Dataset Viewer
The dataset viewer is not available for this split.
Cannot extract the features (columns) for the split 'train' of the config 'default' of the dataset.
Error code:   FeaturesError
Exception:    ArrowTypeError
Message:      ("Expected bytes, got a 'float' object", 'Conversion failed for column company_info with type object')
Traceback:    Traceback (most recent call last):
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 151, in _generate_tables
                  pa_table = paj.read_json(
                             ^^^^^^^^^^^^^^
                File "pyarrow/_json.pyx", line 342, in pyarrow._json.read_json
                File "pyarrow/error.pxi", line 155, in pyarrow.lib.pyarrow_internal_check_status
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowInvalid: JSON parse error: Missing a name for object member. in row 0
              
              During handling of the above exception, another exception occurred:
              
              Traceback (most recent call last):
                File "/src/services/worker/src/worker/job_runners/split/first_rows.py", line 228, in compute_first_rows_from_streaming_response
                  iterable_dataset = iterable_dataset._resolve_features()
                                     ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 3496, in _resolve_features
                  features = _infer_features_from_batch(self.with_format(None)._head())
                                                        ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2257, in _head
                  return next(iter(self.iter(batch_size=n)))
                         ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 2461, in iter
                  for key, example in iterator:
                                      ^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1952, in __iter__
                  for key, pa_table in self._iter_arrow():
                                       ^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 1974, in _iter_arrow
                  yield from self.ex_iterable._iter_arrow()
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 503, in _iter_arrow
                  for key, pa_table in iterator:
                                       ^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/iterable_dataset.py", line 350, in _iter_arrow
                  for key, pa_table in self.generate_tables_fn(**gen_kwags):
                                       ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/datasets/packaged_modules/json/json.py", line 181, in _generate_tables
                  pa_table = pa.Table.from_pandas(df, preserve_index=False)
                             ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/table.pxi", line 4795, in pyarrow.lib.Table.from_pandas
                File "/src/services/worker/.venv/lib/python3.12/site-packages/pyarrow/pandas_compat.py", line 637, in dataframe_to_arrays
                  arrays = [convert_column(c, f)
                            ^^^^^^^^^^^^^^^^^^^^
                File "/src/services/worker/.venv/lib/python3.12/site-packages/pyarrow/pandas_compat.py", line 625, in convert_column
                  raise e
                File "/src/services/worker/.venv/lib/python3.12/site-packages/pyarrow/pandas_compat.py", line 619, in convert_column
                  result = pa.array(col, type=type_, from_pandas=True, safe=safe)
                           ^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^
                File "pyarrow/array.pxi", line 365, in pyarrow.lib.array
                File "pyarrow/array.pxi", line 91, in pyarrow.lib._ndarray_to_array
                File "pyarrow/error.pxi", line 92, in pyarrow.lib.check_status
              pyarrow.lib.ArrowTypeError: ("Expected bytes, got a 'float' object", 'Conversion failed for column company_info with type object')

Need help to make the dataset viewer work? Make sure to review how to configure the dataset viewer, and open a discussion for direct support.

Dataset Summary

This dataset was created as part of the Master's thesis Automated Analysis of Sustainability Reports: Using Large Language Models for the Extraction and Prediction of EU Taxonomy-Compliant KPIs (University of Innsbruck, 2025). It contains parsed annual and sustainability reports from 190 European companies subject to EU Taxonomy reporting obligations for the fiscal year 2023. Each record includes extracted Key Performance Indicators (KPIs) and verified company-level metadata.

The dataset supports research on automated analysis of corporate sustainability disclosures, the extraction of EU Taxonomy-aligned financial KPIs, and the evaluation of large language models for compliance-related information extraction tasks.


Data Structure

Each JSON file represents one company-year record and follows this schema:

{
  "company_name": "",
  "company_info": {
    "name": "",
    "industry": "",
    "country": "",
    "revenue": "",
    "number_of_employees": "",
    "company_type": "",
    "sector": ""
  },
  "extracted_kpis": {
    "currency": "",
    "units": "",
    "turnoverKPI": {
      "totalