutual fund or stock index fund is readily traded. Housing and Other Tangible Assets Households can also seek a rate of return by purchasing tangible assets, especially housing. About two-thirds of U.S. households own their own home. An owner’s equity in a house is the monetary value the owner would have after selling the house and repaying any outstanding bank loans he or she used to buy the house. For example, imagine that you buy a house for $200,000, paying 10% of the price as a down payment and taking out a bank loan for the remaining $180,000. Over time, you pay off some of your bank loan, so that only $100,000 remains, and the house's value on the market rises to $250,000. At that point, your equity in the home is the value of the home minus the value of the loan outstanding, which is $150,000. For many middle-class Americans, home equity is their single greatest This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 415 financial asset. The total value of all home equity held by U.S. households was $11.3 trillion at the end of 2015, according to Federal Reserve data. Investment in a house is tangibly different from bank accounts, stocks, and bonds because a house offers both a financial and a nonfinancial return. If you buy a house to live in, part of the return on your investment occurs from your consumption of “housing services”—that is, having a place to live. (Of course, if you buy a home and rent it out, you receive rental payments for the housing services you provide, which would offer a financial return.) Buying a house to live in also offers the possibility of a capital gain from selling the house in the future for more than you paid for it. There can, however, be different outcomes, as the Clear It Up on the housing market shows. Housing prices have usually risen steadily over time. For example, the median sales price for an existing one-family home was $122,900 in 1990, but 232,000 at the end of December 2016, according to FRED® Economic Data. Over these 24 years, home prices increased an average of 3.1% per year, which is an average financial return over this time. Figure 17.7 shows U.S. Census data for the median average sales price of a house in the United States over this time period. Go to this website (http://openstaxcollege.org/l/investopedia) to experiment with a compound annual growth rate calculator. However, the possible capital gains from rising housing prices are riskier than these national price averages. Certain regions of the country or metropolitan areas have seen drops in housing prices over time. The median housing price for the United States as a whole fell almost 7% in 2008 and again in 2009, dropping the median price from $247,900 to $216,700. As of 2016, home values had recovered and even exceeded their pre-recession levels. Visit this website (http://openstaxcollege.org/l/insidejob) to watch the trailer for Inside Job, a movie that explores the modern financial crisis. 416 Chapter 17 | Financial Markets Figure 17.7 The Median Average Sales Price for New Single-Family Homes, 1990–2015 The median price is the price where half of sales prices are higher and half are lower. The median sales price for a new one-family home was $122,900 in 1990. It rose as high as $248,000 in 2007, before falling to $232,000 in 2008. In 2015, the median sales price was $294,000. Of course, this national figure conceals many local differences, like the areas where housing prices are higher or lower, or how housing prices have risen or fallen at certain times. (Source: U.S. Census) Investors can also put money into other tangible assets such as gold, silver, and other precious metals, or in duller commodities like sugar, cocoa, coffee, orange juice, oil, and natural gas. The return on these investments derives from the saver’s hope of buying low, selling high, and receiving a capital gain. Investing in, say, gold or coffee offers relatively little in the way of nonfinancial benefits to the user (unless the investor likes to caress gold or gaze upon a warehouse full of coffee). Typically, investors in these commodities never even see the physical good. Instead, they sign a contract that takes ownership of a certain quantity of these commodities, which are stored in a warehouse, and later they sell the ownership to someone else. As one example, from 1981 to 2005, the gold prices generally fluctuated between about $300 and $500 per ounce, but then rose sharply to over $1,100 per ounce by early 2010. In January 2017, prices were hovering around $1,191 per ounce. A final area of tangible assets consists of “collectibles” like paintings, fine wine, jewelry, antiques, or even baseball cards. Most collectibles provide returns both in the form of services or of a potentially higher selling price in the future. You can use paintings by hanging them on the wall; jewelry by wearing it; baseball cards by displaying them. You can also hope to sell them someday for more than you paid for them. However, the evidence on prices of collectibles, while scanty, is that while they may go through periods where prices skyrocket for a time, you should not expect to make a higher-than-average rate of return over a sustained period of time from investing in this way. The bottom line on investing in tangible assets: rate of return—moderate, especially if you can receive nonfinancial benefits from, for example, living in the house; risk—moderate for housing or high if you buy gold or baseball cards; liquidity—low, because it often takes considerable time and energy to sell a house or a piece of fine art and turn your capital gain into cash. The next Clear It Up feature explains the issues in the recent U.S. housing market crisis. What was all the commotion in the recent U.S. housing market? The cumulative average annual growth rate in housing prices from 1981 to 2000 was 5.1%. The price of an average U.S. home then took off from 2003 to 2005, rising more than 10% per year. No serious analyst believed this rate of growth was sustainable; after all, if housing prices grew at, say, 11% per year over time, the average price of a home would more than double every seven years. However, at the time many serious analysts saw no reason for deep concern. After all, housing prices often change in fits and starts, like all This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 417 prices, and a price surge for a few years is often followed by prices that are flat or even declining a bit as local markets adjust. The sharp rise in housing prices was driven by a high level of demand for housing. Interest rates were low, so financial institutions encouraged people to borrow money to buy a house. Banks became much more flexible in their lending, making what were called “subprime” loans. Banks loaned money with low, or sometimes no down payment. They offered loans with very low payments for the first two years, but then much higher payments after that. The idea was that housing prices would keep rising, so the borrower would just refinance the mortgage two years in the future, and thus would not ever have to make the higher payments. Some banks even offered so-called NINJA loans, which meant a financial institution issued loan even though the borrower had no income, no job, nor assets. In retrospect, these loans seem nearly crazy. Many borrowers figured, however, that as long as housing prices kept rising, it made sense to buy. Many lenders used a process called “securitizing,” in which they sold their mortgages to financial companies, which put all the mortgages into a big pool, creating large financial securities, and then re-sold these mortgage-backed securities to investors. In this way, the lenders off-loaded the mortgage risks to investors. Investors were interested in mortgage-backed securities as they appeared to offer a steady stream of income, provided the borrowers repaid them. Investors relied on the ratings agencies to assess the credit risk associated with the mortgage-backed securities. In hindsight, it appears that the credit agencies were far too lenient in their ratings of many of the securitized loans. Bank and financial regulators watched the steady rise in the market for mortgage-backed securities, but saw no reason at the time to intervene. When housing prices turned down, many households that had borrowed when prices were high found that what they owed the bank was more than what
their home was worth. Many banks believed that they had diversified by selling their individual loans and instead buying securities based on mortgage loans from all over the country. After all, banks thought back in 2005, the average house price had not declined at any time since the Great Depression in the 1930s. These securities based on mortgage loans, however, turned out to be far riskier than expected. The bust in housing prices weakened both bank and household finances, and thus helped bring on the 2008-2009 Great Recession. The Tradeoffs between Return and Risk The discussion of financial investments has emphasized the expected rate of return, the risk, and the liquidity of each investment. Table 17.3 summarizes these characteristics. Financial Investment Return Risk Liquidity Checking account Savings account Very low Low Very little Very little Certificate of deposit Low to medium Very little Stocks Bonds High Medium Medium to high Low to medium Very high High Medium Medium Medium Mutual funds Medium to high Medium to high Medium to high Housing Gold Medium Medium Collectibles Low to medium Medium High High Low Low Low Table 17.3 Key Characteristics for Financial Investments 418 Chapter 17 | Financial Markets The household investment choices listed here display a tradeoff between the expected return and the degree of risk involved. Bank accounts have very low risk and very low returns; bonds have higher risk but higher returns; and stocks are riskiest of all but have the potential for still higher returns. In effect, the higher average return compensates for the higher degree of risk. If risky assets like stocks did not also offer a higher average return, then few investors would want them. This tradeoff between return and risk complicates the task of any financial investor: Is it better to invest safely or to take a risk and go for the high return? Ultimately, choices about risk and return will be based on personal preferences. However, it is often useful to examine risk and return in the context of different time frames. The high returns of stock market investments refer to a high average return that we can expect over a period of several years or decades. The high risk of such investments refers to the fact that in shorter time frames, from months to a few years, the rate of return may fluctuate a great deal. Thus, a person near retirement age, who already owns a house, may prefer reduced risk and certainty about retirement income. For young workers, just starting to make a reasonably profitable living, it may make sense to put most of their savings for retirement in mutual funds. Mutual funds are able to take advantage of their buying and selling size and thereby reduce transaction costs for investors. Stocks are risky in the short term, to be sure, but when the worker can look forward to several decades during which stock market ups and downs can even out, stocks will typically pay a much higher return over that extended period than will bonds or bank accounts. Thus, one must consider tradeoffs between risk and return in the context of where the investor is in life. 17.3 | How to Accumulate Personal Wealth By the end of this section, you will be able to: • Explain the random walk theory • Calculate simple and compound interest • Evaluate how capital markets transform financial capital Getting rich may seem straightforward enough. Figure out what companies are going to grow and earn high profits in the future, or figure out what companies are going to become popular for everyone else to buy. Those companies are the ones that will pay high dividends or whose stock price will climb in the future. Then, buy stock in those companies. Presto! Multiply your money! Why is this path to riches not as easy as it sounds? This module first discusses the problems with picking stocks, and then discusses a more reliable but undeniably duller method of accumulating personal wealth. Why It Is Hard to Get Rich Quick: The Random Walk Theory The chief problem with attempting to buy stock in companies that will have higher prices in the future is that many other financial investors are trying to do the same thing. Thus, in attempting to get rich in the stock market, it is no help to identify a company that is going to earn high profits if many other investors have already reached the same conclusion, because the stock price will already be high, based on the expected high level of future profits. The idea that stock prices are based on expectations about the future has a powerful and unexpected implication. If expectations determine stock price, then shifts in expectations will determine shifts in the stock price. Thus, what matters for predicting whether the stock price of a company will do well is not whether the company will actually earn profits in the future. Instead, you must find a company that analysts widely believe at present to have poor prospects, but that will actually turn out to be a shining star. Brigades of stock market analysts and individual investors are carrying out such research 24 hours a day. The fundamental problem with predicting future stock winners is that, by definition, no one can predict the future news that alters expectations about profits. Because stock prices will shift in response to unpredictable future news, these prices will tend to follow what mathematicians call a “random walk with a trend.” The “random walk” part means that, on any given day, stock prices are just as likely to rise as to fall. “With a trend” means that over time, the upward steps tend to be larger than the downward steps, so stocks do gradually climb. If stocks follow a random walk, then not even financial professionals will be able to choose those that will beat the average consistently. While some investment advisers are better than average in any given year, and some even This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 419 succeed for a number of years in a row, the majority of financial investors do not outguess the market. If we look back over time, it is typically true that half or two-thirds of the mutual funds that attempted to pick stocks which would rise more than the market average actually ended up performing worse than the market average. For the average investor who reads the newspaper business pages over a cup of coffee in the morning, the odds of doing better than full-time professionals is not very good at all. Trying to pick the stocks that will gain a great deal in the future is a risky and unlikely way to become rich. Getting Rich the Slow, Boring Way Many U.S. citizens can accumulate a large amount of wealth during their lifetimes, if they make two key choices. The first is to complete additional education and training. In 2014, the U.S. Census Bureau reported median earnings for households where the main earner had only a high school degree of $33,124; for those with a two-year associate degree, median earnings were $40,560 and for those with a four-year bachelor’s degree, median income was $54,340. Learning is not only good for you, but it pays off financially, too. The second key choice is to start saving money early in life, and to give the power of compound interest a chance. Imagine that at age 25, you save $3,000 and place that money into an account that you do not touch. In the long run, it is not unreasonable to assume a 7% real annual rate of return (that is, 7% above the rate of inflation) on money invested in a well-diversified stock portfolio. After 40 years, using the formula for compound interest, the original $3,000 investment will have multiplied nearly fifteen fold: 3, 000(1 + .07)40 = $44,923 Having $45,000 does not make you a millionaire. Notice, however, that this tidy sum is the result of saving $3,000 exactly once. Saving that amount every year for several decades—or saving more as income rises—will multiply the total considerably. This type of wealth will not rival the riches of Microsoft CEO Bill Gates, but remember that only half of Americans have any money in mutual funds at all. Accumulating hundreds of thousands of dollars by retirement is a perfectly achievable goal for a well-educated person who starts saving early in life—and that amount of accumulated wealth will put you at or near the top 10% of all American households. The following Work It Out feature shows the difference between simple and compound interest, and the power of compound interest. Simple and Compound Interest Simple interest is an interest rate calculation only on the principal amount. Step 1. Learn the formula for simple interest: Principal × Rate × Time = Interest Step 2. Practice using the simple interest formula. Example 1: $100 Deposit at a simple interest rate of 5% held for one year is: $100 × 0.05 × 1 = $5 Simple interest in this example is $15. Example 2: $100 Deposit at a simple interest rate of 5% held for three years is: Simple interest in this example is $5. Step 3. Calculate the total future amount using this formula: $100 × 0.05 × 3 = $15 Step 4. Put the two simple interest formulas together. Total future amount = principal + interest Total future amount (with simple interest) = Principal + (Principal × Rate × Time) Step 5. Apply the simple interest formula to our three year example. Total future amount (with simple interest) = $100 + ($100 × 0.05 × 3) = $115 420 Chapter 17 | Financial Markets Compound interest is an interest rate calculation on the principal plus the accumulated interest. Step 6. To find the compound interest, we determine the difference between the future value and the present value of the principal. This is accomplished as follows: Future Value = Principal × (1 + interest rate)time Compound interest = Future Value – Present Valve Step 7. Apply this formula to our three-year scenario. Follow the calculations in Table 17.4 Amount in Bank Bank Interest Rate Total Amount in Bank Bank Interest Rate
Total Amount in Bank Bank Interest Rate Total Compound interest Table 17.4 Year 1 Year 2 Year 3 $100 5% $105 $100 + ($100 × 0.5) $105 5% $110.25 $105 + ($105 × .05) $110.25 5% $115.75 $110.25 + ($110.25 × .05) $115.75 – $100 = $15.75 Step 8. Note that, after three years, the total is $115.76. Therefore the total compound interest is $15.76. This is $0.76 more than we obtained with simple interest. While this may not seem like much, keep in mind that we were only working with $100 and over a relatively short time period. Compound interest can make a huge difference with larger sums of money and over longer periods of time. Obtaining additional education and saving money early in life obviously will not make you rich overnight. Additional education typically means deferring earning income and living as a student for more years. Saving money often requires choices like driving an older or less expensive car, living in a smaller apartment or buying a smaller house, and making other day-to-day sacrifices. For most people, the tradeoffs for achieving substantial personal wealth will require effort, patience, and sacrifice. How Capital Markets Transform Financial Flows Financial capital markets have the power to repackage money as it moves from those who supply financial capital This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 421 to those who demand it. Banks accept checking account deposits and turn them into long-term loans to companies. Individual firms sell shares of stock and issue bonds to raise capital. Firms make and sell an astonishing array of goods and services, but an investor can receive a return on the company’s decisions by buying stock in that company. Financial investors sell and resell stocks and bonds to one another. Venture capitalists and angel investors search for promising small companies. Mutual funds combine the stocks and bonds—and thus, indirectly, the products and investments—of many different companies. Visit this website (http://openstaxcollege.org/l/austerebaltic/) to read an article about how austerity can work. In this chapter, we discussed the basic mechanisms of financial markets. (A more advanced course in economics or finance will consider more sophisticated tools.) The fundamentals of those financial capital markets remain the same: Firms are trying to raise financial capital and households are looking for a desirable combination of rate of return, risk, and liquidity. Financial markets are society’s mechanisms for bringing together these forces of demand and supply. The Housing Bubble and the Financial Crisis of 2007 The housing boom and bust in the United States, and the resulting multi-trillion-dollar decline in home equity, began with the fall of home prices starting in 2007. As home values dipped, many home prices fell below the amount the borrower owed on the mortgage and owners stopped paying and defaulted on their loan. Banks found that their assets (loans) became worthless. Many financial institutions around the world had invested in mortgage-backed securities, or had purchased insurance on mortgage-backed securities. When housing prices collapsed, the value of those financial assets collapsed as well. The asset side of the banks’ balance sheets dropped, causing bank failures and bank runs. Around the globe, financial institutions were bankrupted or nearly so. The result was a large decrease in lending and borrowing, or a freezing up of available credit. When credit dries up, the economy is on its knees. The crisis was not limited to the United States. Iceland, Ireland, the United Kingdom, Spain, Portugal, and Greece all had similar housing boom and bust cycles, and similar credit freezes. If businesses cannot access financial capital, investments. Those investments ultimately lead to job creation. When credit dried up, businesses invested less, and they ultimately laid off millions of workers. This caused incomes to drop, which caused demand to drop. In turn businesses sold less, so they laid off more workers. Compounding these events, as economic conditions worsened, financial institutions were even less likely to make loans. they cannot make physical capital To make matters even worse, as businesses sold less, their expected future profit decreased, and this led to a drop in stock prices. Combining all these effects led to major decreases in incomes, demand, consumption, and employment, and to the Great Recession, which in the United States officially lasted from December 2007 to June 2009. During this time, the unemployment rate rose from 5% to a peak of 10.1%. Four years after the recession officially ended, unemployment was still stubbornly high, at 7.6%, and 11.8 million people were still unemployed. 422 Chapter 17 | Financial Markets As the world’s leading consumer, if the United States goes into recession, it usually drags other countries down with it. The Great Recession was no exception. With few exceptions, U.S. trading partners also entered into recessions of their own, of varying lengths, or suffered slower economic growth. Like the United States, many European countries also gave direct financial assistance, so-called bailouts, to the institutions that make up their financial markets. There was good reason to do this. Financial markets bridge the gap between demanders and suppliers of financial capital. These institutions and markets need to function in order for an economy to invest in new financial capital. However, much of this bailout money was borrowed, and this borrowed money contributed to another crisis in Europe. Because of the impact on their budgets of the financial crisis and the resulting bailouts, many countries found themselves with unsustainably high deficits. They chose to undertake austerity measures, large decreases in government spending and large tax increases, in order to reduce their deficits. Greece, Ireland, Spain, and Portugal have all had to undertake relatively severe austerity measures. The ramifications of this crisis have spread. Economists have even call into question the euro's viability into question. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 423 KEY TERMS actual rate of return time period the total rate of return, including capital gains and interest paid on an investment at the end of a bond a financial contract through which a borrower like a corporation, a city or state, or the federal government agrees to repay the amount that it borrowed and also a rate of interest over a period of time in the future bond yield the rate of return a bond is expected to pay at the time of purchase bondholder someone who owns bonds and receives the interest payments capital gain a financial gain from buying an asset, like a share of stock or a house, and later selling it at a higher price certificate of deposit (CD) a mechanism for a saver to deposit funds at a bank and promise to leave them at the bank for a time, in exchange for a higher interest rate checking account a bank account that typically pays little or no interest, but that gives easy access to money, either by writing a check or by using a “debit card” compound interest an interest rate calculation on the principal plus the accumulated interest corporate bond a bond issued by firms that wish to borrow corporate governance the name economists give to the institutions that are supposed to watch over top executives in companies that shareholders own corporation a business owned by shareholders who have limited liability for the company’s debt yet a share of the company’s profits; may be private or public and may or may not have publicly-traded stock coupon rate the interest rate paid on a bond; can be annual or semi-annual debit card a card that lets the person make purchases, and the financial insitution immediately deducts cost from that person’s checking account diversification investing in a wide range of companies to reduce the level of risk dividend a direct payment from a firm to its shareholders equity the monetary value a homeowner would have after selling the house and repaying any outstanding bank loans used to buy the house expected rate of return how much a project or an investment is expected to return to the investor, either in future interest payments, capital gains, or increased profitability face value the amount that the bond issuer or borrower agrees to pay the investor financial intermediary an institution, like a bank, that receives money from savers and provides funds to borrowers high yield bonds bonds that offer relatively high interest rates to compensate for their relatively high chance of default index fund a mutual fund that seeks only to mimic the market's overall performance initial public offering (IPO) the first sale of shares of stock by a firm to outside investors junk bonds see high yield bonds liquidity refers to how easily one can exchange money or financial assets for a good or service 424 Chapter 17 | Financial Markets maturity date the date that a borrower must repay a bond municipal bonds a bond issued by cities that wish to borrow mutual funds funds that buy a range of stocks or bonds from different companies, thus allowing an investor an easy way to diversify partnership a company run by a group as opposed to an individual present value a bond’s current price at a given time private company a firm owned by the people who run it on a day-to-day basis public company a firm that has sold stock to the public, which in turn investors then can buy and sell risk a measure of the uncertainty of that project’s profitability savings account a bank account that pays an interest rate, but withdrawing money typically requires a trip to the bank or an automatic teller machine shareholders people who own at least some shares of stock in a firm shares a firm's stock, divided into individual portions simple interest an
interest rate calculation only on the principal amount sole proprietorship a company run by an individual as opposed to a group stock a specific firm's claim on partial ownership Treasury bond a bond issued by the federal government through the U.S. Department of the Treasury venture capital financial investments in new companies that are still relatively small in size, but that have potential to grow substantially KEY CONCEPTS AND SUMMARY 17.1 How Businesses Raise Financial Capital Companies can raise early-stage financial capital in several ways: from their owners’ or managers’ personal savings, or credit cards and from private investors like angel investors and venture capital firms. A bond is a financial contract through which a borrower agrees to repay the amount that it borrowed. A bond specifies an amount that one will borrow, the amounts that one will repay over time based on the interest rate when the bond is issued, and the time until repayment. Corporate bonds are issued by firms; municipal bonds are issued by cities, state bonds by U.S. states, and Treasury bonds by the federal government through the U.S. Department of the Treasury. Stock represents firm ownership. A company's stock is divided into shares. A firm receives financial capital when it sells stock to the public. We call a company’s first stock sale to the public the initial public offering (IPO). However, a firm does not receive any funds when one shareholder sells stock in the firm to another investor. One receives the rate of return on stock in two forms: dividends and capital gains. A private company is usually owned by the people who run it on a day-to-day basis, although hired managers can run it. We call a private company owned and run by an individual a sole proprietorship, while a firm owned and run by a group is a partnership. When a firm decides to sell stock that financial investors can buy and sell, then the firm is owned by its shareholders—who in turn elect a board of directors to hire top day-to-day management. We call this a public company. Corporate governance is the name economists give to the institutions that are supposed to watch over top executives, though it does not always work. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 425 17.2 How Households Supply Financial Capital We can categorize all investments according to three key characteristics: average expected return, degree of risk, and liquidity. To obtain a higher rate of return, an investor must typically accept either more risk or less liquidity. Banks are an example of a financial intermediary, an institution that operates to coordinate supply and demand in the financial capital market. Banks offer a range of accounts, including checking accounts, savings accounts, and certificates of deposit. Under the Federal Deposit Insurance Corporation (FDIC), banks purchase insurance against the risk of a bank failure. A typical bond promises the financial investor a series of payments over time, based on the interest rate at the time the financial institution issues the bond, and when the borrower repays it. Bonds that offer a high rate of return but also a relatively high chance of defaulting on the payments are called high-yield or junk bonds. The bond yield is the rate of return that a bond promises to pay at the time of purchase. Even when bonds make payments based on a fixed interest rate, they are somewhat risky, because if interest rates rise for the economy as a whole, an investor who owns bonds issued at lower interest rates is now locked into the low rate and suffers a loss. Changes in the stock price depend on changes in expectations about future profits. Investing in any individual firm is somewhat risky, so investors are wise to practice diversification, which means investing in a range of companies. A mutual fund purchases an array of stocks and/or bonds. An investor in the mutual fund then receives a return depending on the fund's overall performance as a whole. A mutual fund that seeks to imitate the overall behavior of the stock market is called an index fund. We can also regard housing and other tangible assets as forms of financial investment, which pay a rate of return in the form of capital gains. Housing can also offer a nonfinancial return—specifically, you can live in it. 17.3 How to Accumulate Personal Wealth It is extremely difficult, even for financial professionals, to predict changes in future expectations and thus to choose the stocks whose price will rise in the future. Most Americans can accumulate considerable financial wealth if they follow two rules: complete significant additional education and training after graduating from high school and start saving money early in life. SELF-CHECK QUESTIONS 1. Answer these three questions about early-stage corporate finance: a. Why do very small companies tend to raise money from private investors instead of through an IPO? b. Why do small, young companies often prefer an IPO to borrowing from a bank or issuing bonds? c. Who has better information about whether a small firm is likely to earn profits, a venture capitalist or a potential bondholder, and why? 2. From a firm’s point of view, how is a bond similar to a bank loan? How are they different? 3. Calculate the equity each of these people has in his or her home: a. Fred just bought a house for $200,000 by putting 10% as a down payment and borrowing the rest from the bank. b. Freda bought a house for $150,000 in cash, but if she were to sell it now, it would sell for $250,000. c. Frank bought a house for $100,000. He put 20% down and borrowed the rest from the bank. However, the value of the house has now increased to $160,000 and he has paid off $20,000 of the bank loan. 4. Which has a higher average return over time: stocks, bonds, or a savings account? Explain your answer. Investors sometimes fear that a high-risk investment is especially likely to have low returns. Is this fear true? 5. Does a high risk mean the return must be low? 6. What is the total amount of interest from a $5,000 loan after three years with a simple interest rate of 6%? If you receive $500 in simple interest on a loan that you made for $10,000 for five years, what was the interest 7. rate you charged? 426 Chapter 17 | Financial Markets 8. You open a 5-year CD for $1,000 that pays 2% interest, compounded annually. What is the value of that CD at the end of the five years? REVIEW QUESTIONS 9. What are the most common ways for start-up firms to raise financial capital? 20. Name several different kinds of bank account. How are they different? 10. Why can firms not just use their own profits for financial capital, with no need for outside investors? 11. Why are banks more willing to lend to wellestablished firms? 12. What is a bond? 13. What does a share of stock represent? 14. When do firms receive money from a stock sale in their firm and when do they not receive money? 15. What is a dividend? 16. What is a capital gain? 17. What is the difference between a private company and a public company? 18. How do the shareholders who own a company choose the actual company managers? 19. Why are banks called “financial intermediaries”? CRITICAL THINKING QUESTIONS 29. If you owned a small firm that had become somewhat established, but you needed a surge of financial capital to carry out a major expansion, would you prefer to raise the funds through borrowing or by issuing stock? Explain your choice. Explain how a company can fail when the 30. safeguards that should be in place fail. 31. What are some reasons why the investment strategy of a 30-year-old might differ from the investment strategy of a 65-year-old? 32. Explain why a financial investor in stocks cannot earn high capital gains simply by buying companies with a demonstrated record of high profits. 21. Why are bonds somewhat risky to buy, even though they make predetermined payments based on a fixed rate of interest? 22. Why should a financial diversification? investor care about 23. What is a mutual fund? 24. What is an index fund? 25. How is buying a house to live in a type of financial investment? 26. Why is it hard to forecast future movements in stock prices? 27. What are the two key choices U.S. citizens need to make that determines their relative wealth? Is investing in housing always a very safe 28. investment? 33. Explain what happens in an economy when the financial markets limit access to capital. How does this affect economic growth and employment? 34. You and your friend have opened an account on E-Trade and have each decided to select five similar companies in which to invest. You are diligent in monitoring your selections, tracking prices, current events, and actions the company has taken. Your friend chooses his companies randomly, pays no attention to the financial news, and spends his leisure time focused on everything besides his investments. Explain what might be the performance for each of your portfolios at the end of the year. 35. How do bank failures cause the economy to go into recession? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 17 | Financial Markets 427 PROBLEMS 36. The Darkroom Windowshade Company has 100,000 shares of stock outstanding. The investors in the firm own the following numbers of shares: investor 1 has 20,000 shares; investor 2 has 18,000 shares; investor 3 has 15,000 shares; investor 4 has 10,000 shares; investor 5 has 7,000 shares; and investors 6 through 11 have 5,000 shares each. What is the minimum number of investors it would take to vote to change the company's top management? If investors 1 and 2 agree to vote together, can they be certain of always getting their way in how the company will be run? 37. Imagine that a local water company issued $10,000 ten-year bond at an interest rate of 6%. You are thinking about buying this bond one year before the end of the
ten years, but interest rates are now 9%. a. Given the change in interest rates, would you expect to pay more or less than $10,000 for the bond? b. Calculate what you would actually be willing to pay for this bond. 38. Suppose Ford Motor Company issues a five year bond with a face value of $5,000 that pays an annual coupon payment of $150. a. What is the interest rate Ford is paying on the borrowed funds? b. Suppose the market interest rate rises from 3% to 4% a year after Ford issues the bonds. Will the value of the bond increase or decrease? 39. How much money do you have to put into a bank account that pays 10% interest compounded annually to have $10,000 in ten years? 40. Many retirement funds charge an administrative fee each year equal to 0.25% on managed assets. Suppose that Alexx and Spenser each invest $5,000 in the same stock this year. Alexx invests directly and earns 5% a year. Spenser uses a retirement fund and earns 4.75%. After 30 years, how much more will Alexx have than Spenser? 428 Chapter 17 | Financial Markets This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 18 | Public Economy 429 18 | Public Economy Figure 18.1 Domestic Tires? While these tires may all appear similar, some are made in the United States and others are not. Those that are not could be subject to a tariff that could cause the cost of all tires to be higher. (Credit: modification of work by Jayme del Rosario/Flickr Creative Commons) Chinese Tire Tariffs Do you know where the tires on your car are made? If they were imported, they may be subject to a tariff (a tax on imported goods) that could raise the price of your car. What do you think about that tariff? Would you write to your representative or your senator about it? Would you start a Facebook or Twitter campaign? Most people are unlikely to fight this kind of tax or even inform themselves about the issue in the first place. In The Logic of Collective Action (1965), economist Mancur Olson challenged the popular idea that, in a democracy, the majority view will prevail, and in doing so launched the modern study of public economy, sometimes referred to as public choice, a subtopic of microeconomics. In this chapter, we will look at the economics of government policy, why smaller, more organized groups have an incentive to work hard to enact certain policies, and why lawmakers ultimately make decisions that may result in bad economic policy. Introduction to Public Economy In this chapter, you will learn about: • Voter Participation and Costs of Elections • Special Interest Politics 430 Chapter 18 | Public Economy • Flaws in the Democratic System of Government As President Abraham Lincoln famously said in his 1863 Gettysburg Address, democratic governments are supposed to be “of the people, by the people, and for the people.” Can we rely on democratic governments to enact sensible economic policies? After all, they react to voters, not to analyses of demand and supply curves. The main focus of an economics course is, naturally enough, to analyze the characteristics of markets and purely economic institutions. However, political institutions also play a role in allocating society’s scarce resources, and economists have played an active role, along with other social scientists, in analyzing how such political institutions work. Other chapters of this book discuss situations in which market forces can sometimes lead to undesirable results: monopoly, imperfect competition, and antitrust policy; negative and positive externalities; poverty and inequality of incomes; failures to provide insurance; and financial markets that may go from boom to bust. Many of these chapters suggest that the government's economic policies could address these issues. However, just as markets can face issues and problems that lead to undesirable outcomes, a democratic system of government can also make mistakes, either by enacting policies that do not benefit society as a whole or by failing to enact policies that would have benefited society as a whole. This chapter discusses some practical difficulties of democracy from an economic point of view: we presume the actors in the political system follow their own selfinterest, which is not necessarily the same as the public good. For example, many of those who are eligible to vote do not, which obviously raises questions about whether a democratic system will reflect everyone’s interests. Benefits or costs of government action are sometimes concentrated on small groups, which in some cases may organize and have a disproportionately large impact on politics and in other cases may fail to organize and end up neglected. A legislator who worries about support from voters in his or her district may focus on spending projects specific to the district without sufficient concern for whether this spending is in the nation's interest. When more than two choices exist, the principle that the majority of voters should decide may not always make logical sense, because situations can arise where it becomes literally impossible to decide what the “majority” prefers. Government may also be slower than private firms to correct its mistakes, because government agencies do not face competition or the threat of new entry. 18.1 | Voter Participation and Costs of Elections By the end of this section, you will be able to: • Explain the significance of rational ignorance • Evaluate the impact of election expenses In U.S. presidential elections over the last few decades, about 55% to 65% of voting-age citizens actually voted, according to the U.S. Census. In congressional elections when there is no presidential race, or in local elections, the turnout is typically lower, often less than half the eligible voters. In other countries, the share of adults who vote is often higher. For example, in national elections since the 1980s in Germany, Spain, and France, about 75% to 80% of those of voting age cast ballots. Even this total falls well short of 100%. Some countries have laws that require voting, among them Australia, Belgium, Italy, Greece, Turkey, Singapore, and most Latin American nations. At the time the United States was founded, voting was mandatory in Virginia, Maryland, Delaware, and Georgia. Even if the law can require people to vote, however, no law can require that each voter cast an informed or a thoughtful vote. Moreover, in the United States and in most countries around the world, the freedom to vote has also typically meant the freedom not to vote. Why do people not vote? Perhaps they do not care too much about who wins, or they are uninformed about who is running, or they do not believe their vote will matter or change their lives in any way. These reasons are probably tied together, since people who do not believe their vote matters will not bother to become informed or care who wins. Economists have suggested why a utility-maximizing person might rationally decide not to vote or not to become informed about the election. While a single vote may decide a few elections in very small towns, in most elections of any size, the Board of Elections measures the margin of victory in hundreds, thousands, or even millions of votes. A rational voter will recognize that one vote is extremely unlikely to make a difference. This theory of rational ignorance holds that people will not vote if the costs of becoming informed and voting are too high, or they feel their vote will not be decisive in the election. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 18 | Public Economy 431 In a 1957 work, An Economic Theory of Democracy, the economist Anthony Downs stated the problem this way: “It seems probable that for a great many citizens in a democracy, rational behavior excludes any investment whatever in political information per se. No matter how significant a difference between parties is revealed to the rational citizen by his free information, or how uncertain he is about which party to support, he realizes that his vote has almost no chance of influencing the outcome… He will not even utilize all the free information available, since assimilating it takes time.” In his classic 1948 novel Walden Two, the psychologist B. F. Skinner puts the issue even more succinctly via one of his characters, who states: “The chance that one man’s vote will decide the issue in a national election…is less than the chance that he will be killed on his way to the polls.” The following Clear It Up feature explores another aspect of the election process: spending. How much is too much to spend on an election? According to a report from CBS News, the 2016 elections for president, Congress, and state and local offices, saw a total of about $6.8 billion spent. The money raised went to the campaigns, including advertising, fundraising, travel, and staff. Many people worry that politicians spend too much time raising money and end up entangled with special interest groups that make major donations. Critics would prefer a system that restricts what candidates can spend, perhaps in exchange for limited public campaign financing or free television advertising time. How much spending on campaigns is too much? Five billion dollars will buy many potato chips, but in the U.S. economy, which exceeded $18 trillion in 2016, the $6.8 billion spent on political campaigns was about 1/ 25 of 1% of the overall economy. Here is another way to think about campaign spending. Total government spending programs in 2016, including federal and state governments, was about $7 trillion, so the cost of choosing the people who would determine how to spend this money was less than 1/10 of 1% of that. In the context of the enormous U.S. economy, $6.8 billion is not as much money as it sounds. U.S. consumers spend about $2 billion per year on toothpaste and $7 billion on hair care products. In 2016, Proctor and Gamble spent $7.2 billion on advertising. I
t may not be sensible to believe the United States is going to decide its presidential elections for much less than Proctor and Gamble spends on advertisements. Whatever we believe about whether candidates and their parties spend too much or too little on elections, the U.S. Supreme Court has placed limits on how government can limit campaign spending. In a 1976 decision, Buckley v. Valeo, the Supreme Court emphasized that the First Amendment to the U.S. Constitution specifies freedom of speech. The federal government and states can offer candidates a voluntary deal in which government makes some public financing available to candidates, but only if the candidates agree to abide by certain spending limits. Of course, candidates can also voluntarily agree to set certain spending limits if they wish. However, government cannot forbid people or organizations to raise and spend money above these limits if they choose. In 2002, Congress passed and President George W. Bush signed into law the Bipartisan Campaign Reform Act (BCRA). The relatively noncontroversial portions of the act strengthen the rules requiring full and speedy disclosure of who contributes money to campaigns. However, some controversial portions of the Act limit the ability of individuals and groups to make certain kinds of political donations and they ban certain kinds of advertising in the months leading up to an election. Some called these bans into question after the release of two films: Michael Moore’s Fahrenheit 9/11 and Citizens United’s Hillary: The Movie. At question was whether each film sought to discredit political candidates for office too close to an election, in violation of the BCRA. The lower courts found that Moore’s film did not violate the Act, while Citizens United’s did. The fight reached the Supreme Court, as Citizens United v. Federal Election Commission, saying that the First Amendment protects the rights of corporations as well as individuals to donate to political campaigns. The Court ruled, in a 5–4 decision, that the spending limits were unconstitutional. This controversial decision, which essentially allows unlimited contributions by corporations to political action committees, overruled several previous decisions and will likely be revisited in the future, due to the strength of the public reaction. For now, it has resulted in a sharp increase in election spending. 432 Chapter 18 | Public Economy While many U.S. adults do not bother to vote in presidential elections, more than half do. What motivates them? Research on voting behavior has indicated that people who are more settled or more “connected” to society tend to vote more frequently. According to the Washington Post, more married people vote than single people. Those with a job vote more than the unemployed. Those who have lived longer in a neighborhood are more likely to vote than newcomers. Those who report that they know their neighbors and talk to them are more likely to vote than socially isolated people. Those with a higher income and level of education are also more likely to vote. These factors suggest that politicians are likely to focus more on the interests of married, employed, well-educated people with at least a middle-class level of income than on the interests of other groups. For example, those who vote may tend to be more supportive of financial assistance for the two-year and four-year colleges they expect their children to attend than they are of medical care or public school education aimed at families of the poor and unemployed. Visit this website (http://openstaxcollege.org/l/votergroups) to see a breakdown of how different groups voted in 2012. There have been many proposals to encourage greater voter turnout: making it easier to register to vote, keeping the polls open for more hours, or even moving Election Day to the weekend, when fewer people need to worry about jobs or school commitments. However, such changes do not seem to have caused a long-term upward trend in the number of people voting. After all, casting an informed vote will always impose some costs of time and energy. It is not clear how to strengthen people’s feeling of connectedness to society in a way that will lead to a substantial increase in voter turnout. Without greater voter turnout, however, politicians elected by the votes of 60% or fewer of the population may not enact economic policy in the best interests of 100% of the population. Meanwhile, countering a long trend toward making voting easier, many states have recently erected new voting laws that critics say are actually barriers to voting. States have passed laws reducing early voting, restricting groups who are organizing get-out-the-vote efforts, enacted strict photo ID laws, as well as laws that require showing proof of U.S. citizenship. The ACLU argues that while these laws profess to prevent voter fraud, they are in effect making it harder for individuals to cast their vote. 18.2 | Special Interest Politics By the end of this section, you will be able to: • Explain how special interest groups and lobbyists can influence campaigns and elections • Describe pork-barrel spending and logrolling Many political issues are of intense interest to a relatively small group, as we noted above. For example, many U.S. drivers do not much care where their car tires were made—they just want good quality as inexpensively as possible. In September 2009, President Obama and Congress enacted a tariff (taxes added on imported goods) on tires imported from China that would increase the price by 35 percent in its first year, 30 percent in its second year, and 25 percent in its third year. Interestingly, the U.S. companies that make tires did not favor this step, because most of them also import tires from China and other countries. (See Globalization and Protectionism for more on tariffs.) However, the United Steelworkers union, which had seen jobs in the tire industry fall by 5,000 over the previous five years, lobbied fiercely for the tariff. With this tariff, the cost of all tires increased significantly. (See the closing Bring It Home feature at the end of this chapter for more information on the tire tariff.) This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 18 | Public Economy 433 Special interest groups are groups that are small in number relative to the nation, but quite well organized and focused on a specific issue. A special interest group can pressure legislators to enact public policies that do not benefit society as a whole. Imagine an environmental rule to reduce air pollution that will cost 10 large companies $8 million each, for a total cost of $80 million. The social benefits from enacting this rule provide an average benefit of $10 for every person in the United States, for a total of about $3 trillion. Even though the benefits are far higher than the costs for society as a whole, the 10 companies are likely to lobby much more fiercely to avoid $8 million in costs than the average person is to argue for $10 worth of benefits. As this example suggests, we can relate the problem of special interests in politics to an issue we raised in Environmental Protection and Negative Externalities about economic policy with respect to negative externalities and pollution—the problem called regulatory capture (which we defined in Monopoly and Antitrust Policy). In legislative bodies and agencies that write laws and regulations about how much corporations will pay in taxes, or rules for safety in the workplace, or instructions on how to satisfy environmental regulations, you can be sure the specific industry affected has lobbyists who study every word and every comma. They talk with the legislators who are writing the legislation and suggest alternative wording. They contribute to the campaigns of legislators on the key committees—and may even offer those legislators high-paying jobs after they have left office. As a result, it often turns out that those regulated can exercise considerable influence over the regulators. Visit this website (http://openstaxcollege.org/l/lobbying) to read about lobbying. In the early 2000s, about 40 million people in the United States were eligible for Medicare, a government program that provides health insurance for those 65 and older. On some issues, the elderly are a powerful interest group. They donate money and time to political campaigns, and in the 2012 presidential election, 70% of those over age 65 voted, while just 49% of those aged 18 to 24 cast a ballot, according to the U.S. Census. In 2003, Congress passed and President George Bush signed into law a substantial expansion of Medicare that helped the elderly to pay for prescription drugs. The prescription drug benefit cost the federal government about $40 billion in 2006, and the Medicare system projected that the annual cost would rise to $121 billion by 2016. The political pressure to pass a prescription drug benefit for Medicare was apparently quite high, while the political pressure to assist the 40 million with no health insurance at all was considerably lower. One reason might be that the American Association for Retired People AARP, a well-funded and well-organized lobbying group represents senior citizens, while there is no umbrella organization to lobby for those without health insurance. In the battle over passage of the 2010 Affordable Care Act (ACA), which became known as “Obamacare,” there was heavy lobbying on all sides by insurance companies and pharmaceutical companies. However, labor unions and community groups financed a lobby group, Health Care for America Now (HCAN), to offset corporate lobbying. HCAN, spending $60 million dollars, was successful in helping pass legislation which added new regulations on insurance companies and a mandate that all individuals will obtain health insurance by 2014. The following Work It Out feature further explains voter incentives and lobby
ist influence. 434 Chapter 18 | Public Economy Paying To Get Your Way Suppose Congress proposes a tax on carbon emissions for certain factories in a small town of 10,000 people. Congress estimates the tax will reduce pollution to such an extent that it will benefit each resident by an equivalent of $300. The tax will also reduce profits to the town’s two large factories by $1 million each. How much should the factory owners be willing to spend to fight the tax passage, and how much should the townspeople be willing to pay to support it? Why is society unlikely to achieve the optimal outcome? Step 1. The two factory owners each stand to lose $1 million if the tax passes, so each should be willing to spend up to that amount to prevent the passage, a combined sum of $2 million. Of course, in the real world, there is no guarantee that lobbying efforts will be successful, so the factory owners may choose to invest an amount that is substantially lower. Step 2. There are 10,000 townspeople, each standing to benefit by $300 if the tax passes. Theoretically, then, they should be willing to spend up to $3 million (10,000 × $300) to ensure passage. (Again, in the real world with no guarantees of success, they may choose to spend less.) Step 3. It is costly and difficult for 10,000 people to coordinate in such a way as to influence public policy. Since each person stands to gain only $300, many may feel lobbying is not worth the effort. Step 4. The two factory owners, however, find it very easy and profitable to coordinate their activities, so they have a greater incentive to do so. Special interests may develop a close relationship with one political party, so their ability to influence legislation rises and falls as that party moves in or out of power. A special interest may even hurt a political party if it appears to a number of voters that the relationship is too cozy. In a close election, a small group that has been under-represented in the past may find that it can tip the election one way or another—so that group will suddenly receive considerable attention. Democratic institutions produce an ebb and flow of political parties and interests and thus offer both opportunities for special interests and ways of counterbalancing those interests over time. Identifiable Winners, Anonymous Losers A number of economic policies produce gains whose beneficiaries are easily identifiable, but costs that are partly or entirely shared by a large number who remain anonymous. A democratic political system probably has a bias toward those who are identifiable. For example, policies that impose price controls—like rent control—may look as if they benefit renters and impose costs only on landlords. However, when landlords then decide to reduce the number of rental units available in the area, a number of people who would have liked to rent an apartment end up living somewhere else because no units were available. These would-be renters have experienced a cost of rent control, but it is hard to identify who they are. Similarly, policies that block imports will benefit the firms that would have competed with those imports—and workers at those firms—who are likely to be quite visible. Consumers who would have preferred to purchase the imported products, and who thus bear some costs of the protectionist policy, are much less visible. Specific tax breaks and spending programs also have identifiable winners and impose costs on others who are hard to identify. Special interests are more likely to arise from a group that is easily identifiable, rather than from a group where some of those who suffer may not even recognize they are bearing costs. Pork Barrels and Logrolling Politicians have an incentive to ensure that they spend government money in their home state or district, where it will benefit their constituents in a direct and obvious way. Thus, when legislators are negotiating over whether to support a piece of legislation, they commonly ask each other to include pork-barrel spending, legislation that benefits mainly a single political district. Pork-barrel spending is another case in which concentrated benefits and widely dispersed costs challenge democracy: the benefits of pork-barrel spending are obvious and direct to local voters, while the costs are spread over the entire country. Read the following Clear It Up feature for more information on pork-barrel spending. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 18 | Public Economy 435 How much impact can pork-barrel spending have? Many observers widely regard U.S. Senator Robert C. Byrd of West Virginia, who was originally elected to the Senate in 1958 and served until 2010, as one of the masters of pork-barrel politics, directing a steady stream of federal funds to his home state. A journalist once compiled a list of structures in West Virginia at least partly government funded and named after Byrd: “the Robert C. Byrd Highway; the Robert C. Byrd Locks and Dam; the Robert C. Byrd Institute; the Robert C. Byrd Life Long Learning Center; the Robert C. Byrd Honors Scholarship Program; the Robert C. Byrd Green Bank Telescope; the Robert C. Byrd Institute for Advanced Flexible Manufacturing; the Robert C. Byrd Federal Courthouse; the Robert C. Byrd Health Sciences Center; the Robert C. Byrd Academic and Technology Center; the Robert C. Byrd United Technical Center; the Robert C. Byrd Federal Building; the Robert C. Byrd Drive; the Robert C. Byrd Hilltop Office Complex; the Robert C. Byrd Library; and the Robert C. Byrd Learning Resource Center; the Robert C. Byrd Rural Health Center.” This list does not include government-funded projects in West Virginia that were not named after Byrd. Of course, we would have to analyze each of these expenditures in detail to figure out whether we should treat them as pork-barrel spending or whether they provide widespread benefits that reach beyond West Virginia. At least some of them, or a portion of them, certainly would fall into that category. Because there are currently no term limits for Congressional representatives, those who have been in office longer generally have more power to enact pork-barrel projects. The amount that government spends on individual pork-barrel projects is small, but many small projects can add up to a substantial total. A nonprofit watchdog organization, called Citizens against Government Waste, produces an annual report, the Pig Book that attempts to quantify the amount of pork-barrel spending, focusing on items that only one member of Congress requested, that were passed into law without any public hearings, or that serve only a local purpose. Whether any specific item qualifies as pork can be controversial. Interestingly, the 2016 Congressional Pig Book exposed 123 earmarks in FY 2016, an increase of 17.1 percent from the 105 in FY 2015. The cost of earmarks in FY 2016 was $5.1 billion, an increase of 21.4 percent from the $4.2 billion in FY 2015. While the increase in cost over one year is disconcerting, the two-year rise of 88.9 percent over the $2.7 billion in FY 2014 causes concern. Logrolling, an action in which all members of a group of legislators agree to vote for a package of otherwise unrelated laws that they individually favor, can encourage pork barrel spending. For example, if one member of the U.S. Congress suggests building a new bridge or hospital in his or her own congressional district, the other members might oppose it. However, if 51% of the legislators come together, they can pass a bill that includes a bridge or hospital for every one of their districts. As a reflection of this interest of legislators in their own districts, the U.S. government has typically spread out its spending on military bases and weapons programs to congressional districts all across the country. In part, the government does this to help create a situation that encourages members of Congress to vote in support of defense spending. 18.3 | Flaws in the Democratic System of Government By the end of this section, you will be able to: • Assess the median voter theory • Explain the voting cycle • Analyze the interrelationship between markets and government Most developed countries today have a democratic system of government: citizens express their opinions through votes and those votes affect the direction of the country. The advantage of democracy over other systems is that it allows everyone in a society an equal say and therefore may reduce the possibility of a small group of wealthy oligarchs oppressing the masses. There is no such thing as a perfect system, and democracy, for all its popularity, is not without its problems, a few of which we will examine here. 436 Chapter 18 | Public Economy We sometimes sum up and oversimplify democracy in two words: “Majority rule.” When voters face three or more choices, however, then voting may not always be a useful way of determining what the majority prefers. As one example, consider an election in a state where 60% of the population is liberal and 40% is conservative. If there are only two candidates, one from each side, and if liberals and conservatives vote in the same 60–40 proportions in which they are represented in the population, then the liberal will win. What if the election ends up including two liberal candidates and one conservative? It is possible that the liberal vote will split and victory will go to the minority party. In this case, the outcome does not reflect the majority’s preference. Does the majority view prevail in the case of sugar quotas? Clearly there are more sugar consumers in the United States than sugar producers, but the U.S. domestic sugar lobby (www.sugarcane.org) has successfully argued for protection against imports since 1789. By law, therefore, U.S. cookie and candy makers must use 85% domestic sugar in their products. Meanwhile quotas on imported sugar restrict supply and keep the domestic sugar price
up—raising prices for companies that use sugar in producing their goods and for consumers. The European Union allows sugar imports, and prices there are 40% lower than U.S. sugar prices. Sugar-producing countries in the Caribbean repeatedly protest the U.S. quotas at the World Trade Organization meetings, but each bite of cookie, at present, costs you more than if there were no sugar lobby. This case goes against the theory of the “median” voter in a democracy. The median voter theory argues that politicians will try to match policies to what pleases the median voter preferences. If we think of political positions along a spectrum from left to right, the median voter is in the middle of the spectrum. This theory argues that actual policy will reflect “middle of the road.” In the case of sugar lobby politics, the minority, not the median, dominates policy. Sometimes it is not even clear how to define the majority opinion. Step aside from politics for a moment and think about a choice facing three families (the Ortegas, the Schmidts, and the Alexanders) who are planning to celebrate New Year’s Day together. They agree to vote on the menu, choosing from three entrees, and they agree that the majority vote wins. With three families, it seems reasonable that one producing choice will get a 2–1 majority. What if, however, their vote ends up looking like Table 18.1? Clearly, the three families disagree on their first choice. However, the problem goes even deeper. Instead of looking at all three choices at once, compare them two at a time. (See Figure 18.2) In a vote of turkey versus beef, turkey wins by 2–1. In a vote of beef versus lasagna, beef wins 2–1. If turkey beats beef, and beef beats lasagna, then it might seem only logical that turkey must also beat lasagna. However, with the preferences, lasagna is preferred to turkey by a 2–1 vote, as well. If lasagna is preferred to turkey, and turkey beats beef, then surely it must be that lasagna also beats beef? Actually, no. Beef beats lasagna. In other words, the majority view may not win. Clearly, as any car salesmen will tell you, the way one presents choices to us influences our decisions. Figure 18.2 A Voting Cycle Given these choices, voting will struggle to produce a majority outcome. Turkey is favored over roast beef by 2–1 and roast beef is favored over lasagna by 2–1. If turkey beats roast beef and roast beef beats lasagna, then it might seem that turkey must beat lasagna, too. However, given these preferences, lasagna is favored over turkey by 2–1. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 18 | Public Economy 437 The Ortega Family The Schmidt Family The Alexander Family First Choice Turkey Second Choice Roast beef Third Choice Lasagna Table 18.1 Circular Preferences Roast beef Lasagna Turkey Lasagna Turkey Roast beef We call the situation in which Choice A is preferred by a majority over Choice B, Choice B is preferred by a majority over Choice C, and Choice C is preferred by a majority over Choice A a voting cycle. It is easy to imagine sets of government choices—say, perhaps the choice between increased defense spending, increased government spending on health care, and a tax cut—in which a voting cycle could occur. The result will be determined by the order in which stakeholders present and vote on choices, not by majority rule, because every choice is both preferred to some alternative and also not preferred to another alternative. Visit this website (http://www.fairvote.org/rcv#rcvbenefits) to read about instant runoff voting, a preferential voting system. Where Is Government’s Self-Correcting Mechanism? When a firm produces a product no one wants to buy or produces at a higher cost than its competitors, the firm is likely to suffer losses. If it cannot change its ways, it will go out of business. This self-correcting mechanism in the marketplace can have harsh effects on workers or on local economies, but it also puts pressure on firms for good performance. Government agencies, however, do not sell their products in a market. They receive tax dollars instead. They are not challenged by competitors as are private-sector firms. If the U.S. Department of Education or the U.S. Department of Defense is performing poorly, citizens cannot purchase their services from another provider and drive the existing government agencies into bankruptcy. If you are upset that the Internal Revenue Service is slow in sending you a tax refund or seems unable to answer your questions, you cannot decide to pay your income taxes through a different organization. Of course, elected politicians can assign new leaders to government agencies and instruct them to reorganize or to emphasize a different mission. The pressure government faces, however, to change its bureaucracy, to seek greater efficiency, and to improve customer responsiveness is much milder than the threat of being put out of business altogether. This insight suggests that when government provides goods or services directly, we might expect it to do so with less efficiency than private firms—except in certain cases where the government agency may compete directly with private firms. At the local level, for example, government can provide directly services like garbage collection, using private firms under contract to the government, or by a mix of government employees competing with private firms. A Balanced View of Markets and Government The British statesman Sir Winston Churchill (1874–1965) once wrote: “No one pretends that democracy is perfect or 438 Chapter 18 | Public Economy all-wise. Indeed, it has been said that democracy is the worst form of government except for all of the other forms which have been tried from time to time.” In that spirit, the theme of this discussion is certainly not that we should abandon democratic government. A practical student of public policy needs to recognize that in some cases, like the case of well-organized special interests or pork-barrel legislation, a democratic government may seek to enact economically unwise projects or programs. In other cases, by placing a low priority on the problems of those who are not well organized or who are less likely to vote, the government may fail to act when it could do some good. In these and other cases, there is no automatic reason to believe that government will necessarily make economically sensible choices. “The true test of a first-rate mind is the ability to hold two contradictory ideas at the same time,” wrote the American author F. Scott Fitzgerald (1896–1940). At this point in your study of microeconomics, you should be able to go one better than Fitzgerald and hold three somewhat contradictory ideas about the interrelationship between markets and government in your mind at the same time. First, markets are extraordinarily useful and flexible institutions through which society can allocate its scarce resources. We introduced this idea with the subjects of international trade and demand and supply in other chapters and reinforced it in all the subsequent discussions of how households and firms make decisions. Second, markets may sometimes produce unwanted results. A short list of the cases in which markets produce unwanted results includes monopoly and other cases of imperfect competition, pollution, poverty and inequality of incomes, discrimination, and failure to provide insurance. Third, while government may play a useful role in addressing the problems of markets, government action is also imperfect and may not reflect majority views. Economists readily admit that, in settings like monopoly or negative externalities, a potential role exists for government intervention. However, in the real world, it is not enough to point out that government action might be a good idea. Instead, we must have some confidence that the government is likely to identify and carry out the appropriate public policy. To make sensible judgments about economic policy, we must see the strengths and weaknesses of both markets and government. We must not idealize or demonize either unregulated markets or government actions. Instead, consider the actual strengths and weaknesses of real-world markets and real-world governments. These three insights seldom lead to simple or obvious political conclusions. As the famous British economist Joan Robinson wrote some decades ago: “[E]conomic theory, in itself, preaches no doctrines and cannot establish any universally valid laws. It is a method of ordering ideas and formulating questions.” The study of economics is neither politically conservative, nor moderate, nor liberal. There are economists who are Democrats, Republicans, libertarians, socialists, and members of every other political group you can name. Of course, conservatives may tend to emphasize the virtues of markets and the limitations of government, while liberals may tend to emphasize the shortcomings of markets and the need for government programs. Such differences only illustrate that the language and terminology of economics is not limited to one set of political beliefs, but can be used by all. Chinese Tire Tariffs In April 2009, the union representing U.S. tire manufacturing workers filed a request with the U.S. International Trade Commission (ITC), asking it to investigate tire imports from China. Under U.S. trade law, if imports from a country increase to the point that they cause market disruption in the United States, as determined by the ITC, then it can also recommend a remedy for this market disruption. In this case, the ITC determined that from 2004 to 2008, U.S. tire manufacturers suffered declines in production, financial health, and employment as a direct result of increases in tire imports from China. The ITC recommended placing an additional tax on tire imports from China. President Obama and Congress agreed with the ITC recommendation, and in June 2009 tariffs on Chinese tires increas
ed from 4% to 39%. Why would U.S. consumers buy imported tires from China in the first place? Most likely, because they are cheaper than tires produced domestically or in other countries. Therefore, this tariff increase should cause U.S. consumers to pay higher prices for tires, either because Chinese tires are now more expensive, or because U.S. consumers are pushed by the tariff to buy more expensive tires made by U.S. manufacturers or This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 18 | Public Economy 439 those from other countries. In the end, this tariff made U.S. consumers pay more for tires. Was this tariff met with outrage expressed via social media, traditional media, or mass protests? Were there “Occupy Wall Street-type” demonstrations? The answer is a resounding “No”. Most U.S. tire consumers were likely unaware of the tariff increase, although they may have noticed the price increase, which was between $4 and $13 depending on the type of tire. Tire consumers are also potential voters. Conceivably, a tax increase, even a small one, might make voters unhappy. However, voters probably realized that it was not worth their time to learn anything about this issue or cast a vote based on it. They probably thought their vote would not matter in determining the outcome of an election or changing this policy. Estimates of the impact of this tariff show it costs U.S. consumers around $1.11 billion annually. Of this amount, roughly $817 million ends up in the pockets of foreign tire manufacturers other than in China, and the remaining $294 million goes to U.S. tire manufacturers. In other words, the tariff increase on Chinese tires may have saved 1,200 jobs in the domestic tire sector, but it cost 3,700 jobs in other sectors, as consumers had to reduce their spending because they were paying more for tires. People actually lost their jobs as a result of this tariff. Workers in U.S. tire manufacturing firms earned about $40,000 in 2010. Given the number of jobs saved and the total cost to U.S. consumers, the cost of saving one job amounted to $926,500! This tariff caused a net decline in U.S. social surplus. (We discuss total surplus in the Demand and Supply chapter, and tariffs in the The International Trade and Capital Flows (http://cnx.org/content/m64021/ latest/) chapter.) Instead of saving jobs, it cost jobs, and those jobs that it saved cost many times more than the people working in them could ever hope to earn. Why would the government do this? The chapter answers this question by discussing the influence special interest groups have on economic policy. The steelworkers union, whose members make tires, saw increasingly more members lose their jobs as U.S. consumers consumed increasingly more cheap Chinese tires. By definition, this union is relatively small but well organized, especially compared to tire consumers. It stands to gain much for each of its members, compared to what each tire consumer may have to give up in terms of higher prices. Thus, the steelworkers union (joined by domestic tire manufacturers) has not only the means but the incentive to lobby economic policymakers and lawmakers. Given that U.S. tire consumers are a large and unorganized group, if they even are a group, it is unlikely they will lobby against higher tire tariffs. In the end, lawmakers tend to listen to those who lobby them, even though the results make for bad economic policy. 440 Chapter 18 | Public Economy KEY TERMS logrolling the situation in which groups of legislators all agree to vote for a package of otherwise unrelated laws that they individually favor median voter theory theory that politicians will try to match policies to what pleases the median voter preferences pork-barrel spending spending that benefits mainly a single political district rational ignorance the theory that rational people will not vote if the costs of becoming informed and voting are too high or because they know their vote will not be decisive in the election special interest groups groups that are small in number relative to the nation, but well organized and thus exert a disproportionate effect on political outcomes voting cycle the situation in which a majority prefers A over B, B over C, and C over A KEY CONCEPTS AND SUMMARY 18.1 Voter Participation and Costs of Elections The theory of rational ignorance says voters will recognize that their single vote is extremely unlikely to influence the outcome of an election. As a consequence, they will choose to remain uninformed about issues and not vote. This theory helps explain why voter turnout is so low in the United States. 18.2 Special Interest Politics Special interest politics arises when a relatively small group, called a special interest group, each of whose members has a large interest in a political outcome, devotes considerable time and energy to lobbying for the group’s preferred choice. Meanwhile, the large majority, each of whose members has only a small interest in this issue, pays no attention. We define pork--barrel spending as legislation whose benefits are concentrated on a single district while the costs are spread widely over the country. Logrolling refers to a situation in which two or more legislators agree to vote for each other’s legislation, which can then encourage pork-barrel spending in many districts. 18.3 Flaws in the Democratic System of Government Majority votes can run into difficulties when more than two choices exist. A voting cycle occurs when, in a situation with at least three choices, choice A is preferred by a majority vote to choice B, choice B is preferred by a majority vote to choice C, and choice C is preferred by a majority vote to choice A. In such a situation, it is impossible to identify what the majority prefers. Another difficulty arises when the vote is so divided that no choice receives a majority. A practical approach to microeconomic policy will need to take a realistic view of the specific strengths and weaknesses of markets as well as government, rather than making the easy but wrong assumption that either the market or government is always beneficial or always harmful. SELF-CHECK QUESTIONS 1. Based on the theory of rational ignorance, what should we expect to happen to voter turnout as the internet makes information easier to obtain? 2. What is the cost of voting in an election? 3. What is the main factor preventing a large community from influencing policy in the same way as a special interest group? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 18 | Public Economy 441 4. Why might legislators vote to impose a tariff on Egyptian cotton, when consumers in their districts would benefit from its availability? 5. True or false: Majority rule can fail to produce a single preferred outcome when there are more than two choices. 6. Anastasia, Emma, and Greta are deciding what to do on a weekend getaway. They each suggest a first, second, and third choice and then vote on the options. Table 18.2 shows their first, second, and third choice preferences . Explain why they will have a hard time reaching a decision. Does the group prefer mountain biking to canoeing? What about canoeing compared to the beach? What about the beach compared to the original choice of mountain biking? Anastasia Emma Greta First Choice Beach Mountain biking Canoeing Second Choice Mountain biking Canoeing Beach Third Choice Canoeing Beach Mountain biking Table 18.2 7. Suppose there is an election for Soft Drink Commissioner. The field consists of one candidate from the Pepsi party and four from the Coca-Cola party. This would seem to indicate a strong preference for Coca-Cola among the voting population, but the Pepsi candidate ends up winning in a landslide. Why does this happen? REVIEW QUESTIONS 8. How does rational ignorance discourage voting? 9. How can a small special interest group win in a situation of majority voting when the benefits it seeks flow only to a small group? 10. How can pork-barrel spending occur in a situation of majority voting when it benefits only a small group? 11. Why do legislators vote for spending projects in districts that are not their own? CRITICAL THINKING QUESTIONS 14. What are some reasons people might find acquiring in information about politics and voting rational, contrast to rational ignorance theory? 15. What are some possible ways to encourage voter participation and overcome rational ignorance? 16. Given that rational ignorance discourages some people from becoming informed about elections, is it necessarily a good idea to encourage greater voter turnout? Why or why not? 12. Why does a voting cycle make it impossible to decide on a majority-approved choice? 13. How does a government agency raise revenue differently from a private company, and how does that affect the way government makes decisions compared to business decisions? 17. When Microsoft was founded, the company devoted very few resources to lobbying activities. After a high-profile antitrust case against it, however, the company began to lobby heavily. Why does it make financial sense for companies to invest in lobbyists? 18. Representatives of competing firms often comprise special interest groups. Why are competitors sometimes willing to cooperate in order to form lobbying associations? 442 Chapter 18 | Public Economy 23. The United States currently uses a voting system called “first past the post” in elections, meaning that the candidate with the most votes wins. What are some of the problems with a “first past the post” system? 24. What are some alternatives to a “first past the post” system that might reduce the problem of voting cycles? 25. AT&T spent some $10 million dollars lobbying Congress to block entry of competitors into the telephone market in 1978. Why do you think it efforts failed? 26. Occupy Wall Street was a national (and later global) organized protest against the gre
ed, bank profits, and financial corruption that led to the 2008–2009 recession. The group popularized slogans like “We are the 99%,” meaning it represented the majority against the wealth of the top 1%. Does the fact that the protests had little to no effect on legislative changes support or contradict the chapter? 19. Special interests do not oppose regulations in all cases. The Marketplace Fairness Act of 2013 would require online merchants to collect sales taxes from their customers in other states. Why might a large online retailer like Amazon.com support such a measure? 20. To ensure safety and efficacy, the Food and Drug Administration regulates the medicines that pharmacies are allowed to sell in the United States. Sometimes this means a company must test a drug for years before it can reach the market. We can easily identify the winners in this system as those who are protected from unsafe drugs that might otherwise harm them. Who are the more anonymous losers who suffer from strict medical regulations? 21. How is it possible to bear a cost without realizing it? What are some examples of policies that affect people in ways of which they may not even be aware? 22. Is pork-barrel spending always a bad thing? Can you think of some examples of pork-barrel projects, perhaps from your own district, that have had positive results? PROBLEMS 27. Say that the government is considering a ban on smoking in restaurants in Tobaccoville. There are 1 million people living there, and each would benefit by $200 from this smoking ban. However, there are two large tobacco companies in Tobaccoville and the ban would cost them $5 million each. What are the proposed policy's total costs and benefits? Do you think it will pass? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 443 19 | International Trade Figure 19.1 Apple or Samsung iPhone? While the iPhone is readily recognized as an Apple product, 26% of the component costs in it come from components made by rival phone-maker, Samsung. In international trade, there are often “conflicts” like this as each country or company focuses on what it does best. (Credit: modification of work by Yutaka Tsutano Creative Commons) Just Whose iPhone Is It? The iPhone is a global product. Apple does not manufacture the iPhone components, nor does it assemble them. The assembly is done by Foxconn Corporation, a Taiwanese company, at its factory in Sengzhen, China. But, Samsung, the electronics firm and competitor to Apple, actually supplies many of the parts that make up an iPhone—representing about 26% of the costs of production. That means, that Samsung is both the biggest supplier and biggest competitor for Apple. Why do these two firms work together to produce the iPhone? To understand the economic logic behind international trade, you have to accept, as these firms do, that trade is about mutually beneficial exchange. Samsung is one of the world’s largest electronics parts suppliers. Apple lets Samsung focus on making the best parts, which allows Apple to concentrate on its strength—designing elegant products that are easy to use. If each company (and by extension each country) focuses on what it does best, there will be gains for all through trade. Introduction to International Trade In this chapter, you will learn about: • Absolute and Comparative Advantage 444 Chapter 19 | International Trade • What Happens When a Country Has an Absolute Advantage in All Goods • Intra-industry Trade between Similar Economies • The Benefits of Reducing Barriers to International Trade We live in a global marketplace. The food on your table might include fresh fruit from Chile, cheese from France, and bottled water from Scotland. Your wireless phone might have been made in Taiwan or Korea. The clothes you wear might be designed in Italy and manufactured in China. The toys you give to a child might have come from India. The car you drive might come from Japan, Germany, or Korea. The gasoline in the tank might be refined from crude oil from Saudi Arabia, Mexico, or Nigeria. As a worker, if your job is involved with farming, machinery, airplanes, cars, scientific instruments, or many other technology-related industries, the odds are good that a hearty proportion of the sales of your employer—and hence the money that pays your salary—comes from export sales. We are all linked by international trade, and the volume of that trade has grown dramatically in the last few decades. The first wave of globalization started in the nineteenth century and lasted up to the beginning of World War I. Over that time, global exports as a share of global GDP rose from less than 1% of GDP in 1820 to 9% of GDP in 1913. As the Nobel Prize-winning economist Paul Krugman of Princeton University wrote in 1995: It is a late-twentieth-century conceit that we invented the global economy just yesterday. In fact, world markets achieved an impressive degree of integration during the second half of the nineteenth century. Indeed, if one wants a specific date for the beginning of a truly global economy, one might well choose 1869, the year in which both the Suez Canal and the Union Pacific railroad were completed. By the eve of the First World War steamships and railroads had created markets for standardized commodities, like wheat and wool, that were fully global in their reach. Even the global flow of information was better than modern observers, focused on electronic technology, tend to realize: the first submarine telegraph cable was laid under the Atlantic in 1858, and by 1900 all of the world’s major economic regions could effectively communicate instantaneously. This first wave of globalization crashed to a halt early in the twentieth century. World War I severed many economic connections. During the Great Depression of the 1930s, many nations misguidedly tried to fix their own economies by reducing foreign trade with others. World War II further hindered international trade. Global flows of goods and financial capital were rebuilt only slowly after World War II. It was not until the early 1980s that global economic forces again became as important, relative to the size of the world economy, as they were before World War I. 19.1 | Absolute and Comparative Advantage By the end of this section, you will be able to: • Define absolute advantage, comparative advantage, and opportunity costs • Explain the gains of trade created when a country specializes The American statesman Benjamin Franklin (1706–1790) once wrote: “No nation was ever ruined by trade.” Many economists would express their attitudes toward international trade in an even more positive manner. The evidence that international trade confers overall benefits on economies is pretty strong. Trade has accompanied economic growth in the United States and around the world. Many of the national economies that have shown the most rapid growth in the last several decades—for example, Japan, South Korea, China, and India—have done so by dramatically orienting their economies toward international trade. There is no modern example of a country that has shut itself off from world trade and yet prospered. To understand the benefits of trade, or why we trade in the first place, we need to understand the concepts of comparative and absolute advantage. In 1817, David Ricardo, a businessman, economist, and member of the British Parliament, wrote a treatise called On the Principles of Political Economy and Taxation. In this treatise, Ricardo argued that specialization and free trade benefit all trading partners, even those that may be relatively inefficient. To see what he meant, we must be able to distinguish between absolute and comparative advantage. A country has an absolute advantage over another country in producing a good if it uses fewer resources to produce that good. Absolute advantage can be the result of a country’s natural endowment. For example, extracting oil in This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 445 Saudi Arabia is pretty much just a matter of “drilling a hole.” Producing oil in other countries can require considerable exploration and costly technologies for drilling and extraction—if they have any oil at all. The United States has some of the richest farmland in the world, making it easier to grow corn and wheat than in many other countries. Guatemala and Colombia have climates especially suited for growing coffee. Chile and Zambia have some of the world’s richest copper mines. As some have argued, “geography is destiny.” Chile will provide copper and Guatemala will produce coffee, and they will trade. When each country has a product others need and it can produce it with fewer resources in one country than in another, then it is easy to imagine all parties benefitting from trade. However, thinking about trade just in terms of geography and absolute advantage is incomplete. Trade really occurs because of comparative advantage. Recall from the chapter Choice in a World of Scarcity that a country has a comparative advantage when it can produce a good at a lower cost in terms of other goods. The question each country or company should be asking when it trades is this: “What do we give up to produce this good?” It should be no surprise that the concept of comparative advantage is based on this idea of opportunity cost from Choice in a World of Scarcity. For example, if Zambia focuses its resources on producing copper, it cannot use its labor, land and financial resources to produce other goods such as corn. As a result, Zambia gives up the opportunity to produce corn. How do we quantify the cost in terms of other goods? Simplify the problem and assume that Zambia just needs labor to produce copper and corn. The companies that produce either copper or corn tell you that it takes two hours to mine a ton of copper and one hour to harvest a b
ushel of corn. This means the opportunity cost of producing a ton of copper is two bushels of corn. The next section develops absolute and comparative advantage in greater detail and relates them to trade. this website (http://openstaxcollege.org/l/WTO) Visit international trade topics. for a list of articles and podcasts pertaining to A Numerical Example of Absolute and Comparative Advantage Consider a hypothetical world with two countries, Saudi Arabia and the United States, and two products, oil and corn. Further assume that consumers in both countries desire both these goods. These goods are homogeneous, meaning that consumers/producers cannot differentiate between corn or oil from either country. There is only one resource available in both countries, labor hours. Saudi Arabia can produce oil with fewer resources, while the United States can produce corn with fewer resources. Table 19.1 illustrates the advantages of the two countries, expressed in terms of how many hours it takes to produce one unit of each good. Country Oil (hours per barrel) Corn (hours per bushel) Saudi Arabia United States 1 2 4 1 Table 19.1 How Many Hours It Takes to Produce Oil and Corn In Table 19.1, Saudi Arabia has an absolute advantage in producing oil because it only takes an hour to produce a barrel of oil compared to two hours in the United States. The United States has an absolute advantage in producing 446 corn. Chapter 19 | International Trade To simplify, let’s say that Saudi Arabia and the United States each have 100 worker hours (see Table 19.2). Figure 19.2 illustrates what each country is capable of producing on its own using a production possibility frontier (PPF) graph. Recall from Choice in a World of Scarcity that the production possibilities frontier shows the maximum amount that each country can produce given its limited resources, in this case workers, and its level of technology. Country Oil Production using 100 worker hours (barrels) Corn Production using 100 worker hours (bushels) Saudi Arabia United States 100 50 or 25 or 100 Table 19.2 Production Possibilities before Trade Figure 19.2 Production Possibilities Frontiers (a) Saudi Arabia can produce 100 barrels of oil at maximum and zero corn (point A), or 25 bushels of corn and zero oil (point B). It can also produce other combinations of oil and corn if it wants to consume both goods, such as at point C. Here it chooses to produce/consume 60 barrels of oil, leaving 40 work hours that to allocate to produce 10 bushels of corn, using the data in Table 19.1. (b) If the United States produces only oil, it can produce, at maximum, 50 barrels and zero corn (point A'), or at the other extreme, it can produce a maximum of 100 bushels of corn and no oil (point B'). Other combinations of both oil and corn are possible, such as point C'. All points above the frontiers are impossible to produce given the current level of resources and technology. Arguably Saudi and U.S. consumers desire both oil and corn to live. Let’s say that before trade occurs, both countries produce and consume at point C or C'. Thus, before trade, the Saudi Arabian economy will devote 60 worker hours to produce oil, as Table 19.3 shows. Given the information in Table 19.1, this choice implies that it produces/ consumes 60 barrels of oil. With the remaining 40 worker hours, since it needs four hours to produce a bushel of corn, it can produce only 10 bushels. To be at point C', the U.S. economy devotes 40 worker hours to produce 20 barrels of oil and it can allocate the remaining worker hours to produce 60 bushels of corn. Country Oil Production (barrels) Corn Production (bushels) Saudi Arabia (C) 60 10 Table 19.3 Production before Trade This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 447 Country Oil Production (barrels) Corn Production (bushels) United States (C') Total World Production 20 80 Table 19.3 Production before Trade 60 70 The slope of the production possibility frontier illustrates the opportunity cost of producing oil in terms of corn. Using all its resources, the United States can produce 50 barrels of oil or 100 bushels of corn; therefore, the opportunity cost of one barrel of oil is two bushels of corn—or the slope is 1/2. Thus, in the U.S. production possibility frontier graph, every increase in oil production of one barrel implies a decrease of two bushels of corn. Saudi Arabia can produce 100 barrels of oil or 25 bushels of corn. The opportunity cost of producing one barrel of oil is the loss of 1/4 of a bushel of corn that Saudi workers could otherwise have produced. In terms of corn, notice that Saudi Arabia gives up the least to produce a barrel of oil. Table 19.4 summarizes these calculations. Country Opportunity cost of one unit — Oil (in terms of corn) Opportunity cost of one unit — Corn (in terms of oil) Saudi Arabia United States ¼ 2 4 ½ Table 19.4 Opportunity Cost and Comparative Advantage Again recall that we defined comparative advantage as the opportunity cost of producing goods. Since Saudi Arabia gives up the least to produce a barrel of oil, ( 1 < 2 in Table 19.4) it has a comparative advantage in oil production. 4 The United States gives up the least to produce a bushel of corn, so it has a comparative advantage in corn production. In this example, there is symmetry between absolute and comparative advantage. Saudi Arabia needs fewer worker hours to produce oil (absolute advantage, see Table 19.1), and also gives up the least in terms of other goods to produce oil (comparative advantage, see Table 19.4). Such symmetry is not always the case, as we will show after we have discussed gains from trade fully, but first, read the following Clear It Up feature to make sure you understand why the PPF line in the graphs is straight. Can a production possibility frontier be straight? When you first met the production possibility frontier (PPF) in the chapter on Choice in a World of Scarcity we drew it with an outward-bending shape. This shape illustrated that as we transferred inputs from producing one good to another—like from education to health services—there were increasing opportunity costs. In the examples in this chapter, we draw the PPFs as straight lines, which means that opportunity costs are constant. When we transfer a marginal unit of labor away from growing corn and toward producing oil, the decline in the quantity of corn and the increase in the quantity of oil is always the same. In reality this is possible only if the contribution of additional workers to output did not change as the scale of production changed. The linear production possibilities frontier is a less realistic model, but a straight line simplifies calculations. It also illustrates economic themes like absolute and comparative advantage just as clearly. 448 Chapter 19 | International Trade Gains from Trade Consider the trading positions of the United States and Saudi Arabia after they have specialized and traded. Before trade, Saudi Arabia produces/consumes 60 barrels of oil and 10 bushels of corn. The United States produces/ consumes 20 barrels of oil and 60 bushels of corn. Given their current production levels, if the United States can trade an amount of corn fewer than 60 bushels and receives in exchange an amount of oil greater than 20 barrels, it will gain from trade. With trade, the United States can consume more of both goods than it did without specialization and trade. (Recall that the chapter Welcome to Economics! defined specialization as it applies to workers and firms. Economists also use specialization to describe the occurrence when a country shifts resources to focus on producing a good that offers comparative advantage.) Similarly, if Saudi Arabia can trade an amount of oil less than 60 barrels and receive in exchange an amount of corn greater than 10 bushels, it will have more of both goods than it did before specialization and trade. Table 19.5 illustrates the range of trades that would benefit both sides. The U.S. economy, after specialization, will benefit if it: The Saudi Arabian economy, after specialization, will benefit if it: Exports no more than 60 bushels of corn Imports at least 10 bushels of corn Imports at least 20 barrels of oil Exports less than 60 barrels of oil Table 19.5 The Range of Trades That Benefit Both the United States and Saudi Arabia The underlying reason why trade benefits both sides is rooted in the concept of opportunity cost, as the following Clear It Up feature explains. If Saudi Arabia wishes to expand domestic production of corn in a world without international trade, then based on its opportunity costs it must give up four barrels of oil for every one additional bushel of corn. If Saudi Arabia could find a way to give up less than four barrels of oil for an additional bushel of corn (or equivalently, to receive more than one bushel of corn for four barrels of oil), it would be better off. What are the opportunity costs and gains from trade? The range of trades that will benefit each country is based on the country’s opportunity cost of producing each good. The United States can produce 100 bushels of corn or 50 barrels of oil. For the United States, the opportunity cost of producing one barrel of oil is two bushels of corn. If we divide the numbers above by 50, we get the same ratio: one barrel of oil is equivalent to two bushels of corn, or (100/50 = 2 and 50/50 = 1). In a trade with Saudi Arabia, if the United States is going to give up 100 bushels of corn in exports, it must import at least 50 barrels of oil to be just as well off. Clearly, to gain from trade it needs to be able to gain more than a half barrel of oil for its bushel of corn—or why trade at all? Recall that David Ricardo argued that if each country specializes in its comparative advantage, it will benefit from trade, and total global output will increase. How can we show gains from trade as a result of co
mparative advantage and specialization? Table 19.6 shows the output assuming that each country specializes in its comparative advantage and produces no other good. This is 100% specialization. Specialization leads to an increase in total world production. (Compare the total world production in Table 19.3 to that in Table 19.6.) Country Quantity produced after 100% specialization — Oil (barrels) Quantity produced after 100% specialization — Corn (bushels) Saudi Arabia 100 0 Table 19.6 How Specialization Expands Output This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 449 Country Quantity produced after 100% specialization — Oil (barrels) Quantity produced after 100% specialization — Corn (bushels) United States 0 Total World Production 100 Table 19.6 How Specialization Expands Output 100 100 What if we did not have complete specialization, as in Table 19.6? Would there still be gains from trade? Consider another example, such as when the United States and Saudi Arabia start at C and C', respectively, as Figure 19.2 shows. Consider what occurs when trade is allowed and the United States exports 20 bushels of corn to Saudi Arabia in exchange for 20 barrels of oil. Figure 19.3 Production Possibilities Frontier in Saudi Arabia Trade allows a country to go beyond its domestic production-possibility frontier Starting at point C, which shows Saudi oil production of 60, reduce Saudi oil domestic oil consumption by 20, since 20 is exported to the United States and exchanged for 20 units of corn. This enables Saudi to reach point D, where oil consumption is now 40 barrels and corn consumption has increased to 30 (see Figure 19.3). Notice that even without 100% specialization, if the “trading price,” in this case 20 barrels of oil for 20 bushels of corn, is greater than the country’s opportunity cost, the Saudis will gain from trade. Since the post-trade consumption point D is beyond its production possibility frontier, Saudi Arabia has gained from trade. Visit this website (http://wits.worldbank.org/trade-visualization.aspx) for trade-related data visualizations. 450 Chapter 19 | International Trade 19.2 | What Happens When a Country Has an Absolute Advantage in All Goods By the end of this section, you will be able to: • Show the relationship between production costs and comparative advantage • • Identify situations of mutually beneficial trade Identify trade benefits by considering opportunity costs What happens to the possibilities for trade if one country has an absolute advantage in everything? This is typical for high-income countries that often have well-educated workers, technologically advanced equipment, and the most up-to-date production processes. These high-income countries can produce all products with fewer resources than a low-income country. If the high-income country is more productive across the board, will there still be gains from trade? Good students of Ricardo understand that trade is about mutually beneficial exchange. Even when one country has an absolute advantage in all products, trade can still benefit both sides. This is because gains from trade come from specializing in one’s comparative advantage. Production Possibilities and Comparative Advantage Consider the example of trade between the United States and Mexico described in Table 19.7. In this example, it takes four U.S. workers to produce 1,000 pairs of shoes, but it takes five Mexican workers to do so. It takes one U.S. worker to produce 1,000 refrigerators, but it takes four Mexican workers to do so. The United States has an absolute advantage in productivity with regard to both shoes and refrigerators; that is, it takes fewer workers in the United States than in Mexico to produce both a given number of shoes and a given number of refrigerators. Number of Workers needed to produce 1,000 units — Shoes Number of Workers needed to produce 1,000 units — Refrigerators Country United States 4 workers Mexico 5 workers 1 worker 4 workers Table 19.7 Resources Needed to Produce Shoes and Refrigerators Absolute advantage simply compares the productivity of a worker between countries. It answers the question, “How many inputs do I need to produce shoes in Mexico?” Comparative advantage asks this same question slightly differently. Instead of comparing how many workers it takes to produce a good, it asks, “How much am I giving up to produce this good in this country?” Another way of looking at this is that comparative advantage identifies the good for which the producer’s absolute advantage is relatively larger, or where the producer’s absolute productivity disadvantage is relatively smaller. The United States can produce 1,000 shoes with four-fifths as many workers as Mexico (four versus five), but it can produce 1,000 refrigerators with only one-quarter as many workers (one versus four). So, the comparative advantage of the United States, where its absolute productivity advantage is relatively This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 451 greatest, lies with refrigerators, and Mexico’s comparative advantage, where its absolute productivity disadvantage is least, is in the production of shoes. Mutually Beneficial Trade with Comparative Advantage When nations increase production in their area of comparative advantage and trade with each other, both countries can benefit. Again, the production possibility frontier is a useful tool to visualize this benefit. Consider a situation where the United States and Mexico each have 40 workers. For example, as Table 19.8 shows, if the United States divides its labor so that 40 workers are making shoes, then, since it takes four workers in the United States to make 1,000 shoes, a total of 10,000 shoes will be produced. (If four workers can make 1,000 shoes, then 40 workers will make 10,000 shoes). If the 40 workers in the United States are making refrigerators, and each worker can produce 1,000 refrigerators, then a total of 40,000 refrigerators will be produced. Country Shoe Production — using 40 workers Refrigerator Production — using 40 workers United States 10,000 shoes or 40,000 refrigerators Mexico 8,000 shoes or 10,000 refrigerators Table 19.8 Production Possibilities before Trade with Complete Specialization As always, the slope of the production possibility frontier for each country is the opportunity cost of one refrigerator in terms of foregone shoe production–when labor is transferred from producing the latter to producing the former (see Figure 19.4). Figure 19.4 Production Possibility Frontiers (a) With 40 workers, the United States can produce either 10,000 shoes and zero refrigerators or 40,000 refrigerators and zero shoes. (b) With 40 workers, Mexico can produce a maximum of 8,000 shoes and zero refrigerators, or 10,000 refrigerators and zero shoes. All other points on the production possibility line are possible combinations of the two goods that can be produced given current resources. Point A on both graphs is where the countries start producing and consuming before trade. Point B is where they end up after trade. Let’s say that, in the situation before trade, each nation prefers to produce a combination of shoes and refrigerators that is shown at point A. Table 19.9 shows the output of each good for each country and the total output for the two countries. 452 Chapter 19 | International Trade Country Current Shoe Production Current Refrigerator Production United States Mexico Total 5,000 4,000 9,000 20,000 5,000 25,000 Table 19.9 Total Production at Point A before Trade Continuing with this scenario, suppose that each country transfers some amount of labor toward its area of comparative advantage. For example, the United States transfers six workers away from shoes and toward producing refrigerators. As a result, U.S. production of shoes decreases by 1,500 units (6/4 × 1,000), while its production of refrigerators increases by 6,000 (that is, 6/1 × 1,000). Mexico also moves production toward its area of comparative advantage, transferring 10 workers away from refrigerators and toward production of shoes. As a result, production of refrigerators in Mexico falls by 2,500 (10/4 × 1,000), but production of shoes increases by 2,000 pairs (10/5 × 1,000). Notice that when both countries shift production toward each of their comparative advantages (what they are relatively better at), their combined production of both goods rises, as shown in Table 19.10. The reduction of shoe production by 1,500 pairs in the United States is more than offset by the gain of 2,000 pairs of shoes in Mexico, while the reduction of 2,500 refrigerators in Mexico is more than offset by the additional 6,000 refrigerators produced in the United States. Country Shoe Production Refrigerator Production United States Mexico Total 3,500 6,000 9,500 26,000 2,500 28,500 Table 19.10 Shifting Production Toward Comparative Advantage Raises Total Output This numerical example illustrates the remarkable insight of comparative advantage: even when one country has an absolute advantage in all goods and another country has an absolute disadvantage in all goods, both countries can still benefit from trade. Even though the United States has an absolute advantage in producing both refrigerators and shoes, it makes economic sense for it to specialize in the good for which it has a comparative advantage. The United States will export refrigerators and in return import shoes. How Opportunity Cost Sets the Boundaries of Trade This example shows that both parties can benefit from specializing in their comparative advantages and trading. By using the opportunity costs in this example, it is possible to identify the range of possible trades that would benefit each country. Mexico started out, before specialization and trade, producing 4,000 pairs of shoes and 5,000 refrigerators (see Figure 19.4 and Table 19.9). The
n, in the numerical example given, Mexico shifted production toward its comparative advantage and produced 6,000 pairs of shoes but only 2,500 refrigerators. Thus, if Mexico can export no more than 2,000 pairs of shoes (giving up 2,000 pairs of shoes) in exchange for imports of at least 2,500 refrigerators (a gain of 2,500 refrigerators), it will be able to consume more of both goods than before trade. Mexico will be unambiguously better off. Conversely, the United States started off, before specialization and trade, producing 5,000 pairs of shoes and 20,000 refrigerators. In the example, it then shifted production toward its comparative advantage, producing only 3,500 shoes but 26,000 refrigerators. If the United States can export no more than 6,000 refrigerators in exchange for imports of at least 1,500 pairs of shoes, it will be able to consume more of both goods and will be unambiguously better off. The range of trades that can benefit both nations is shown in Table 19.11. For example, a trade where the U.S. exports 4,000 refrigerators to Mexico in exchange for 1,800 pairs of shoes would benefit both sides, in the sense that This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 453 both countries would be able to consume more of both goods than in a world without trade. The U.S. economy, after specialization, will benefit if it: The Mexican economy, after specialization, will benefit if it: Exports fewer than 6,000 refrigerators Imports at least 2,500 refrigerators Imports at least 1,500 pairs of shoes Exports no more than 2,000 pairs of shoes Table 19.11 The Range of Trades That Benefit Both the United States and Mexico Trade allows each country to take advantage of lower opportunity costs in the other country. If Mexico wants to produce more refrigerators without trade, it must face its domestic opportunity costs and reduce shoe production. If Mexico, instead, produces more shoes and then trades for refrigerators made in the United States, where the opportunity cost of producing refrigerators is lower, Mexico can in effect take advantage of the lower opportunity cost of refrigerators in the United States. Conversely, when the United States specializes in its comparative advantage of refrigerator production and trades for shoes produced in Mexico, international trade allows the United States to take advantage of the lower opportunity cost of shoe production in Mexico. The theory of comparative advantage explains why countries trade: they have different comparative advantages. It shows that the gains from international trade result from pursuing comparative advantage and producing at a lower opportunity cost. The following Work It Out feature shows how to calculate absolute and comparative advantage and the way to apply them to a country’s production. Calculating Absolute and Comparative Advantage In Canada a worker can produce 20 barrels of oil or 40 tons of lumber. In Venezuela, a worker can produce 60 barrels of oil or 30 tons of lumber. Country Oil (barrels) Lumber (tons) Canada Venezuela Table 19.12 20 60 or or 40 30 a. Who has the absolute advantage in the production of oil or lumber? How can you tell? b. Which country has a comparative advantage in the production of oil? c. Which country has a comparative advantage in producing lumber? d. e. In this example, is absolute advantage the same as comparative advantage, or not? In what product should Canada specialize? In what product should Venezuela specialize? Step 1. Make a table like Table 19.12. Step 2. To calculate absolute advantage, look at the larger of the numbers for each product. One worker in Canada can produce more lumber (40 tons versus 30 tons), so Canada has the absolute advantage in lumber. One worker in Venezuela can produce 60 barrels of oil compared to a worker in Canada who can produce only 20. Step 3. To calculate comparative advantage, find the opportunity cost of producing one barrel of oil in both countries. The country with the lowest opportunity cost has the comparative advantage. With the same labor 454 Chapter 19 | International Trade time, Canada can produce either 20 barrels of oil or 40 tons of lumber. So in effect, 20 barrels of oil is equivalent to 40 tons of lumber: 20 oil = 40 lumber. Divide both sides of the equation by 20 to calculate the opportunity cost of one barrel of oil in Canada. 20/20 oil = 40/20 lumber. 1 oil = 2 lumber. To produce one additional barrel of oil in Canada has an opportunity cost of 2 lumber. Calculate the same way for Venezuela: 60 oil = 30 lumber. Divide both sides of the equation by 60. One oil in Venezuela has an opportunity cost of 1/ 2 lumber. Because 1/2 lumber < 2 lumber, Venezuela has the comparative advantage in producing oil. Step 4. Calculate the opportunity cost of one lumber by reversing the numbers, with lumber on the left side of the equation. In Canada, 40 lumber is equivalent in labor time to 20 barrels of oil: 40 lumber = 20 oil. Divide each side of the equation by 40. The opportunity cost of one lumber is 1/2 oil. In Venezuela, the equivalent labor time will produce 30 lumber or 60 oil: 30 lumber = 60 oil. Divide each side by 30. One lumber has an opportunity cost of two oil. Canada has the lower opportunity cost in producing lumber. Step 5. In this example, absolute advantage is the same as comparative advantage. Canada has the absolute and comparative advantage in lumber; Venezuela has the absolute and comparative advantage in oil. Step 6. Canada should specialize in the commodity for which it has a relative lower opportunity cost, which is lumber, and Venezuela should specialize in oil. Canada will be exporting lumber and importing oil, and Venezuela will be exporting oil and importing lumber. Comparative Advantage Goes Camping To build an intuitive understanding of how comparative advantage can benefit all parties, set aside examples that involve national economies for a moment and consider the situation of a group of friends who decide to go camping together. The six friends have a wide range of skills and experiences, but one person in particular, Jethro, has done lots of camping before and is also a great athlete. Jethro has an absolute advantage in all aspects of camping: he is faster at carrying a backpack, gathering firewood, paddling a canoe, setting up tents, making a meal, and washing up. So here is the question: Because Jethro has an absolute productivity advantage in everything, should he do all the work? Of course not! Even if Jethro is willing to work like a mule while everyone else sits around, he, like all mortals, only has 24 hours in a day. If everyone sits around and waits for Jethro to do everything, not only will Jethro be an unhappy camper, but there will not be much output for his group of six friends to consume. The theory of comparative advantage suggests that everyone will benefit if they figure out their areas of comparative advantage—that is, the area of camping where their productivity disadvantage is least, compared to Jethro. For example, it may be that Jethro is 80% faster at building fires and cooking meals than anyone else, but only 20% faster at gathering firewood and 10% faster at setting up tents. In that case, Jethro should focus on building fires and making meals, and others should attend to the other tasks, each according to where their productivity disadvantage is smallest. If the campers coordinate their efforts according to comparative advantage, they can all gain. 19.3 | Intra-industry Trade between Similar Economies By the end of this section, you will be able to: Identify at least two advantages of intra-industry trading • • Explain the relationship between economies of scale and intra-industry trade Absolute and comparative advantages explain a great deal about global trading patterns. For example, they help to explain the patterns that we noted at the start of this chapter, like why you may be eating fresh fruit from Chile or Mexico, or why lower productivity regions like Africa and Latin America are able to sell a substantial proportion of their exports to higher productivity regions like the European Union and North America. Comparative advantage, however, at least at first glance, does not seem especially well-suited to explain other common patterns of international trade. The Prevalence of Intra-industry Trade between Similar Economies The theory of comparative advantage suggests that trade should happen between economies with large differences in opportunity costs of production. Roughly half of all world trade involves shipping goods between the fairly similar This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 455 high-income economies of the United States, Canada, the European Union, Japan, Mexico, and China (see Table 19.13). Country U.S. Exports Go to ... U.S. Imports Come from ... European Union Canada Japan Mexico China 19.0% 22.0% 4.0% 15.0% 8.0% 21.0% 14.0% 6.0% 13.0% 20.0% Table 19.13 Where U.S. Exports Go and U.S. Imports Originate (2015) https://www.census.gov/foreign-trade/Press-Release/current_press_release/ft900.pdf) (Source: Moreover, the theory of comparative advantage suggests that each economy should specialize to a degree in certain products, and then exchange those products. A high proportion of trade, however, is intra-industry trade—that is, trade of goods within the same industry from one country to another. For example, the United States produces and exports autos and imports autos. Table 19.14 shows some of the largest categories of U.S. exports and imports. In all of these categories, the United States is both a substantial exporter and a substantial importer of goods from the same industry. In 2014, according to the Bureau of Economic Analysis, the United States exported $146 billion worth of autos, and imported $327 billion worth of autos. About 60% of U.S. trade and 60% o
f European trade is intra-industry trade. Some U.S. Exports Quantity of Exports ($ billions) Quantity of Imports ($ billions) Autos Food and beverages Capital goods Consumer goods Industrial supplies Other transportation $146 $144 $550 $199 $507 $45 $327 $126 $551 $558 $665 $55 Table 19.14 Some Intra-Industry U.S. Exports and Imports in 2014 (Source: http://www.bea.gov/ newsreleases/international/trade/tradnewsrelease.htm) Why do similar high-income economies engage in intra-industry trade? What can be the economic benefit of having workers of fairly similar skills making cars, computers, machinery and other products which are then shipped across the oceans to and from the United States, the European Union, and Japan? There are two reasons: (1) The division of labor leads to learning, innovation, and unique skills; and (2) economies of scale. Gains from Specialization and Learning Consider the category of machinery, where the U.S. economy has considerable intra-industry trade. Machinery comes in many varieties, so the United States may be exporting machinery for manufacturing with wood, but importing machinery for photographic processing. The underlying reason why a country like the United States, Japan, or Germany produces one kind of machinery rather than another is usually not related to U.S., German, or Japanese firms and workers having generally higher or lower skills. It is just that, in working on very specific and particular products, firms in certain countries develop unique and different skills. 456 Chapter 19 | International Trade Specialization in the world economy can be very finely split. In fact, recent years have seen a trend in international trade, which economists call splitting up the value chain. The value chain describes how a good is produced in stages. As indicated in the beginning of the chapter, producing the iPhone involves designing and engineering the phone in the United States, supplying parts from Korea, assembling the parts in China, and advertising and marketing in the United States. Thanks in large part to improvements in communication technology, sharing information, and transportation, it has become easier to split up the value chain. Instead of production in a single large factory, different firms operating in various places and even different countries can divide the value chain. Because firms split up the value chain, international trade often does not involve nations trading whole finished products like automobiles or refrigerators. Instead, it involves shipping more specialized goods like, say, automobile dashboards or the shelving that fits inside refrigerators. Intra-industry trade between similar countries produces economic gains because it allows workers and firms to learn and innovate on particular products—and often to focus on very particular parts of the value chain. Visit this website (http://openstaxcollege.org/l/iphoneassembly) for some interesting information about the assembly of the iPhone. Economies of Scale, Competition, Variety A second broad reason that intra-industry trade between similar nations produces economic gains involves economies of scale. The concept of economies of scale, as we introduced in Production, Costs and Industry Structure, means that as the scale of output goes up, average costs of production decline—at least up to a point. Figure 19.5 illustrates economies of scale for a plant producing toaster ovens. The horizontal axis of the figure shows the quantity of production by a certain firm or at a certain manufacturing plant. The vertical axis measures the average cost of production. Production plant S produces a small level of output at 30 units and has an average cost of production of $30 per toaster oven. Plant M produces at a medium level of output at 50 units, and has an average cost of production of $20 per toaster oven. Plant L produces 150 units of output with an average cost of production of only $10 per toaster oven. Although plant V can produce 200 units of output, it still has the same unit cost as Plant L. In this example, a small or medium plant, like S or M, will not be able to compete in the market with a large or a very large plant like L or V, because the firm that operates L or V will be able to produce and sell its output at a lower price. In this example, economies of scale operate up to point L, but beyond point L to V, the additional scale of production does not continue to reduce average costs of production. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 457 Figure 19.5 Economies of Scale Production Plant S, has an average cost of production of $30 per toaster oven. Production plant M has an average cost of production of $20 per toaster oven. Production plant L has an average cost of production of only $10 per toaster oven. Production plant V still has an average cost of production of $10 per toaster oven. Thus, production plant M can produce toaster ovens more cheaply than plant S because of economies of scale, and plants L or V can produce more cheaply than S or M because of economies of scale. However, the economies of scale end at an output level of 150. Plant V, despite being larger, cannot produce more cheaply on average than plant L. The concept of economies of scale becomes especially relevant to international trade when it enables one or two large producers to supply the entire country. For example, a single large automobile factory could probably supply all the cars consumers purchase in a smaller economy like the United Kingdom or Belgium in a given year. However, if a country has only one or two large factories producing cars, and no international trade, then consumers in that country would have relatively little choice between kinds of cars (other than the color of the paint and other nonessential options). Little or no competition will exist between different car manufacturers. International trade provides a way to combine the lower average production costs that come from economies of scale and still have competition and variety for consumers. Large automobile factories in different countries can make and sell their products around the world. If General Motors, Ford, and Chrysler were the only players in the U.S. automobile market, the level of competition and consumer choice would be considerably lower than when U.S. carmakers must face competition from Toyota, Honda, Suzuki, Fiat, Mitsubishi, Nissan, Volkswagen, Kia, Hyundai, BMW, Subaru, and others. Greater competition brings with it innovation and responsiveness to what consumers want. America’s car producers make far better cars now than they did several decades ago, and much of the reason is competitive pressure, especially from East Asian and European carmakers. Dynamic Comparative Advantage The sources of gains from intra-industry trade between similar economies—namely, the learning that comes from a high degree of specialization and splitting up the value chain and from economies of scale—do not contradict the earlier theory of comparative advantage. Instead, they help to broaden the concept. In intra-industry trade, climate or geography do not determine the level of worker productivity. Even the general level of education or skill does not determine it. Instead, how firms engage in specific learning about specialized products, including taking advantage of economies of scale determine the level of worker productivity. In this vision, comparative advantage can be dynamic—that is, it can evolve and change over time as one develops new skills and as manufacturers split the value chain in new ways. This line of thinking also suggests that countries are not destined to have the same comparative advantage forever, but must instead be flexible in response to ongoing changes in comparative advantage. 458 Chapter 19 | International Trade 19.4 | The Benefits of Reducing Barriers to International Trade By the end of this section, you will be able to: • Explain tarrifs as barriers to trade • Identify at least two benefits of reducing barriers to international trade Tariffs are taxes that governments place on imported goods for a variety of reasons. Some of these reasons include protecting sensitive industries, for humanitarian reasons, and protecting against dumping. Traditionally, tariffs were used simply as a political tool to protect certain vested economic, social, and cultural interests. The World Trade Organization (WTO) is committed to lowering barriers to trade. The world’s nations meet through the WTO to negotiate how they can reduce barriers to trade, such as tariffs. WTO negotiations happen in “rounds,” where all countries negotiate one agreement to encourage trade, take a year or two off, and then start negotiating a new agreement. The current round of negotiations is called the Doha Round because it was officially launched in Doha, the capital city of Qatar, in November 2001. In 2009, economists from the World Bank summarized recent research and found that the Doha round of negotiations would increase the size of the world economy by $160 billion to $385 billion per year, depending on the precise deal that ended up being negotiated. In the context of a global economy that currently produces more than $30 trillion of goods and services each year, this amount is not huge: it is an increase of 1% or less. But before dismissing the gains from trade too quickly, it is worth remembering two points. • First, a gain of a few hundred billion dollars is enough money to deserve attention! Moreover, remember that this increase is not a one-time event; it would persist each year into the future. • Second, the estimate of gains may be on the low side because some of the gains from trade are not measured especially well in economic statistics. For example, it is difficult to measure the potential advantages to consumers of having a variety of products available and a greater degree of c
ompetition among producers. Perhaps the most important unmeasured factor is that trade between countries, especially when firms are splitting up the value chain of production, often involves a transfer of knowledge that can involve skills in production, technology, management, finance, and law. Low-income countries benefit more from trade than high-income countries do. In some ways, the giant U.S. economy has less need for international trade, because it can already take advantage of internal trade within its economy. However, many smaller national economies around the world, in regions like Latin America, Africa, the Middle East, and Asia, have much more limited possibilities for trade inside their countries or their immediate regions. Without international trade, they may have little ability to benefit from comparative advantage, slicing up the value chain, or economies of scale. Moreover, smaller economies often have fewer competitive firms making goods within their economy, and thus firms have less pressure from other firms to provide the goods and prices that consumers want. The economic gains from expanding international trade are measured in hundreds of billions of dollars, and the gains from international trade as a whole probably reach well into the trillions of dollars. The potential for gains from trade may be especially high among the smaller and lower-income countries of the world. Visit this website (http://openstaxcollege.org/l/tradebenefits) for a list of some benefits of trade. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 459 From Interpersonal to International Trade Most people find it easy to believe that they, personally, would not be better off if they tried to grow and process all of their own food, to make all of their own clothes, to build their own cars and houses from scratch, and so on. Instead, we all benefit from living in economies where people and firms can specialize and trade with each other. The benefits of trade do not stop at national boundaries, either. Earlier we explained that the division of labor could increase output for three reasons: (1) workers with different characteristics can specialize in the types of production where they have a comparative advantage; (2) firms and workers who specialize in a certain product become more productive with learning and practice; and (3) economies of scale. These three reasons apply from the individual and community level right up to the international level. If it makes sense to you that interpersonal, intercommunity, and interstate trade offer economic gains, it should make sense that international trade offers gains, too. International trade currently involves about $20 trillion worth of goods and services moving around the globe. Any economic force of that size, even if it confers overall benefits, is certain to cause disruption and controversy. This chapter has only made the case that trade brings economic benefits. Other chapters discuss, in detail, the public policy arguments over whether to restrict international trade. It’s Apple’s (Global) iPhone Apple Corporation uses a global platform to produce the iPhone. Now that you understand the concept of comparative advantage, you can see why the engineering and design of the iPhone is done in the United States. The United States has built up a comparative advantage over the years in designing and marketing products, and sacrifices fewer resources to design high-tech devices relative to other countries. China has a comparative advantage in assembling the phone due to its large skilled labor force. Korea has a comparative advantage in producing components. Korea focuses its production by increasing its scale, learning better ways to produce screens and computer chips, and uses innovation to lower average costs of production. Apple, in turn, benefits because it can purchase these quality products at lower prices. Put the global assembly line together and you have the device with which we are all so familiar. 460 Chapter 19 | International Trade KEY TERMS absolute advantage when one country can use fewer resources to produce a good compared to another country; when a country is more productive compared to another country gain from trade a country that can consume more than it can produce as a result of specialization and trade intra-industry trade international trade of goods within the same industry splitting up the value chain many of the different stages of producing a good happen in different geographic locations tariffs taxes that governments place on imported goods value chain how a good is produced in stages KEY CONCEPTS AND SUMMARY 19.1 Absolute and Comparative Advantage A country has an absolute advantage in those products in which it has a productivity edge over other countries; it takes fewer resources to produce a product. A country has a comparative advantage when it can produce a good at a lower cost in terms of other goods. Countries that specialize based on comparative advantage gain from trade. 19.2 What Happens When a Country Has an Absolute Advantage in All Goods Even when a country has high levels of productivity in all goods, it can still benefit from trade. Gains from trade come about as a result of comparative advantage. By specializing in a good that it gives up the least to produce, a country can produce more and offer that additional output for sale. If other countries specialize in the area of their comparative advantage as well and trade, the highly productive country is able to benefit from a lower opportunity cost of production in other countries. 19.3 Intra-industry Trade between Similar Economies A large share of global trade happens between high-income economies that are quite similar in having well-educated workers and advanced technology. These countries practice intra-industry trade, in which they import and export the same products at the same time, like cars, machinery, and computers. In the case of intra-industry trade between economies with similar income levels, the gains from trade come from specialized learning in very particular tasks and from economies of scale. Splitting up the value chain means that several stages of producing a good take place in different countries around the world. 19.4 The Benefits of Reducing Barriers to International Trade Tariffs are placed on imported goods as a way of protecting sensitive industries, for humanitarian reasons, and for protection against dumping. Traditionally, tariffs were used as a political tool to protect certain vested economic, social, and cultural interests. The WTO has been, and continues to be, a way for nations to meet and negotiate in order to reduce barriers to trade. The gains of international trade are very large, especially for smaller countries, but are beneficial to all. SELF-CHECK QUESTIONS 1. True or False: The source of comparative advantage must be natural elements like climate and mineral deposits. Explain. 2. Brazil can produce 100 pounds of beef or 10 autos. In contrast the United States can produce 40 pounds of beef or 30 autos. Which country has the absolute advantage in beef? Which country has the absolute advantage in producing autos? What is the opportunity cost of producing one pound of beef in Brazil? What is the opportunity cost of producing one pound of beef in the United States? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 461 3. In France it takes one worker to produce one sweater, and one worker to produce one bottle of wine. In Tunisia it takes two workers to produce one sweater, and three workers to produce one bottle of wine. Who has the absolute advantage in production of sweaters? Who has the absolute advantage in the production of wine? How can you tell? In Germany it takes three workers to make one television and four workers to make one video camera. In Poland 4. it takes six workers to make one television and 12 workers to make one video camera. a. Who has the absolute advantage in the production of televisions? Who has the absolute advantage in the production of video cameras? How can you tell? b. Calculate the opportunity cost of producing one additional television set in Germany and in Poland. (Your calculation may involve fractions, which is fine.) Which country has a comparative advantage in the production of televisions? c. Calculate the opportunity cost of producing one video camera in Germany and in Poland. Which country has a comparative advantage in the production of video cameras? In this example, is absolute advantage the same as comparative advantage, or not? In what product should Germany specialize? In what product should Poland specialize? d. e. 5. How can there be any economic gains for a country from both importing and exporting the same good, like cars? 6. Table 19.15 shows how the average costs of production for semiconductors (the “chips” in computer memories) change as the quantity of semiconductors built at that factory increases. a. Based on these data, sketch a curve with quantity produced on the horizontal axis and average cost of b. production on the vertical axis. How does the curve illustrate economies of scale? If the equilibrium quantity of semiconductors demanded is 90,000, can this economy take full advantage of economies of scale? What about if quantity demanded is 70,000 semiconductors? 50,000 semiconductors? 30,000 semiconductors? c. Explain how international trade could make it possible for even a small economy to take full advantage of economies of scale, while also benefiting from competition and the variety offered by several producers. Quantity of Semiconductors Average Total Cost 10,000 20,000 30,000 40,000 100,000 Table 19.15 $8 each $5 each $3 each $2 each $2 each If the removal of trade barriers is so beneficial to international economic growth, why would a nation continue t
o 7. restrict trade on some imported or exported products? REVIEW QUESTIONS 8. What is absolute advantage? What is comparative advantage? 9. Under what conditions does comparative advantage lead to gains from trade? 10. What factors does Paul Krugman identify that supported expanding international trade in the 1800s? 11. Is it possible to have a comparative advantage in the production of a good but not to have an absolute advantage? Explain. 12. How does comparative advantage lead to gains from trade? 13. What is intra-industry trade? 462 Chapter 19 | International Trade 14. What are the two main sources of economic gains from intra-industry trade? 15. What is splitting up the value chain? 16. Are the gains from international trade more likely to large or small to be relatively more important countries? CRITICAL THINKING QUESTIONS 22. You just got a job in Washington, D.C. You move into an apartment with some acquaintances. All your roommates, however, are slackers and do not clean up after themselves. You, on the other hand, can clean faster than each of them. You determine that you are 70% faster at dishes and 10% faster with vacuuming. All of these tasks have to be done daily. Which jobs should you assign to your roommates to get the most free time overall? Assume you have the same number of hours to devote to cleaning. Now, since you are faster, you seem to get done quicker than your roommate. What sorts of problems may this create? Can you imagine a traderelated analogy to this problem? 23. Does intra-industry trade contradict the theory of comparative advantage? 24. Do consumers benefit from intra-industry trade? 25. Why might intra-industry trade seem surprising from the point of view of comparative advantage? In World Trade Organization meetings, what do 26. you think low-income countries lobby for? 27. Why might a low-income country put up barriers to trade, such as tariffs on imports? 28. Can a nation’s comparative advantage change over time? What factors would make it change? Are differences 17. differences in absolute advantages? in geography behind the 18. Why does the United States not have an absolute advantage in coffee? 19. Look at Exercise 19.2. Compute the opportunity costs of producing sweaters and wine in both France and Tunisia. Who has the lowest opportunity cost of producing sweaters and who has the lowest opportunity cost of producing wine? Explain what it means to have a lower opportunity cost. countries 20. You just overheard your friend say the following: “Poor like Malawi have no absolute advantages. They have poor soil, low investments in formal education and hence low-skill workers, no capital, and no natural resources to speak of. Because they have no advantage, they cannot benefit from trade.” How would you respond? 21. Look at Table 19.9. Is there a range of trades for which there will be no gains? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 19 | International Trade 463 PROBLEMS 29. France and Tunisia both have Mediterranean climates that are excellent for producing/harvesting green beans and tomatoes. In France it takes two hours for each worker to harvest green beans and two hours to harvest a tomato. Tunisian workers need only one hour to harvest the tomatoes but four hours to harvest green beans. Assume there are only two workers, one in each country, and each works 40 hours a week. the a. Draw a production possibilities frontier for each country. Hint: Remember production possibility frontier is the maximum that all workers can produce at a unit of time which, in this problem, is a week. Identify which country has absolute advantage in green beans and which country has the absolute advantage in tomatoes. Identify which country has the comparative advantage. the b. c. d. How much would France have to give up in terms of tomatoes to gain from trade? How much would it have to give up in terms of green beans? 30. In Japan, one worker can make 5 tons of rubber or 80 radios. In Malaysia, one worker can make 10 tons of rubber or 40 radios. a. Who has in the production of rubber or radios? How can you tell? advantage absolute the b. Calculate the opportunity cost of producing 80 additional radios in Japan and in Malaysia. (Your calculation may involve fractions, which is fine.) Which country has a comparative advantage in the production of radios? d. tons of c. Calculate the opportunity cost of producing 10 additional in Japan and in rubber Malaysia. Which country has a comparative advantage in producing rubber? In this example, does each country have an absolute advantage and a comparative advantage in the same good? In what product should Japan specialize? In what product should Malaysia specialize? e. 31. Review the numbers for Canada and Venezuela from Table 19.12 which describes how many barrels of oil and tons of lumber the workers can produce. Use these numbers to answer the rest of this question. a. Draw a production possibilities frontier for each country. Assume there are 100 workers in each country. Canadians and Venezuelans desire both oil and lumber. Canadians want at least 2,000 tons of lumber. Mark a point on their production possibilities where they can get at least 3,000 tons. b. Assume Canadians that the specialize completely because they figured out they have a comparative advantage in lumber. They are willing to give up 1,000 tons of lumber. How much oil should they ask for in return for this lumber to be as well off as they were with no trade? How much should they ask for if they want to gain from trading with Venezuela? Note: We can think of this “ask” as the relative price or trade price of lumber. Is the Canadian “ask” you identified in (b) also beneficial for Venezuelans? Use the production possibilities frontier graph for Venezuela to show that Venezuelans can gain from trade. c. In Exercise 19.31, 32. is there an “ask” where Venezuelans may say “no thank you” to trading with Canada? From earlier chapters you will 33. that technological change shifts the average cost curves. Draw a graph showing how technological change could influence intra-industry trade. recall 34. Consider two countries: South Korea and Taiwan. Taiwan can produce one million mobile phones per day at the cost of $10 per phone and South Korea can produce 50 million mobile phones at $5 per phone. Assume these phones are the same type and quality and there is only one price. What is the minimum price at which both countries will engage in trade? 464 Chapter 19 | International Trade 35. If trade increases world GDP by 1% per year, what is the global impact of this increase over 10 years? How does this increase compare to the annual GDP of a country like Sri Lanka? Discuss. Hint: To answer this question, here are steps you may want to consider. Go to the World Development Indicators (online) published by the World Bank. Find the current level of World GDP in constant international dollars. Also, find the GDP of Sri Lanka in constant international dollars. Once you have these two numbers, compute the amount the additional increase in global incomes due to trade and compare that number to Sri Lanka’s GDP. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 465 20 | Globalization and Protectionism Figure 20.1 Flat Screen Competition The market for flat-panel displays in the United States is huge. The manufacturers of flat screens in the United States must compete against manufacturers from around the world. (Credit: modification of work by “Jemimus”/Flickr Creative Commons) What’s the Downside of Protection? Governments are motivated to limit and alter market outcomes for political or social ends. While governments can limit the rise in prices of some products, they cannot control how much people want to buy or how much firms are willing to sell. The laws of demand and supply still hold. Trade policy is an example where regulations can redirect economic forces, but it cannot stop them from manifesting themselves elsewhere. Flat-panel displays, the displays for laptop computers, tablets, and flat screen televisions, are an example of such an enduring principle. In the early 1990s, the vast majority of flat-panel displays used in U.S.manufactured laptops were imported, primarily from Japan. The small but politically powerful U.S. flat-paneldisplay industry filed a dumping complaint with the Commerce Department. They argued that Japanese firms were selling displays at “less than fair value,” which made it difficult for U.S. firms to compete. This argument for trade protection is referred to as anti-dumping. Other arguments for protection in this complaint included national security. After a preliminary determination by the Commerce Department that the Japanese firms were dumping, the U.S. International Trade Commission imposed a 63% dumping margin (or tax) on the import of flat-panel displays. Was this a successful exercise of U.S. trade policy? See what you think after reading the chapter. 466 Chapter 20 | Globalization and Protectionism Introduction to Globalism and Protectionism In this chapter, you will learn about: • Protectionism: An Indirect Subsidy from Consumers to Producers • International Trade and Its Effects on Jobs, Wages, and Working Conditions • Arguments in Support of Restricting Imports • How Trade Policy Is Enacted: Globally, Regionally, and Nationally • The Tradeoffs of Trade Policy The world has become more connected on multiple levels, especially economically. In 1970, imports and exports made up 11% of U.S. GDP, while now they make up 32%. However, the United States, due to its size, is less internationally connected than most countries. For example, according to the World Bank, 97% of Botswana’s economic activity is connected to trade. This chapter explores trade policy—the laws and strategies a country uses to regulate international trade. This topic is n
ot without controversy. As the world has become more globally connected, firms and workers in high-income countries like the United States, Japan, or the nations of the European Union, perceive a competitive threat from firms in medium-income countries like Mexico, China, or South Africa, that have lower costs of living and therefore pay lower wages. Firms and workers in low-income countries fear that they will suffer if they must compete against more productive workers and advanced technology in high-income countries. On a different tack, some environmentalists worry that multinational firms may evade environmental protection laws by moving their production to countries with loose or nonexistent pollution standards, trading a clean environment for jobs. Some politicians worry that their country may become overly dependent on key imported products, like oil, which in a time of war could threaten national security. All of these fears influence governments to reach the same basic policy conclusion: to protect national interests, whether businesses, jobs, or security, imports of foreign products should be restricted. This chapter analyzes such arguments. First, however, it is essential to learn a few key concepts and understand how the demand and supply model applies to international trade. 20.1 | Protectionism: An Indirect Subsidy from Consumers to Producers By the end of this section, you will be able to: • Explain protectionism and its three main forms • Analyze protectionism through concepts of demand and supply, noting its effects on equilibrium • Calculate the effects of trade barriers When a government legislates policies to reduce or block international trade it is engaging in protectionism. Protectionist policies often seek to shield domestic producers and domestic workers from foreign competition. Protectionism takes three main forms: tariffs, import quotas, and nontariff barriers. Recall from International Trade that tariffs are taxes that governments impose on imported goods and services. This makes imports more expensive for consumers, discouraging imports. For example, in recent years large, flatscreen televisions imported to the U.S. from China have faced a 5% tariff rate. Another way to control trade is through import quotas, which are numerical limitations on the quantity of products that a country can import. For instance, during the early 1980s, the Reagan Administration imposed a quota on the import of Japanese automobiles. In the 1970s, many developed countries, including the United States, found themselves with declining textile industries. Textile production does not require highly skilled workers, so producers were able to set up lower-cost factories in developing countries. In order to “manage” this loss of jobs and income, the developed countries established an international Multifiber Agreement that essentially divided the market for textile exports between importers and the remaining domestic producers. The agreement, which ran from 1974 to 2004, This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 467 specified the exact quota of textile imports that each developed country would accept from each low-income country. A similar story exists for sugar imports into the United States, which are still governed by quotas. Nontariff barriers are all the other ways that a nation can draw up rules, regulations, inspections, and paperwork to make it more costly or difficult to import products. A rule requiring certain safety standards can limit imports just as effectively as high tariffs or low import quotas, for instance. There are also nontariff barriers in the form of “rules-oforigin” regulations; these rules describe the “Made in Country X” label as the one in which the last substantial change in the product took place. A manufacturer wishing to evade import restrictions may try to change the production process so that the last big change in the product happens in his or her own country. For example, certain textiles are made in the United States, shipped to other countries, combined with textiles made in those other countries to make apparel—and then re-exported back to the United States for a final assembly, to escape paying tariffs or to obtain a “Made in the USA” label. Despite import quotas, tariffs, and nontariff barriers, the share of apparel sold in the United States that is imported rose from about half in 1999 to about three-quarters today. The U.S. Bureau of Labor Statistics (BLS), estimated the number of U.S. jobs in textiles and apparel fell from 666,360 in 2007 to 385,240 in 2012, a 42% decline. Even more U.S. textile industry jobs would have been lost without tariffs. However, domestic jobs that are saved by import quotas come at a cost. Because textile and apparel protectionism adds to the costs of imports, consumers end up paying billions of dollars more for clothing each year. When the United States eliminates trade barriers in one area, consumers spend the money they save on that product elsewhere in the economy. Thus, while eliminating trade barriers in one sector of the economy will likely result in some job loss in that sector, consumers will spend the resulting savings in other sectors of the economy and hence increase the number of jobs in those other sectors. Of course, workers in some of the poorest countries of the world who would otherwise have jobs producing textiles, would gain considerably if the United States reduced its barriers to trade in textiles. That said, there are good reasons to be wary about reducing barriers to trade. The 2012 and 2013 Bangladeshi fires in textile factories, which resulted in a horrific loss of life, present complications that our simplified analysis in the chapter will not capture. Realizing the compromises between nations that come about due to trade policy, many countries came together in 1947 to form the General Agreement on Tariffs and Trade (GATT). (We’ll cover the GATT in more detail later in the chapter.) This agreement has since been superseded by the World Trade Organization (WTO), whose membership includes about 150 nations and most of the world's economies. It is the primary international mechanism through which nations negotiate their trade rules—including rules about tariffs, quotas, and nontariff barriers. The next section examines the results of such protectionism and develops a simple model to show the impact of trade policy. Demand and Supply Analysis of Protectionism To the non-economist, restricting imports may appear to be nothing more than taking sales from foreign producers and giving them to domestic producers. Other factors are at work, however, because firms do not operate in a vacuum. Instead, firms sell their products either to consumers or to other firms (if they are business suppliers), who are also affected by the trade barriers. A demand and supply analysis of protectionism shows that it is not just a matter of domestic gains and foreign losses, but a policy that imposes substantial domestic costs as well. Consider two countries, Brazil and the United States, who produce sugar. Each country has a domestic supply and demand for sugar, as Table 20.1 details and Figure 20.2 illustrates. In Brazil, without trade, the equilibrium price of sugar is 12 cents per pound and the equilibrium output is 30 tons. When there is no trade in the United States, the equilibrium price of sugar is 24 cents per pound and the equilibrium quantity is 80 tons. We label these equilibrium points as point E in each part of the figure. 468 Chapter 20 | Globalization and Protectionism Figure 20.2 The Sugar Trade between Brazil and the United States Before trade, the equilibrium price of sugar in Brazil is 12 cents a pound and it is 24 cents per pound in the United States. When trade is allowed, businesses will buy cheap sugar in Brazil and sell it in the United States. This will result in higher prices in Brazil and lower prices in the United States. Ignoring transaction costs, prices should converge to 16 cents per pound, with Brazil exporting 15 tons of sugar and the United States importing 15 tons of sugar. If trade is only partly open between the countries, it will lead to an outcome between the free-trade and no-trade possibilities. Brazil: Quantity Supplied (tons) Brazil: Quantity Demanded (tons) U.S.: Quantity Supplied (tons) U.S.: Quantity Demanded (tons) 20 30 35 40 45 50 55 35 30 28 25 21 18 15 60 66 69 72 76 80 82 100 93 90 87 83 80 78 Price 8 cents 12 cents 14 cents 16 cents 20 cents 24 cents 28 cents Table 20.1 The Sugar Trade between Brazil and the United States If international trade between Brazil and the United States now becomes possible, profit-seeking firms will spot an opportunity: buy sugar cheaply in Brazil, and sell it at a higher price in the United States. As sugar is shipped from Brazil to the United States, the quantity of sugar produced in Brazil will be greater than Brazilian consumption (with the extra production exported), and the amount produced in the United States will be less than the amount of U.S. consumption (with the extra consumption imported). Exports to the United States will reduce the sugar supply in This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 469 Brazil, raising its price. Imports into the United States will increase the sugar supply, lowering its price. When the sugar price is the same in both countries, there is no incentive to trade further. As Figure 20.2 shows, the equilibrium with trade occurs at a price of 16 cents per pound. At that price, the sugar farmers of Brazil supply a quantity of 40 tons, while the consumers of Brazil buy only 25 tons. The extra 15 tons of sugar production, shown by the horizontal gap between the demand curve and the supply curve in Brazil, is exported to the United States. In the United States, at a pr
ice of 16 cents, the farmers produce a quantity of 72 tons and consumers demand a quantity of 87 tons. The excess demand of 15 tons by American consumers, shown by the horizontal gap between demand and domestic supply at the price of 16 cents, is supplied by imported sugar. Free trade typically results in income distribution effects, but the key is to recognize the overall gains from trade, as Figure 20.3 shows. Building on the concepts that we outlined in Demand and Supply and Demand, Supply, and Efficiency in terms of consumer and producer surplus, Figure 20.3 (a) shows that producers in Brazil gain by selling more sugar at a higher price, while Figure 20.3 (b) shows consumers in the United States benefit from the lower price and greater availability of sugar. Consumers in Brazil are worse off (compare their no-trade consumer surplus with the free-trade consumer surplus) and U.S. producers of sugar are worse off. There are gains from trade—an increase in social surplus in each country. That is, both the United States and Brazil are better off than they would be without trade. The following Clear It Up feature explains how trade policy can influence low-income countries. Figure 20.3 Free Trade of Sugar Free trade results in gains from trade. Total surplus increases in both countries, as the two blue-shaded areas show. However, there are clear income distribution effects. Producers gain in the exporting country, while consumers lose; and in the importing country, consumers gain and producers lose. Visit this website (http://openstaxcollege.org/l/sugartrade) to read more about the global sugar trade. 470 Chapter 20 | Globalization and Protectionism Why are there low-income countries? Why are the poor countries of the world poor? There are a number of reasons, but one of them will surprise you: the trade policies of the high-income countries. Following is a stark review of social priorities which the international aid organization, Oxfam International has widely publicized. High-income countries of the world—primarily the United States, Canada, countries of the European Union, and Japan—subsidize their domestic farmers collectively by about $360 billion per year. By contrast, the total amount of foreign aid from these same high-income countries to the poor countries of the world is about $70 billion per year, or less than 20% of the farm subsidies. Why does this matter? It matters because the support of farmers in high-income countries is devastating to the livelihoods of farmers in low-income countries. Even when their climate and land are well-suited to products like cotton, rice, sugar, or milk, farmers in low-income countries find it difficult to compete. Farm subsidies in the highincome countries cause farmers in those countries to increase the amount they produce. This increase in supply drives down world prices of farm products below the costs of production. As Michael Gerson of the Washington Post describes it: “[T]he effects in the cotton-growing regions of West Africa are dramatic . . . keep[ing] millions of Africans on the edge of malnutrition. In some of the poorest countries on Earth, cotton farmers are some of the poorest people, earning about a dollar a day. . . . Who benefits from the current system of subsidies? About 20,000 American cotton producers, with an average annual income of more than $125,000.” As if subsidies were not enough, often, the high-income countries block agricultural exports from low-income countries. In some cases, the situation gets even worse when the governments of high-income countries, having bought and paid for an excess supply of farm products, give away those products in poor countries and drive local farmers out of business altogether. For example, shipments of excess milk from the European Union to Jamaica have caused great hardship for Jamaican dairy farmers. Shipments of excess rice from the United States to Haiti drove thousands of low-income rice farmers in Haiti out of business. The opportunity costs of protectionism are not paid just by domestic consumers, but also by foreign producers—and for many agricultural products, those foreign producers are the world’s poor. Now, let’s look at what happens with protectionism. U.S. sugar farmers are likely to argue that, if only they could be protected from sugar imported from Brazil, the United States would have higher domestic sugar production, more jobs in the sugar industry, and American sugar farmers would receive a higher price. If the United States government sets a high-enough tariff on imported sugar, or sets an import quota at zero, the result will be that the quantity of sugar traded between countries could be reduced to zero, and the prices in each country will return to the levels before trade was allowed. Blocking only some trade is also possible. Suppose that the United States passed a sugar import quota of seven tons. The United States will import no more than seven tons of sugar, which means that Brazil can export no more than seven tons of sugar to the United States. As a result, the price of sugar in the United States will be 20 cents, which is This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 471 the price where the quantity demanded is seven tons greater than the domestic quantity supplied. Conversely, if Brazil can export only seven tons of sugar, then the price of sugar in Brazil will be 14 cents per pound, which is the price where the domestic quantity supplied in Brazil is seven tons greater than domestic demand. In general, when a country sets a low or medium tariff or import quota, the equilibrium price and quantity will be somewhere between those that prevail with no trade and those with completely free trade. The following Work It Out explores the impact of these trade barriers. Effects of Trade Barriers Let’s look carefully at the effects of tariffs or quotas. If the U.S. government imposes a tariff or quota sufficient to eliminate trade with Brazil, two things occur: U.S. consumers pay a higher price and therefore buy a smaller quantity of sugar. U.S. producers obtain a higher price and they sell a larger quantity of sugar. We can measure the effects of a tariff on producers and consumers in the United States using two concepts that we developed in Demand, Supply, and Efficiency: consumer surplus and producer surplus. Figure 20.4 U.S. Sugar Supply and Demand When there is free trade, the equilibrium is at point A. When there is no trade, the equilibrium is at point E. Step 1. Look at Figure 20.4, which shows a hypothetical version of the demand and supply of sugar in the United States. Step 2. Note that when there is free trade the sugar market is in equilibrium at point A where Domestic Quantity Demanded (Qd) = Quantity Supplied (Domestic Qs + Imports from Brazil) at a price of PTrade. Step 3. Note, also, that imports are equal to the distance between points C and A. Step 4. Recall that consumer surplus is the value that consumers get beyond what they paid for when they buy a product. Graphically, it is the area under a demand curve but above the price. In this case, the consumer surplus in the United States is the area of the triangle formed by the points PTrade, A, and B. Step 5. Recall, also, that producer surplus is another name for profit—it is the income producers get above the cost of production, which is shown by the supply curve here. In this case, the producer surplus with trade is the area of the triangle formed by the points Ptrade, C, and D. Step 6. Suppose that the barriers to trade are imposed, imports are excluded, and the price rises to PNoTrade. Look what happens to producer surplus and consumer surplus. At the higher price, the domestic quantity supplied increases from Qs to Q at point E. Because producers are selling more quantity at a higher price, the producer surplus increases to the area of the triangle PNoTrade, E, and D. Step 7. Compare the areas of the two triangles and you will see the increase in the producer surplus. Step 8. Examine the consumer surplus. Consumers are now paying a higher price to get a lower quantity (Q 472 Chapter 20 | Globalization and Protectionism instead of Qd). Their consumer surplus shrinks to the area of the triangle PNoTrade, E, and B. Step 9. Determine the net effect. The producer surplus increases by the area Ptrade, C, E, PNoTrade. The loss of consumer surplus, however, is larger. It is the area Ptrade, A, E, PNoTrade. In other words, consumers lose more than producers gain as a result of the trade barriers and the United States has a lower social surplus. Who Benefits and Who Pays? Using the demand and supply model, consider the impact of protectionism on producers and consumers in each of the two countries. For protected producers like U.S. sugar farmers, restricting imports is clearly positive. Without a need to face imported products, these producers are able to sell more, at a higher price. For consumers in the country with the protected good, in this case U.S. sugar consumers, restricting imports is clearly negative. They end up buying a lower quantity of the good and paying a higher price for what they do buy, compared to the equilibrium price and quantity with trade. The following Clear It Up feature considers why a country might outsource jobs even for a domestic product. Why are Life Savers, an American product, not made in America? In 1912, Clarence Crane invented Life Savers, the hard candy with the hole in the middle, in Cleveland, Ohio. Starting in the late 1960s and for 35 years afterward, a plant in Holland, Michigan produced 46 billion Life Savers a year, in 200 million rolls. However, in 2002, the Kraft Company announced that it would close the Michigan plant and move Life Saver production across the border to Montreal, Canada. One reason is that Canadian workers are paid slightly less, especially in healthcare and insurance costs that
are not linked to employment there. Another main reason is that the United States government keeps the sugar price high for the benefit of sugar farmers, with a combination of a government price floor program and strict quotas on imported sugar. According to the Coalition for Sugar Reform, from 2009 to 2012, the price of refined sugar in the United States ranged from 64% to 92% higher than the world price. Life Saver production uses over 100 tons of sugar each day, because the candies are 95% sugar. A number of other candy companies have also reduced U.S. production and expanded foreign production. From 1997 to 2011, sugar-using industries eliminated some 127,000 jobs, or more than seven times the total employment in sugar production. While the candy industry is especially affected by the cost of sugar, the costs are spread more broadly. U.S. consumers pay roughly $1 billion per year in higher food prices because of elevated sugar costs. Meanwhile, sugar producers in low-income countries are driven out of business. Because of the sugar subsidies to domestic producers and the quotas on imports, they cannot sell their output profitably, or at all, in the United States market. The fact that protectionism pushes up prices for consumers in the country enacting such protectionism is not always acknowledged openly, but it is not disputed. After all, if protectionism did not benefit domestic producers, there would not be much point in enacting such policies in the first place. Protectionism is simply a method of requiring consumers to subsidize producers. The subsidy is indirect, since consumers pay for it through higher prices, rather than a direct government subsidy paid with money collected from taxpayers. However, protectionism works like a subsidy, nonetheless. The American satirist Ambrose Bierce defined “tariff” this way in his 1911 book, The Devil’s Dictionary: “Tariff, n. A scale of taxes on imports, designed to protect the domestic producer against the greed of his consumer.” The effect of protectionism on producers and consumers in the foreign country is complex. When a government uses an import quota to impose partial protectionism, Brazilian sugar producers receive a lower price for the sugar they sell in Brazil—but a higher price for the sugar they are allowed to export to the United States. Notice that some of the burden of protectionism, paid by domestic consumers, ends up in the hands of foreign producers in this case. Brazilian sugar consumers seem to benefit from U.S. protectionism, because it reduces the price of sugar that they pay (compared to the free-trade situation). On the other hand, at least some of these Brazilian sugar consumers also work This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 473 as sugar farmers, so protectionism reduces their incomes and jobs. Moreover, if trade between the countries vanishes, Brazilian consumers would miss out on better prices for imported goods—which do not appear in our single-market example of sugar protectionism. The effects of protectionism on foreign countries notwithstanding, protectionism requires domestic consumers of a product (consumers may include either households or other firms) to pay higher prices to benefit domestic producers of that product. In addition, when a country enacts protectionism, it loses the economic gains it would have been able to achieve through a combination of comparative advantage, specialized learning, and economies of scale, concepts that we discuss in International Trade. 20.2 | International Trade and Its Effects on Jobs, Wages, and Working Conditions By the end of this section, you will be able to: • Discuss how international trade influences the job market • Analyze the opportunity cost of protectionism • Explain how international trade impacts wages, labor standards, and working conditions In theory at least, imports might injure workers in several different ways: fewer jobs, lower wages, or poor working conditions. Let’s consider these in turn. Fewer Jobs? In the early 1990s, the United States was negotiating the North American Free Trade Agreement (NAFTA) with Mexico, an agreement that reduced tariffs, import quotas, and nontariff barriers to trade between the United States, Mexico, and Canada. H. Ross Perot, a 1992 candidate for U.S. president, claimed, in prominent campaign arguments, that if the United States expanded trade with Mexico, there would be a “giant sucking sound” as U.S. employers relocated to Mexico to take advantage of lower wages. After all, average wages in Mexico were, at that time, about one-eighth of those in the United States. NAFTA passed Congress, President Bill Clinton signed it into law, and it took effect in 1995. For the next six years, the United States economy had some of the most rapid job growth and low unemployment in its history. Those who feared that open trade with Mexico would lead to a dramatic decrease in jobs were proven wrong. This result was no surprise to economists. After all, the trend toward globalization has been going on for decades, not just since NAFTA. If trade did reduce the number of available jobs, then the United States should have been seeing a steady loss of jobs for decades. While the United States economy does experience rises and falls in unemployment rates—according to the Bureau of Labor Statistics, from spring 2007 to late 2009, the unemployment rate rose from 4.4% to 10%. It has since fallen back to under 5% as of the end of 2016—the number of jobs is not falling over extended periods of time. The number of U.S. jobs rose from 71 million in 1970 to 145 million in 2014. Protectionism certainly saves jobs in the specific industry being protected but, for two reasons, it costs jobs in other unprotected industries. First, if consumers are paying higher prices to the protected industry, they inevitably have less money to spend on goods from other industries, and so jobs are lost in those other industries. Second, if a firm sells the protected product to other firms, so that other firms must now pay a higher price for a key input, then those firms will lose sales to foreign producers who do not need to pay the higher price. Lost sales translate into lost jobs. The hidden opportunity cost of using protectionism to save jobs in one industry is jobs sacrificed in other industries. This is why the United States International Trade Commission, in its study of barriers to trade, predicts that reducing trade barriers would not lead to an overall loss of jobs. Protectionism reshuffles jobs from industries without import protections to industries that are protected from imports, but it does not create more jobs. Moreover, the costs of saving jobs through protectionism can be very high. A number of different studies have attempted to estimate the cost to consumers in higher prices per job saved through protectionism. Table 20.2 shows a sample of results, compiled by economists at the Federal Reserve Bank of Dallas. Saving a job through protectionism typically costs much more than the actual worker’s salary. For example, a study published in 2002 compiled evidence that using protectionism to save an average job in the textile and apparel industry would cost $199,000 per job saved. In other words, those workers could have been paid $100,000 per year to be unemployed and the cost would only be half of what it is to keep them working in the textile and apparel industry. This result is not unique to textiles and 474 apparel. Chapter 20 | Globalization and Protectionism Industry Protected with Import Tariffs or Quotas Annual Cost per Job Saved Sugar Polyethylene resins Dairy products Frozen concentrated orange juice Ball bearings Machine tools Women’s handbags Glassware Apparel and textiles Rubber footwear Women’s nonathletic footwear $826,000 $812,000 $685,000 $635,000 $603,000 $479,000 $263,000 $247,000 $199,000 $168,000 $139,000 Table 20.2 Cost to U.S. Consumers of Saving a Job through Protectionism (Source: Federal Reserve Bank of Dallas) Why does it cost so much to save jobs through protectionism? The basic reason is that not all of the extra money that consumers pay because of tariffs or quotas goes to save jobs. For example, if the government imposes tariffs on steel imports so that steel buyers pay a higher price, U.S. steel companies earn greater profits, buy more equipment, pay bigger bonuses to managers, give pay raises to existing employees—and also avoid firing some additional workers. Only part of the higher price of protected steel goes toward saving jobs. Also, when an industry is protected, the economy as a whole loses the benefits of playing to its comparative advantage—in other words, producing what it is best at. Therefore, part of the higher price that consumers pay for protected goods is lost economic efficiency, which we can measure as another deadweight loss, like what we discussed in Labor and Financial Markets. There’s a bumper sticker that speaks to the threat some U.S. workers feel from imported products: “Buy American—Save U.S. Jobs.” If an economist were driving the car, the sticker might declare: “Block Imports—Save Jobs for Some Americans, Lose Jobs for Other Americans, and Also Pay High Prices.” Trade and Wages Even if trade does not reduce the number of jobs, it could affect wages. Here, it is important to separate issues about the average level of wages from issues about whether the wages of certain workers may be helped or hurt by trade. Because trade raises the amount that an economy can produce by letting firms and workers play to their comparative advantage, trade will also cause the average level of wages in an economy to rise. Workers who can produce more will be more desirable to employers, which will shift the demand for their labor out to the right, and increase wages in the labor market. By contrast, barriers to trade will reduce the average level of w
ages in an economy. However, even if trade increases the overall wage level, it will still benefit some workers and hurt others. Workers in industries that are confronted by competition from imported products may find that demand for their labor decreases and shifts back to the left, so that their wages decline with a rise in international trade. Conversely, workers in industries that benefit from selling in global markets may find that demand for their labor shifts out to the right, so that trade raises their wages. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 475 View this website (http://openstaxcollege.org/l/fairtradecoffee) to read an article on the issues surrounding fair trade coffee. One concern is that while globalization may be benefiting high-skilled, high-wage workers in the United States, it may also impose costs on low-skilled, low-wage workers. After all, high-skilled U.S. workers presumably benefit from increased sales of sophisticated products like computers, machinery, and pharmaceuticals in which the United States has a comparative advantage. Meanwhile, low-skilled U.S. workers must now compete against extremely lowwage workers worldwide for making simpler products like toys and clothing. As a result, the wages of low-skilled U.S. workers are likely to fall. There are, however, a number of reasons to believe that while globalization has helped some U.S. industries and hurt others, it has not focused its negative impact on the wages of low-skilled Americans. First, about half of U.S. trade is intra-industry trade. That means the U.S. trades similar goods with other high-wage economies like Canada, Japan, Germany, and the United Kingdom. For instance, in 2014 the U.S. exported over 2 million cars, from all the major automakers, and also imported several million cars from other countries. Most U.S. workers in these industries have above-average skills and wages—and many of them do quite well in the world of globalization. Some evidence suggested that intra-industry trade between similar countries had a small impact on domestic workers but later evidence indicates that it all depends on how flexible the labor market is. In other words, the key is how flexible workers are in finding jobs in different industries. The effect of trade on lowwage workers depends considerably on the structure of labor markets and indirect effects felt in other parts of the economy. For example, in the United States and the United Kingdom, because labor market frictions are low, the impact of trade on low income workers is small. Second, many low-skilled U.S. workers hold service jobs that imports from low-wage countries cannot replace. For example, we cannot import lawn care services or moving and hauling services or hotel maids from countries long distances away like China or Bangladesh. Competition from imported products is not the primary determinant of their wages. Finally, while the focus of the discussion here is on wages, it is worth pointing out that low-wage U.S. workers suffer due to protectionism in all the industries—even those in which they do not work. For example, food and clothing are protected industries. These low-wage workers therefore pay higher prices for these basic necessities and as such their dollar stretches over fewer goods. The benefits and costs of increased trade in terms of its effect on wages are not distributed evenly across the economy. However, the growth of international trade has helped to raise the productivity of U.S. workers as a whole—and thus helped to raise the average level of wages. Labor Standards and Working Conditions Workers in many low-income countries around the world labor under conditions that would be illegal for a worker in the United States. Workers in countries like China, Thailand, Brazil, South Africa, and Poland are often paid less than the United States minimum wage. For example, in the United States, the minimum wage is $7.25 per hour. A typical wage in many low-income countries might be more like $7.25 per day, or often much less. Moreover, working conditions in low-income countries may be extremely unpleasant, or even unsafe. In the worst cases, production may involve the child labor or even workers who are treated nearly like slaves. These concerns over foreign labor standards do not affect most of U.S. trade, which is intra-industry and carried out with other high-income countries that have labor standards similar to the United States, but it is, nonetheless, morally and economically important. 476 Chapter 20 | Globalization and Protectionism In thinking about labor standards in other countries, it is important to draw some distinctions between what is truly unacceptable and what is painful to think about. Most people, economists included, have little difficulty with the idea that production by six-year-olds confined in factories or by slave labor is morally unacceptable. They would support aggressive efforts to eliminate such practices—including shutting out imported products made with such labor. Many cases, however, are less clear-cut. An opinion article in the New York Times several years ago described the case of Ahmed Zia, a 14-year-old boy from Pakistan. He earned $2 per day working in a carpet factory. He dropped out of school in second grade. Should the United States and other countries refuse to purchase rugs made by Ahmed and his co-workers? If the carpet factories were to close, the likely alternative job for Ahmed is farm work, and as Ahmed says of his carpet-weaving job: “This makes much more money and is more comfortable.” Other workers may have even less attractive alternative jobs, perhaps scavenging garbage or prostitution. The real problem for Ahmed and many others in low-income countries is not that globalization has made their lives worse, but rather that they have so few good life alternatives. The United States went through similar situations during the nineteenth and early twentieth centuries. In closing, there is some irony when the United States government or U.S. citizens take issue with labor standards in low-income countries, because the United States is not a world leader in government laws to protect employees. According to a recent study by the Organization for Economic Cooperation and Development (OECD), the U.S. is the only one of 41 countries that does not provide mandated paid leave for new parents, and among the 40 countries that do mandate paid leave, the minimum duration is about two months. Many European workers receive six weeks or more of paid vacation per year. In the United States, vacations are often one to three weeks per year. If European countries accused the United States of using unfair labor standards to make U.S. products cheaply, and announced that they would shut out all U.S. imports until the United States adopted paid parental leave, added more national holidays, and doubled vacation time, Americans would be outraged. Yet when U.S. protectionists start talking about restricting imports from poor countries because of low wage levels and poor working conditions, they are making a very similar argument. This is not to say that labor conditions in low-income countries are not an important issue. They are. However, linking labor conditions in low-income countries to trade deflects the emphasis from the real question to ask: “What are acceptable and enforceable minimum labor standards and protections to have the world over?” 20.3 | Arguments in Support of Restricting Imports By the end of this section, you will be able to: • Explain and analyze various arguments that are in support of restricting imports, including the infant industry argument, the anti-dumping argument, the environmental protection argument, the unsafe consumer products argument, and the national interest argument • Explain dumping and race to the bottom • Evaluate the significance of countries’ perceptions on the benefits of growing trade As we previously noted, protectionism requires domestic consumers of a product to pay higher prices to benefit domestic producers of that product. Countries that institute protectionist policies lose the economic gains achieved through a combination of comparative advantage, specialized learning, and economies of scale. With these overall costs in mind, let us now consider, one by one, a number of arguments that support restricting imports. The Infant Industry Argument Imagine Bhutan wants to start its own computer industry, but it has no computer firms that can produce at a low enough price and high enough quality to compete in world markets. However, Bhutanese politicians, business leaders, and workers hope that if the local industry had a chance to get established, before it needed to face international competition, then a domestic company or group of companies could develop the skills, management, technology, and economies of scale that it needs to become a successful profit-earning domestic industry. Thus, the infant industry argument for protectionism is to block imports for a limited time, to give the infant industry time to mature, before it starts competing on equal terms in the global economy. (Revisit Macroeconomic Policy Around the World (http://cnx.org/content/m64022/latest/) for more information on the infant industry argument.) The infant industry argument is theoretically possible, even sensible: give an industry a short-term indirect subsidy This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 477 through protection, and then reap the long-term economic benefits of having a vibrant, healthy industry. Implementation, however, is tricky. In many countries, infant industries have gone from babyhood to senility and obsolescence without ever having reached the profitable maturity stage. Meanwhile, the protectionism that was supposed to be
short-term often took a very long time to be repealed. As one example, Brazil treated its computer industry as an infant industry from the late 1970s until about 1990. In an attempt to establish its computer industry in the global economy, Brazil largely barred imports of computer products for several decades. This policy guaranteed increased sales for Brazilian computers. However, by the mid-1980s, due to lack of international competition, Brazil had a backward and out-of-date industry, typically lagging behind world standards for price and performance by three to five years—a long time in this fast-moving industry. After more than a decade, during which Brazilian consumers and industries that would have benefited from up-to-date computers paid the costs and Brazil’s computer industry never competed effectively on world markets, Brazil phased out its infant industry policy for the computer industry. Protectionism for infant industries always imposes costs on domestic users of the product, and typically has provided little benefit in the form of stronger, competitive industries. However, several countries in East Asia offer an exception. Japan, Korea, Thailand, and other countries in this region have sometimes provided a package of indirect and direct subsidies targeted at certain industries, including protection from foreign competition and government loans at interest rates below the market equilibrium. In Japan and Korea, for example, subsidies helped get their domestic steel and auto industries up and running. Why did the infant industry policy of protectionism and other subsidies work fairly well in East Asia? An early 1990 World Bank study offered three guidelines to countries thinking about infant industry protection: 1. Do not hand out protectionism and other subsidies to all industries, but focus on a few industries where your country has a realistic chance to be a world-class producer. 2. Be very hesitant about using protectionism in areas like computers, where many other industries rely on having the best products available, because it is not useful to help one industry by imposing high costs on many other industries. 3. Have clear guidelines for when the infant industry policy will end. In Korea in the 1970s and 1980s, a common practice was to link protectionism and subsidies to export sales in global markets. If export sales rose, then the infant industry had succeeded and the government could phase out protectionism. If export sales did not rise, then the infant industry policy had failed and the government could phase out protectionism. Either way, the protectionism would be temporary. Following these rules is easier said than done. Politics often intrudes, both in choosing which industries will receive the benefits of treatment as “infants” and when to phase out import restrictions and other subsidies. Also, if the country's government wishes to impose costs on its citizens so that it can provide subsidies to a few key industries, it has many tools for doing such as direct government payments, loans, targeted tax reductions, and government support of research and development of new technologies. In other words, protectionism is not the only or even the best way to support key industries. this website (http://openstaxcollege.org/l/integration) to view a presentation by Pankaj Ghemawat Visit questioning how integrated the world really is. 478 Chapter 20 | Globalization and Protectionism The Anti-Dumping Argument Dumping refers to selling goods below their cost of production. Anti-dumping laws block imports that are sold below the cost of production by imposing tariffs that increase the price of these imports to reflect their cost of production. Since dumping is not allowed under World Trade Organization (WTO) rules, nations that believe they are on the receiving end of dumped goods can file a complaint with the WTO. Anti-dumping complaints have risen in recent years, from about 100 cases per year in the late 1980s to about 200 new cases each year by the late 2000s. Note that dumping cases are countercyclical. During recessions, case filings increase. During economic booms, case filings go down. Individual countries have also frequently started their own anti-dumping investigations. The U.S. government has dozens of anti-dumping orders in place from past investigations. In 2009, for example, some U.S. imports that were under anti-dumping orders included pasta from Turkey, steel pipe fittings from Thailand, pressuresensitive plastic tape from Italy, preserved mushrooms and lined paper products from India, and cut-to-length carbon steel and non-frozen apple juice concentrate from China. Why Might Dumping Occur? Why would foreign firms export a product at less than its cost of production—which presumably means taking a loss? This question has two possible answers, one innocent and one more sinister. The innocent explanation is that demand and supply set market prices, not the cost of production. Perhaps demand for a product shifts back to the left or supply shifts out to the right, which drives the market price to low levels—even below the cost of production. When a local store has a going-out-of-business sale, for example, it may sell goods at below the cost of production. If international companies find that there is excess supply of steel or computer chips or machine tools that is driving the market price down below their cost of production—this may be the market in action. The sinister explanation is that dumping is part of a long-term strategy. Foreign firms sell goods at prices below the cost of production for a short period of time, and when they have driven out the domestic U.S. competition, they then raise prices. Economists sometimes call this scenario predatory pricing, which we discuss in the Monopoly chapter. Should Anti-Dumping Cases Be Limited? Anti-dumping cases pose two questions. How much sense do they make in economic theory? How much sense do they make as practical policy? In terms of economic theory, the case for anti-dumping laws is weak. In a market governed by demand and supply, the government does not guarantee that firms will be able to make a profit. After all, low prices are difficult for producers, but benefit consumers. Moreover, although there are plenty of cases in which foreign producers have driven out domestic firms, there are zero documented cases in which the foreign producers then jacked up prices. Instead, foreign producers typically continue competing hard against each other and providing low prices to consumers. In short, it is difficult to find evidence of predatory pricing by foreign firms exporting to the United States. Even if one could make a case that the government should sometimes enact anti-dumping rules in the short term, and then allow free trade to resume shortly thereafter, there is a growing concern that anti-dumping investigations often involve more politics than careful analysis. The U.S. Commerce Department is charged with calculating the appropriate “cost of production,” which can be as much an art as a science. For example, if a company built a new factory two years ago, should it count part of the factory’s cost in this year’s cost of production? When a company is in a country where the government controls prices, like China for example, how can one measure the true cost of production? When a domestic industry complains loudly enough, government regulators seem very likely to find that unfair dumping has occurred. A common pattern has arisen where a domestic industry files an anti-dumping complaint, the governments meet and negotiate a reduction in imports, and then the domestic producers drop the anti-dumping suit. In such cases, anti-dumping cases often appear to be little more than a cover story for imposing tariffs or import quotas. In the 1980s, the United States, Canada, the European Union, Australia, and New Zealand implemented almost all the anti-dumping cases. By the 2000s, countries like Argentina, Brazil, South Korea, South Africa, Mexico, and India were filing the majority of the anti-dumping cases before the WTO. As the number of anti-dumping cases has increased, and as countries such as the United States and the European Union feel targeted by the anti-dumping actions of others, the WTO may well propose some additional guidelines to limit the reach of anti-dumping laws. The Environmental Protection Argument The potential for global trade to affect the environment has become controversial. A president of the Sierra Club, an This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 479 environmental lobbying organization, once wrote: “The consequences of globalization for the environment are not good. … Globalization, if we are lucky, will raise average incomes enough to pay for cleaning up some of the mess that we have made. But before we get there, globalization could also destroy enough of the planet’s basic biological and physical systems that prospects for life itself will be radically compromised.” If free trade meant the destruction of life itself, then even economists would convert to protectionism! While globalization—and economic activity of all kinds—can pose environmental dangers, it seems quite possible that, with the appropriate safeguards in place, we can minimize the environmental impacts of trade. In some cases, trade may even bring environmental benefits. In general, high-income countries such as the United States, Canada, Japan, and the nations of the European Union have relatively strict environmental standards. In contrast, middle- and low-income countries like Brazil, Nigeria, India, and China have lower environmental standards. The general view of the governments of such countries is that environmental protection is a luxury: as soon as their people have enough to eat, decent healthcare, and longer life expectancies, then they will spend m
ore money on items such as sewage treatment plants, scrubbers to reduce air pollution from factory smokestacks, and national parks to protect wildlife. This gap in environmental standards between high-income and low-income countries raises two worrisome possibilities in a world of increasing global trade: the “race to the bottom” scenario and the question of how quickly environmental standards will improve in low-income countries. The Race to the Bottom Scenario The race to the bottom scenario of global environmental degradation runs like this. Profit-seeking multinational companies shift their production from countries with strong environmental standards to countries with weak standards, thus reducing their costs and increasing their profits. Faced with such behavior, countries reduce their environmental standards to attract multinational firms, which, after all, provide jobs and economic clout. As a result, global production becomes concentrated in countries where firms can pollute the most and environmental laws everywhere “race to the bottom.” Although the race-to-the-bottom scenario sounds plausible, it does not appear to describe reality. In fact, the financial incentive for firms to shift production to poor countries to take advantage of their weaker environmental rules does not seem especially powerful. When firms decide where to locate a new factory, they look at many different factors: the costs of labor and financial capital; whether the location is close to a reliable suppliers of the inputs that they need; whether the location is close to customers; the quality of transportation, communications, and electrical power networks; the level of taxes; and the competence and honesty of the local government. The cost of environmental regulations is a factor, too, but typically environmental costs are no more than 1 to 2% of the costs that a large industrial plant faces. The other factors that determine location are much more important to these companies than trying to skimp on environmental protection costs. When an international company does choose to build a plant in a low-income country with lax environmental laws, it typically builds a plant similar to those that it operates in high-income countries with stricter environmental standards. Part of the reason for this decision is that designing an industrial plant is a complex and costly task, and so if a plant works well in a high-income country, companies prefer to use the same design everywhere. Also, companies realize that if they create an environmental disaster in a low-income country, it is likely to cost them a substantial amount of money in paying for damages, lost trust, and reduced sales—by building up-to-date plants everywhere they minimize such risks. As a result of these factors, foreign-owned plants in low-income countries often have a better record of compliance with environmental laws than do locally-owned plants. Pressuring Low-Income Countries for Higher Environmental Standards In some cases, the issue is not so much whether globalization will pressure low-income countries to reduce their environmental standards, but instead whether the threat of blocking international trade can pressure these countries into adopting stronger standards. For example, restrictions on ivory imports in high-income countries, along with stronger government efforts to catch elephant poachers, have been credited with helping to reduce the illegal poaching of elephants in certain African countries. However, it would be highly undemocratic for the well-fed citizens of high-income countries to attempt to dictate to the ill-fed citizens of low-income countries what domestic policies and priorities they must adopt, or how they should balance environmental goals against other priorities for their citizens. Furthermore, if high-income countries want stronger environmental standards in low-income countries, they have many options other than the threat of protectionism. For example, high-income countries could pay for anti-pollution equipment in low-income countries, 480 Chapter 20 | Globalization and Protectionism or could help to pay for national parks. High-income countries could help pay for and carry out the scientific and economic studies that would help environmentalists in low-income countries to make a more persuasive case for the economic benefits of protecting the environment. After all, environmental protection is vital to two industries of key importance in many low-income countries—agriculture and tourism. Environmental advocates can set up standards for labeling products, like “this tuna caught in a net that kept dolphins safe” or “this product made only with wood not taken from rainforests,” so that consumer pressure can reinforce environmentalist values. The United Nations also reinforces these values, by sponsoring treaties to address issues such as climate change and global warming, the preservation of biodiversity, the spread of deserts, and the environmental health of the seabed. Countries that share a national border or are within a region often sign environmental agreements about air and water rights, too. The WTO is also becoming more aware of environmental issues and more careful about ensuring that increases in trade do not inflict environmental damage. Finally, note that these concerns about the race to the bottom or pressuring low-income countries for more strict environmental standards do not apply very well to the roughly half of all U.S. trade that occurs with other high-income countries. Many European countries have stricter environmental standards in certain industries than the United States. The Unsafe Consumer Products Argument One argument for shutting out certain imported products is that they are unsafe for consumers. Consumer rights groups have sometimes warned that the World Trade Organization would require nations to reduce their health and safety standards for imported products. However, the WTO explains its current agreement on the subject in this way: “It allows countries to set their own standards.” It also says “regulations must be based on science. . . . And they should not arbitrarily or unjustifiably discriminate between countries where identical or similar conditions prevail.” Thus, for example, under WTO rules it is perfectly legitimate for the United States to pass laws requiring that all food products or cars sold in the United States meet certain safety standards approved by the United States government, whether or not other countries choose to pass similar standards. However, such standards must have some scientific basis. It is improper to impose one set of health and safety standards for domestically produced goods but a different set of standards for imports, or one set of standards for imports from Europe and a different set of standards for imports from Latin America. In 2007, Mattel recalled nearly two million toys imported from China due to concerns about high levels of lead in the paint, as well as some loose parts. It is unclear if other toys were subject to similar standards. More recently, in 2013, Japan blocked imports of U.S. wheat because of concerns that genetically modified (GMO) wheat might be included in the shipments. The science on the impact of GMOs on health is still developing. The National Interest Argument Some argue that a nation should not depend too heavily on other countries for supplies of certain key products, such as oil, or for special materials or technologies that might have national security applications. On closer consideration, this argument for protectionism proves rather weak. As an example, in the United States, oil provides about 36% of all the energy and 25% of the oil used in the United States economy is imported. Several times in the last few decades, when disruptions in the Middle East have shifted the supply curve of oil back to the left and sharply raised the price, the effects have been felt across the United States economy. This is not, however, a very convincing argument for restricting oil imports. If the United States needs to be protected from a possible cutoff of foreign oil, then a more reasonable strategy would be to import 100% of the petroleum supply now, and save U.S. domestic oil resources for when or if the foreign supply is cut off. It might also be useful to import extra oil and put it into a stockpile for use in an emergency, as the United States government did by starting a Strategic Petroleum Reserve in 1977. Moreover, it may be necessary to discourage people from using oil, and to start a high-powered program to seek out alternatives to oil. A straightforward way to do this would be to raise taxes on oil. Additionally, it makes no sense to argue that because oil is highly important to the United States economy, then the United States should shut out oil imports and use up its domestic supplies more quickly. U.S. domestic oil production is increasing. Shale oil is adding to domestic supply using fracking extraction techniques. Whether or not to limit certain kinds of imports of key technologies or materials that might be important to national security and weapons systems is a slightly different issue. If weapons’ builders are not confident that they can continue to obtain a key product in wartime, they might decide to avoid designing weapons that use this key product, or they can go ahead and design the weapons and stockpile enough of the key high-tech components or materials to last through an armed conflict. There is a U.S. Defense National Stockpile Center that has built up reserves of many This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 481 materials, from aluminum oxides, antimony, and bauxite to tungsten, vegetable tannin extracts, and zinc (although many of these stockpiles have been reduced and sold in recent years). Think every country is pro-trade? How about the
U.S.? The following Clear It Up might surprise you. How does the United States really feel about expanding trade? How do people around the world feel about expanding trade between nations? In summer 2007, the Pew Foundation surveyed 45,000 people in 47 countries. One of the questions asked about opinions on growing trade ties between countries. Table 20.3 shows the percentages who answered either “very good” or “somewhat good” for some of countries surveyed. For those who think of the United States as the world’s leading supporter of expanding trade, the survey results may be perplexing. When adding up the shares of those who say that growing trade ties between countries is “very good” or “somewhat good,” Americans had the least favorable attitude toward increasing globalization, while the Chinese and South Africans ranked highest. In fact, among the 47 countries surveyed, the United States ranked by far the lowest on this measure, followed by Egypt, Italy, and Argentina. Country Very Good Somewhat Good Total China South Africa South Korea Germany Canada United Kingdom Mexico Brazil Japan United States 38% 42% 24% 30% 29% 28% 22% 13% 17% 14% 53% 43% 62% 55% 53% 50% 55% 59% 55% 45% Table 20.3 The Status of Growing Trade Ties between Countries (Source: http://www.pewglobal.org/files/pdf/258.pdf) 91% 87% 86% 85% 82% 78% 77% 72% 72% 59% One final reason why economists often treat the national interest argument skeptically is that lobbyists and politicians can tout almost any product as vital to national security. In 1954, the United States became worried that it was importing half of the wool required for military uniforms, so it declared wool and mohair to be “strategic materials” and began to give subsidies to wool and mohair farmers. Although the government removed wool from the official list of “strategic” materials in 1960, the subsidies for mohair continued for almost 40 years until the government repealed them in 1993, and then reinstated them in 2002. All too often, the national interest argument has become an excuse for handing out the indirect subsidy of protectionism to certain industries or companies. After all, politicians, not nonpartisan analysts make decisions about what constitutes a key strategic material. 20.4 | How Governments Enact Trade Policy: Globally, 482 Chapter 20 | Globalization and Protectionism Regionally, and Nationally By the end of this section, you will be able to: • Explain the origin and role of the World Trade Organization (WTO) and General Agreement on Tariffs and Trade (GATT) • Discuss the significance and provide examples of regional trading agreements • Analyze trade policy at the national level • Evaluate long-term trends in barriers to trade These public policy arguments about how nations should react to globalization and trade are fought out at several levels: at the global level through the World Trade Organization and through regional trade agreements between pairs or groups of countries. The World Trade Organization The World Trade Organization (WTO) was officially born in 1995, but its history is much longer. In the years after the Great Depression and World War II, there was a worldwide push to build institutions that would tie the nations of the world together. The United Nations officially came into existence in 1945. The World Bank, which assists the poorest people in the world, and the International Monetary Fund, which addresses issues raised by international financial transactions, were both created in 1946. The third planned organization was to be an International Trade Organization, which would manage international trade. The United Nations was unable to agree to this. Instead, 27 nations signed the General Agreement on Tariffs and Trade (GATT) in Geneva, Switzerland on October 30, 1947 to provide a forum in which nations could come together to negotiate reductions in tariffs and other barriers to trade. In 1995, the GATT transformed into the WTO. The GATT process was to negotiate an agreement to reduce barriers to trade, sign that agreement, pause for a while, and then start negotiating the next agreement. Table 20.4 shows rounds of talks in the GATT, and now the WTO. Notice that the early rounds of GATT talks took a relatively short time, included a small number of countries, and focused almost entirely on reducing tariffs. Since the mid-1960s, however, rounds of trade talks have taken years, included a large number of countries, and have included an ever-broadening range of issues. Main Subjects Number of Countries Involved Year 1947 1949 1951 1956 1960–61 1964–67 1973–79 Place or Name of Round Geneva Tariff reduction Annecy Tariff reduction Torquay Tariff reduction Geneva Tariff reduction Dillon round Kennedy round Tokyo round Tariff reduction Tariffs, anti-dumping measures Tariffs, nontariff barriers Table 20.4 The Negotiating Rounds of GATT and the World Trade Organization This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 23 13 38 26 26 62 102 Chapter 20 | Globalization and Protectionism 483 Year Place or Name of Round Main Subjects 1986–94 Uruguay round Tariffs, nontariff barriers, services, intellectual property, dispute settlement, textiles, agriculture, creation of WTO 2001– Doha round Agriculture, services, intellectual property, competition, investment, environment, dispute settlement Table 20.4 The Negotiating Rounds of GATT and the World Trade Organization Number of Countries Involved 123 147 The sluggish pace of GATT negotiations led to an old joke that GATT really stood for Gentleman’s Agreement to Talk and Talk. The slow pace of international trade talks, however, is understandable, even sensible. Having dozens of nations agree to any treaty is a lengthy process. GATT often set up separate trading rules for certain industries, like agriculture, and separate trading rules for certain countries, like the low-income countries. There were rules, exceptions to rules, opportunities to opt out of rules, and precise wording to be fought over in every case. Like the GATT before it, the WTO is not a world government, with power to impose its decisions on others. The total staff of the WTO in 2014 is 640 people and its annual budget (as of 2014) is $197 million, which makes it smaller in size than many large universities. Regional Trading Agreements There are different types of economic integration across the globe, ranging from free trade agreements, in which participants allow each other’s imports without tariffs or quotas, to common markets, in which participants have a common external trade policy as well as free trade within the group, to full economic unions, in which, in addition to a common market, monetary and fiscal policies are coordinated. Many nations belong both to the World Trade Organization and to regional trading agreements. The best known of these regional trading agreements is the European Union. In the years after World War II, leaders of several European nations reasoned that if they could tie their economies together more closely, they might be more likely to avoid another devastating war. Their efforts began with a free trade association, evolved into a common market, and then transformed into what is now a full economic union, known as the European Union. The EU, as it is often called, has a number of goals. For example, in the early 2000s it introduced a common currency for Europe, the euro, and phased out most of the former national forms of money like the German mark and the French franc, though a few have retained their own currency. Another key element of the union is to eliminate barriers to the mobility of goods, labor, and capital across Europe. For the United States, perhaps the best-known regional trading agreement is the North American Free Trade Agreement (NAFTA). The United States also participates in some less-prominent regional trading agreements, like the Caribbean Basin Initiative, which offers reduced tariffs for imports from these countries, and a free trade agreement with Israel. The world has seen a flood of regional trading agreements in recent years. About 100 such agreements are now in place. Table 20.5 lists a few of the more prominent ones. Some are just agreements to continue talking. Others set specific goals for reducing tariffs, import quotas, and nontariff barriers. One economist described the current trade treaties as a “spaghetti bowl,” which is what a map with lines connecting all the countries with trade treaties looks like. There is concern among economists who favor free trade that some of these regional agreements may promise free trade, but actually act as a way for the countries within the regional agreement to try to limit trade from anywhere else. In some cases, the regional trade agreements may even conflict with the broader agreements of the World Trade Organization. 484 Chapter 20 | Globalization and Protectionism Participating Countries Australia, Brunei, Canada, Chile, People’s Republic of China, Hong Kong, China, Indonesia, Japan, Republic of Korea, Malaysia, Mexico, New Zealand, Papua New Guinea, Peru, Philippines, Russia, Singapore, Chinese Taipei, Thailand, United States, Vietnam Austria, Belgium, Bulgaria, Cyprus, Czech Republic, Denmark, Estonia, Finland, France, Germany, Greece, Hungary, Ireland, Italy, Latvia, Lithuania, Luxembourg, Malta, Netherlands, Poland, Portugal, Romania, Slovakia, Slovenia, Spain, Sweden, United Kingdom* Canada, Mexico, United States Argentina, Bolivia, Brazil, Chile, Columbia, Ecuador, Mexico, Paraguay, Peru, Uruguay, Venezuela Brunei, Cambodia, Indonesia, Laos, Malaysia, Myanmar, Philippines, Singapore, Thailand, Vietnam Angola, Botswana, Congo, Lesotho, Madagascar, Malawi, Mauritius, Mozambique, Namibia, Seychelles, South Africa, Swaziland, Tanzania, Zambia, Zimbabwe Trade Agreements Asia Pacific Economic Cooperation (APEC) European Union (EU) North America Free Trade Agreement (NAFTA) Latin American Integration As
sociation (LAIA) Association of Southeast Asian Nations (ASEAN) Southern African Development Community (SADC) Table 20.5 Some Regional Trade Agreements * Following the 2016 referendum vote to leave the European Union, the UK government triggered the withdrawal process on March 29, 2017, setting the date for the UK to leave by April 2019. Trade Policy at the National Level Yet another dimension of trade policy, along with international and regional trade agreements, happens at the national level. The United States, for example, imposes import quotas on sugar, because of a fear that such imports would drive down the price of sugar and thus injure domestic sugar producers. One of the jobs of the United States Department of Commerce is to determine if there is import dumping from other countries. The United States International Trade Commission—a government agency—determines whether the dumping has substantially injured domestic industries, and if so, the president can impose tariffs that are intended to offset the unfairly low price. In the arena of trade policy, the battle often seems to be between national laws that increase protectionism and international agreements that try to reduce protectionism, like the WTO. Why would a country pass laws or negotiate agreements to shut out certain foreign products, like sugar or textiles, while simultaneously negotiating to reduce trade barriers in general? One plausible answer is that international trade agreements offer a method for countries to restrain their own special interests. A member of Congress can say to an industry lobbying for tariffs or quotas on imports: “Sure would like to help you, but that pesky WTO agreement just won’t let me.” This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 485 If consumers are the biggest losers from trade, why do they not fight back? The quick answer is because it is easier to organize a small group of people around a narrow interest (producers) versus a large group that has diffuse interests (consumers). This is a question about trade policy theory. Visit this website (http://openstaxcollege.org/l/tradepolicy) and read the article by Jonathan Rauch. Long-Term Trends in Barriers to Trade In newspaper headlines, trade policy appears mostly as disputes and acrimony. Countries are almost constantly threatening to challenge other nations' “unfair” trading practices. Cases are brought to the dispute settlement procedures of the WTO, the European Union, NAFTA, and other regional trading agreements. Politicians in national legislatures, goaded on by lobbyists, often threaten to pass bills that will “establish a fair playing field” or “prevent unfair trade”—although most such bills seek to accomplish these high-sounding goals by placing more restrictions on trade. Protesters in the streets may object to specific trade rules or to the entire practice of international trade. Through all the controversy, the general trend in the last 60 years is clearly toward lower barriers to trade. The average level of tariffs on imported products charged by industrialized countries was 40% in 1946. By 1990, after decades of GATT negotiations, it was down to less than 5%. One of the reasons that GATT negotiations shifted from focusing on tariff reduction in the early rounds to a broader agenda was that tariffs had been reduced so dramatically there was not much more to do in that area. U.S. tariffs have followed this general pattern: After rising sharply during the Great Depression, tariffs dropped off to less than 2% by the end of the century. Although measures of import quotas and nontariff barriers are less exact than those for tariffs, they generally appear to be at lower levels than they had been previously, too. Thus, the last half-century has seen both a dramatic reduction in government-created barriers to trade, such as tariffs, import quotas, and nontariff barriers, and also a number of technological developments that have made international trade easier, like advances in transportation, communication, and information management. The result has been the powerful surge of international trade. 20.5 | The Tradeoffs of Trade Policy By the end of this section, you will be able to: • Asses the complexity of international trade • Discuss why a market-oriented economy is so affected by international trade • Explain disruptive market change Economists readily acknowledge that international trade is not all sunshine, roses, and happy endings. Over time, the average person gains from international trade, both as a worker who has greater productivity and higher wages because of the benefits of specialization and comparative advantage, and as a consumer who can benefit from shopping all over the world for a greater variety of quality products at attractive prices. The “average person,” however, is hypothetical, not real—representing a mix of those who have done very well, those who have done all right, and those who have done poorly. It is a legitimate concern of public policy to focus not just on the average or on the success stories, but also on those who have not been so fortunate. Workers in other countries, the environment, and prospects for new industries and materials that might be of key importance to the national economy are also all 486 legitimate issues. Chapter 20 | Globalization and Protectionism The common belief among economists is that it is better to embrace the gains from trade, and then deal with the costs and tradeoffs with other policy tools, than it is to cut off trade to avoid the costs and tradeoffs. To gain a better intuitive understanding for this argument, consider a hypothetical American company called Technotron. Technotron invents a new scientific technology that allows the firm to increase the output and quality of its goods with a smaller number of workers at a lower cost. As a result of this technology, other U.S. firms in this industry will lose money and will also have to lay off workers—and some of the competing firms will even go bankrupt. Should the United States government protect the existing firms and their employees by making it illegal for Technotron to use its new technology? Most people who live in market-oriented economies would oppose trying to block better products that lower the cost of services. Certainly, there is a case for society providing temporary support and assistance for those who find themselves without work. Many would argue for government support of programs that encourage retraining and acquiring additional skills. Government might also support research and development efforts, so that other firms may find ways of outdoing Technotron. Blocking the new technology altogether, however, seems like a mistake. After all, few people would advocate giving up electricity because it caused so much disruption to the kerosene and candle business. Few would suggest holding back on improvements in medical technology because they might cause companies selling leeches and snake oil to lose money. In short, most people view disruptions due to technological change as a necessary cost that is worth bearing. Now, imagine that Technotron’s new “technology” is as simple as this: the company imports what it sells from another country. In other words, think of foreign trade as a type of innovative technology. The objective situation is now exactly the same as before. Because of Technotron’s new technology—which in this case is importing goods from another county—other firms in this industry will lose money and lay off workers. Just as it would have been inappropriate and ultimately foolish to respond to the disruptions of new scientific technology by trying to shut it down, it would be inappropriate and ultimately foolish to respond to the disruptions of international trade by trying to restrict trade. Some workers and firms will suffer because of international trade. In a living, breathing market-oriented economy, some workers and firms will always be experiencing disruptions, for a wide variety of reasons. Corporate management can be better or worse. Workers for a certain firm can be more or less productive. Tough domestic competitors can create just as much disruption as tough foreign competitors. Sometimes a new product is a hit with consumers; sometimes it is a flop. Sometimes a company is blessed by a run of good luck or stricken with a run of bad luck. For some firms, international trade will offer great opportunities for expanding productivity and jobs; for other firms, trade will impose stress and pain. The disruption caused by international trade is not fundamentally different from all the other disruptions caused by the other workings of a market economy. In other words, the economic analysis of free trade does not rely on a belief that foreign trade is not disruptive or does not pose tradeoffs; indeed, the story of Technotron begins with a particular disruptive market change—a new technology—that causes real tradeoffs. In thinking about the disruptions of foreign trade, or any of the other possible costs and tradeoffs of foreign trade discussed in this chapter, the best public policy solutions typically do not involve protectionism, but instead involve finding ways for public policy to address the particular issues resulting from these disruptions, costs, and tradeoffs, while still allowing the benefits of international trade to occur. What’s the Downside of Protection? The domestic flat-panel display industry employed many workers before the ITC imposed the dumping margin tax. Flat-panel displays make up a significant portion of the cost of producing laptop computers—as much as 50%. Therefore, the antidumping tax would substantially increase the cost, and thus the price, of U.S.manufactured laptops. As a result of the ITC’s decision, Apple moved its domestic manufacturing plant for Macintosh computers to Ireland (where it had an exis
ting plant). Toshiba shut down its U.S. manufacturing plant for laptops. And IBM cancelled plans to open a laptop manufacturing plant in North Carolina, instead deciding to expand production at its plant in Japan. In this case, rather than having the desired effect of protecting U.S. interests and giving domestic manufacturing an advantage over items manufactured elsewhere, it had the unintended effect of driving the manufacturing completely out of the country. Many This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 487 people lost their jobs and most flat-panel display production now occurs in countries other than the United States. 488 Chapter 20 | Globalization and Protectionism KEY TERMS anti-dumping laws laws that block imports sold below the cost of production and impose tariffs that would increase the price of these imports to reflect their cost of production common market economic agreement between countries to allow free trade in goods, services, labor, and financial capital between members while having a common external trade policy disruptive market change innovative new product or production technology which disrupts the status quo in a market, leading the innovators to earn more income and profits and the other firms to lose income and profits, unless they can come up with their own innovations dumping selling internationally traded goods below their cost of production economic union economic agreement between countries to allow free trade between members, a common external trade policy, and coordinated monetary and fiscal policies free trade agreement economic agreement between countries to allow free trade between members General Agreement on Tariffs and Trade (GATT) forum in which nations could come together to negotiate reductions in tariffs and other barriers to trade; the precursor to the World Trade Organization import quotas numerical limits on the quantity of products that a country can import national interest argument the argument that there are compelling national interests against depending on key imports from other nations nontariff barriers ways a nation can draw up rules, regulations, inspections, and paperwork to make it more costly or difficult to import products protectionism government policies to reduce or block imports race to the bottom when production locates in countries with the lowest environmental (or other) standards, putting pressure on all countries to reduce their environmental standards World Trade Organization (WTO) organization that seeks to negotiate reductions in barriers to trade and to adjudicate complaints about violations of international trade policy; successor to the General Agreement on Tariffs and Trade (GATT) KEY CONCEPTS AND SUMMARY 20.1 Protectionism: An Indirect Subsidy from Consumers to Producers There are three tools for restricting the flow of trade: tariffs, import quotas, and nontariff barriers. When a country places limitations on imports from abroad, regardless of whether it uses tariffs, quotas, or nontariff barriers, it is said to be practicing protectionism. Protectionism will raise the price of the protected good in the domestic market, which causes domestic consumers to pay more, but domestic producers to earn more. 20.2 International Trade and Its Effects on Jobs, Wages, and Working Conditions As international trade increases, it contributes to a shift in jobs away from industries where that economy does not have a comparative advantage and toward industries where it does have a comparative advantage. The degree to which trade affects labor markets has much to do with the structure of the labor market in that country and the adjustment process in other industries. Global trade should raise the average level of wages by increasing productivity. However, this increase in average wages may include both gains to workers in certain jobs and industries and losses to others. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 489 In thinking about labor practices in low-income countries, it is useful to draw a line between what is unpleasant to think about and what is morally objectionable. For example, low wages and long working hours in poor countries are unpleasant to think about, but for people in low-income parts of the world, it may well be the best option open to them. Practices like child labor and forced labor are morally objectionable and many countries refuse to import products made using these practices. 20.3 Arguments in Support of Restricting Imports There are a number of arguments that support restricting imports. These arguments are based around industry and competition, environmental concerns, and issues of safety and security. The infant industry argument for protectionism is that small domestic industries need to be temporarily nurtured and protected from foreign competition for a time so that they can grow into strong competitors. In some cases, notably in East Asia, this approach has worked. Often, however, the infant industries never grow up. On the other hand, arguments against dumping (which is setting prices below the cost of production to drive competitors out of the market), often simply seem to be a convenient excuse for imposing protectionism. Low-income countries typically have lower environmental standards than high-income countries because they are more worried about immediate basics such as food, education, and healthcare. However, except for a small number of extreme cases, shutting off trade seems unlikely to be an effective method of pursuing a cleaner environment. Finally, there are arguments involving safety and security. Under the rules of the World Trade Organization, countries are allowed to set whatever standards for product safety they wish, but the standards must be the same for domestic products as for imported products and there must be a scientific basis for the standard. The national interest argument for protectionism holds that it is unwise to import certain key products because if the nation becomes dependent on key imported supplies, it could be vulnerable to a cutoff. However, it is often wiser to stockpile resources and to use foreign supplies when available, rather than preemptively restricting foreign supplies so as not to become dependent on them. 20.4 How Governments Enact Trade Policy: Globally, Regionally, and Nationally Governments determine trade policy at many different levels: administrative agencies within government, laws passed by the legislature, regional negotiations between a small group of nations (sometimes just two), and global negotiations through the World Trade Organization. During the second half of the twentieth century, trade barriers have, in general, declined quite substantially in the United States economy and in the global economy. One reason why countries sign international trade agreements to commit themselves to free trade is to give themselves protection against their own special interests. When an industry lobbies for protection from foreign producers, politicians can point out that, because of the trade treaty, their hands are tied. 20.5 The Tradeoffs of Trade Policy International trade certainly has income distribution effects. This is hardly surprising. All domestic or international competitive market forces are disruptive. They cause companies and industries to rise and fall. Government has a role to play in cushioning workers against the disruptions of the market. However, just as it would be unwise in the long term to clamp down on new technology and other causes of disruption in domestic markets, it would be unwise to clamp down on foreign trade. In both cases, the disruption brings with it economic benefits. SELF-CHECK QUESTIONS 1. Explain how a tariff reduction causes an increase in the equilibrium quantity of imports and a decrease in the equilibrium price. Hint: Consider the Work It Out "Effects of Trade Barriers." 2. Explain how a subsidy on agricultural goods like sugar adversely affects the income of foreign producers of imported sugar. 3. Explain how trade barriers save jobs in protected industries, but only by costing jobs in other industries. 4. Explain how trade barriers raise wages in protected industries by reducing average wages economy-wide. 5. How does international trade affect working conditions of low-income countries? 490 Chapter 20 | Globalization and Protectionism 6. Do the jobs for workers in low-income countries that involve making products for export to high-income countries typically pay these workers more or less than their next-best alternative? 7. How do trade barriers affect the average income level in an economy? 8. How does the cost of “saving” jobs in protected industries compare to the workers’ wages and salaries? 9. Explain how predatory pricing could be a motivation for dumping. 10. Why do low-income countries like Brazil, Egypt, or Vietnam have lower environmental standards than highincome countries like the Germany, Japan, or the United States? 11. Explain the logic behind the “race to the bottom” argument and the likely reason it has not occurred. 12. What are the conditions under which a country may use the unsafe products argument to block imports? 13. Why is the national security argument not convincing? 14. Assume a perfectly competitive market and the exporting country is small. Using a demand and supply diagram, show the impact of increasing standards on a low-income exporter of toys. Show the tariff's impact. Is the effect on toy prices the same or different? Why is a standards policy preferred to tariffs? 15. What is the difference between a free trade association, a common market, and an economic union? 16. Why would countries promote protectionist laws, while also negotiate for freer trade internationally? 17. What might account for the dramatic increase in
international trade over the past 50 years? 18. How does competition, whether domestic or foreign, harm businesses? 19. What are the gains from competition? REVIEW QUESTIONS 20. Who does protectionism protect? From what does it protect them? 28. What is dumping? Why does prohibiting it often work better in theory than in practice? 21. Name and define three policy tools for enacting protectionism. 22. How does protectionism affect the price of the protected good in the domestic market? 23. Does international trade, taken as a whole, increase the total number of jobs, decrease the total number of jobs, or leave the total number of jobs about the same? 24. Is international trade likely to have roughly the same effect on the number of jobs in each individual industry? 25. How is international trade, taken as a whole, likely to affect the average level of wages? Is international trade likely to have about the same 26. effect on everyone’s wages? 27. What are main reasons for protecting “infant industries”? Why is it difficult to stop protecting them? 29. What is the “race to the bottom” scenario? 30. Do the rules of international trade require that all nations impose the same consumer safety standards? 31. What is the national protectionism with regard to certain products? interest argument for 32. Name several of the international treaties where countries negotiate with each other over trade policy. 33. What is the general trend of trade barriers over recent decades: higher, lower, or about the same? If opening up to free trade would benefit a nation, just eliminate their trade trade 34. then why do nations not barriers, and not bother with international negotiations? 35. Who gains and who loses from trade? 36. Why is trade a good thing if some people lose? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Chapter 20 | Globalization and Protectionism 491 37. What are some ways that governments can help people who lose from trade? CRITICAL THINKING QUESTIONS 38. Show graphically that for any tariff, there is an equivalent quota that would give the same result. What would be the difference, then, between the two types of trade barriers? Hint: It is not something you can see from the graph. 39. From the Work It Out "Effects of Trade Barriers," you can see that a tariff raises the price of imports. What is interesting is that the price rises by less than the amount of the tariff. Who pays the rest of the tariff amount? Can you show this graphically? 40. If trade barriers hurt the average worker in an economy (due to lower wages), why does government create trade barriers? 41. Why do you think labor standards and working conditions are lower in the low-income countries of the world than in countries like the United States? 42. How would direct subsidies to key industries be preferable to tariffs or quotas? 43. How can governments identify good candidates for infant industry protection? Can you suggest some key characteristics of good candidates? Why are industries like computers not good candidates for infant industry protection? argues 44. Microeconomic is theory economically rationale (and profitable) to sell additional output as long as the price covers the variable costs of production. How is this relevant to the determination of whether dumping has occurred? that it 45. How do you think Americans would feel if other countries began to urge the United States to increase environmental standards? 46. Is it legitimate to impose higher safety standards on imported goods that exist in the foreign country where the goods were produced? 47. Why might the unsafe consumer products argument be a more effective strategy (from the perspective of the importing country) than using tariffs or quotas to restrict imports? 48. Why might a tax on domestic consumption of resources critical for national security be a more efficient approach than barriers to imports? 49. Why do you think that the GATT rounds and, more recently, WTO negotiations have become longer and more difficult to resolve? 50. An economic union requires giving up some political autonomy to succeed. What are some examples of political power countries must give up to be members of an economic union? 51. What are some examples of innovative products that have disrupted their industries for the better? 52. In principle, the benefits of international trade to a country exceed the costs, no matter whether the country is importing or exporting. In practice, it is not always possible to compensate the losers in a country, for example, workers who lose their jobs due to foreign imports. In your opinion, does that mean that trade should be inhibited to prevent the losses? 53. Economists sometimes say that protectionism is the “second-best” choice for dealing with any particular problem. What they mean is that there is often a policy choice that is more direct or effective for dealing with the problem—a choice that would still allow the benefits of trade to occur. Explain why protectionism is a “second-best” choice for: a. helping workers as a group b. helping industries stay strong c. protecting the environment d. advancing national defense 54. Trade has income distribution effects. For example, suppose that because of a government-negotiated reduction in trade barriers, trade between Germany and the Czech Republic increases. Germany sells house paint to the Czech Republic. The Czech Republic sells alarm clocks to Germany. Would you expect this pattern of trade to increase or decrease jobs and wages in the paint industry in Germany? The alarm clock industry in Germany? The paint industry in Czech Republic? The alarm clock industry in Czech Republic? What has to happen for there to be no increase in total unemployment in both countries? 492 Chapter 20 | Globalization and Protectionism PROBLEMS 55. Assume two countries, Thailand (T) and Japan (J), have one good: cameras. The demand (d) and supply (s) for cameras in Thailand and Japan is described by functions: the QdT = 60 – P following QdJ = 80 – P P QsT = –5 + 1 4 QsJ = –10 + 1 2 57. The country of Pepperland exports steel to the Land of Submarines. the quantity demanded (Qd) and quantity supplied (Qs) in each country, in a world without trade, are given in Table 20.6 and Table 20.7. Information for P Price ($) Qd Qs P is the price measured in a common currency used in both countries, such as the Thai Baht. a. Compute the equilibrium price (P) and quantities (Q) in each country without trade. b. Now assume that free trade occurs. The freetrade price goes to 56.36 Baht. Who exports and imports cameras and in what quantities? 56. You have just been put in charge of trade policy for Malawi. Coffee is a recent crop that is growing well and the Malawian export market is developing. As such, Malawi coffee is an infant industry. Malawi coffee producers come to you and ask for tariff protection from cheap Tanzanian coffee. What sorts of policies will you enact? Explain. 60 70 80 90 100 230 200 170 150 140 180 200 220 240 250 Table 20.6 Pepperland Price ($) Qd Qs 60 70 80 90 100 430 420 410 400 390 310 330 360 400 440 Table 20.7 Land of Submarines a. What would be the equilibrium price and quantity in each country in a world without trade? How can you tell? b. What would be the equilibrium price and quantity in each country if trade is allowed to occur? How can you tell? c. Sketch two supply and demand diagrams, one for each country, in the situation before trade. e. d. On those diagrams, show the equilibrium price and the levels of exports and imports in the world after trade. If the Land of Submarines imposes an antidumping import quota of 30, explain in general terms whether it will benefit or injure consumers and producers in each country. f. Does your general answer change if the Land of Submarines imposes an import quota of 70? This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Appendix A 493 A | The Use of Mathematics in Principles of Economics (This appendix should be consulted after first reading Welcome to Economics!) Economics is not math. There is no important concept in this course that cannot be explained without mathematics. That said, math is a tool that can be used to illustrate economic concepts. Remember the saying a picture is worth a thousand words? Instead of a picture, think of a graph. It is the same thing. Economists use models as the primary tool to derive insights about economic issues and problems. Math is one way of working with (or manipulating) economic models. There are other ways of representing models, such as text or narrative. But why would you use your fist to bang a nail, if you had a hammer? Math has certain advantages over text. It disciplines your thinking by making you specify exactly what you mean. You can get away with fuzzy thinking in your head, but you cannot when you reduce a model to algebraic equations. At the same time, math also has disadvantages. Mathematical models are necessarily based on simplifying assumptions, so they are not likely to be perfectly realistic. Mathematical models also lack the nuances which can be found in narrative models. The point is that math is one tool, but it is not the only tool or even always the best tool economists can use. So what math will you need for this book? The answer is: little more than high school algebra and graphs. You will need to know: • What a function is • How to interpret the equation of a line (i.e., slope and intercept) • How to manipulate a line (i.e., changing the slope or the intercept) • How to compute and interpret a growth rate (i.e., percentage change) • How to read and manipulate a graph In this text, we will use the easiest math possible, and we will introduce it in this appendix. So if you find some math in the book that you cannot follow, come back to this appendix to review. Like most things, math has diminishing returns. A little math ability goes a long way;
the more advanced math you bring in, the less additional knowledge that will get you. That said, if you are going to major in economics, you should consider learning a little calculus. It will be worth your while in terms of helping you learn advanced economics more quickly. Algebraic Models Often economic models (or parts of models) are expressed in terms of mathematical functions. What is a function? A function describes a relationship. Sometimes the relationship is a definition. For example (using words), your professor is Adam Smith. This could be expressed as Professor = Adam Smith. Or Friends = Bob + Shawn + Margaret. Often in economics, functions describe cause and effect. The variable on the left-hand side is what is being explained (“the effect”). On the right-hand side is what is doing the explaining (“the causes”). For example, suppose your GPA was determined as follows: GPA = 0.25 × combined_SAT + 0.25 × class_attendance + 0.50 × hours_spent_studying This equation states that your GPA depends on three things: your combined SAT score, your class attendance, and the number of hours you spend studying. It also says that study time is twice as important (0.50) as either combined_SAT score (0.25) or class_attendance (0.25). If this relationship is true, how could you raise your GPA? By not skipping class and studying more. Note that you cannot do anything about your SAT score, since if you are in college, you have (presumably) already taken the SATs. course, economic models = Of money_spent_on_econ_books + money_spent_on_music, assuming that the only things you buy are economics books and music. like Budget relationships economic variables, express using Most of the relationships we use in this course are expressed as linear equations of the form: 494 Appendix A Expressing Equations Graphically y = b + mx Graphs are useful for two purposes. The first is to express equations visually, and the second is to display statistics or data. This section will discuss expressing equations visually. To a mathematician or an economist, a variable is the name given to a quantity that may assume a range of values. In the equation of a line presented above, x and y are the variables, with x on the horizontal axis and y on the vertical axis, and b and m representing factors that determine the shape of the line. To see how this equation works, consider a numerical example: y = 9 + 3x In this equation for a specific line, the b term has been set equal to 9 and the m term has been set equal to 3. Table A1 shows the values of x and y for this given equation. Figure A1 shows this equation, and these values, in a graph. To construct the table, just plug in a series of different values for x, and then calculate what value of y results. In the figure, these points are plotted and a line is drawn through them 12 15 18 21 24 27 Table A1 Values for the Slope Intercept Equation Figure A1 Slope and the Algebra of Straight Lines This line graph has x on the horizontal axis and y on the vertical axis. The y-intercept—that is, the point where the line intersects the y-axis—is 9. The slope of the line is 3; that is, there is a rise of 3 on the vertical axis for every increase of 1 on the horizontal axis. The slope is the same all along a straight line. This example illustrates how the b and m terms in an equation for a straight line determine the shape of the line. The This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Appendix A 495 b term is called the y-intercept. The reason for this name is that, if x = 0, then the b term will reveal where the line intercepts, or crosses, the y-axis. In this example, the line hits the vertical axis at 9. The m term in the equation for the line is the slope. Remember that slope is defined as rise over run; more specifically, the slope of a line from one point to another is the change in the vertical axis divided by the change in the horizontal axis. In this example, each time the x term increases by one (the run), the y term rises by three. Thus, the slope of this line is three. Specifying a y-intercept and a slope—that is, specifying b and m in the equation for a line—will identify a specific line. Although it is rare for real-world data points to arrange themselves as an exact straight line, it often turns out that a straight line can offer a reasonable approximation of actual data. Interpreting the Slope The concept of slope is very useful in economics, because it measures the relationship between two variables. A positive slope means that two variables are positively related; that is, when x increases, so does y, or when x decreases, y decreases also. Graphically, a positive slope means that as a line on the line graph moves from left to right, the line rises. The length-weight relationship, shown in Figure A3 later in this Appendix, has a positive slope. We will learn in other chapters that price and quantity supplied have a positive relationship; that is, firms will supply more when the price is higher. A negative slope means that two variables are negatively related; that is, when x increases, y decreases, or when x decreases, y increases. Graphically, a negative slope means that, as the line on the line graph moves from left to right, the line falls. The altitude-air density relationship, shown in Figure A4 later in this appendix, has a negative slope. We will learn that price and quantity demanded have a negative relationship; that is, consumers will purchase less when the price is higher. A slope of zero means that there is no relationship between x and y. Graphically, the line is flat; that is, zero rise over the run. Figure A5 of the unemployment rate, shown later in this appendix, illustrates a common pattern of many line graphs: some segments where the slope is positive, other segments where the slope is negative, and still other segments where the slope is close to zero. The slope of a straight line between two points can be calculated in numerical terms. To calculate slope, begin by designating one point as the “starting point” and the other point as the “end point” and then calculating the rise over run between these two points. As an example, consider the slope of the air density graph between the points representing an altitude of 4,000 meters and an altitude of 6,000 meters: Rise: Change in variable on vertical axis (end point minus original point) Run: Change in variable on horizontal axis (end point minus original point) = 0.100 – 0.307 = –0.207 = 6,000 – 4,000 = 2,000 Thus, the slope of a straight line between these two points would be that from the altitude of 4,000 meters up to 6,000 meters, the density of the air decreases by approximately 0.1 kilograms/cubic meter for each of the next 1,000 meters. Suppose the slope of a line were to increase. Graphically, that means it would get steeper. Suppose the slope of a line were to decrease. Then it would get flatter. These conditions are true whether or not the slope was positive or negative to begin with. A higher positive slope means a steeper upward tilt to the line, while a smaller positive slope means a flatter upward tilt to the line. A negative slope that is larger in absolute value (that is, more negative) means a steeper downward tilt to the line. A slope of zero is a horizontal flat line. A vertical line has an infinite slope. Suppose a line has a larger intercept. Graphically, that means it would shift out (or up) from the old origin, parallel to the old line. If a line has a smaller intercept, it would shift in (or down), parallel to the old line. Solving Models with Algebra Economists often use models to answer a specific question, like: What will the unemployment rate be if the economy grows at 3% per year? Answering specific questions requires solving the “system” of equations that represent the model. Suppose the demand for personal pizzas is given by the following equation: 496 Appendix A where Qd is the amount of personal pizzas consumers want to buy (i.e., quantity demanded), and P is the price of pizzas. Suppose the supply of personal pizzas is: Qd = 16 – 2P where Qs is the amount of pizza producers will supply (i.e., quantity supplied). Finally, suppose that the personal pizza market operates where supply equals demand, or Qs = 2 + 5P Qd = Qs We now have a system of three equations and three unknowns (Qd, Qs, and P), which we can solve with algebra: Since Qd = Qs, we can set the demand and supply equation equal to each other: Subtracting 2 from both sides and adding 2P to both sides yields: Qd = Qs 16 – 2P = 2 + 5P 16 – 2P – 2 = 2 + 5P – 2 14 – 2P = 5P 14 – 2P + 2P = 5P + 2P 14 = 7P = 7P 14 7 7 2 = P In other words, the price of each personal pizza will be $2. How much will consumers buy? Taking the price of $2, and plugging it into the demand equation, we get: Qd = 16 – 2P = 16 – 2(2) = 16 – 4 = 12 So if the price is $2 each, consumers will purchase 12. How much will producers supply? Taking the price of $2, and plugging it into the supply equation, we get: Qs = 2 + 5P = 2 + 5(2) = 2 + 10 = 12 So if the price is $2 each, producers will supply 12 personal pizzas. This means we did our math correctly, since Qd = Qs. Solving Models with Graphs If algebra is not your forte, you can get the same answer by using graphs. Take the equations for Qd and Qs and graph them on the same set of axes as shown in Figure A2. Since P is on the vertical axis, it is easiest if you solve each equation for P. The demand curve is then P = 8 – 0.5Qd and the supply curve is P = –0.4 + 0.2Qs. Note that the vertical intercepts are 8 and –0.4, and the slopes are –0.5 for demand and 0.2 for supply. If you draw the graphs carefully, you will see that where they cross (Qs = Qd), the price is $2 and the quantity is 12, just like the algebra predicted. This OpenStax book is available for free at http://cnx.org/content/col12170/1.7 Appendix A 497 Figure A2 Supply and Demand Graph The equations for Qd and Qs are d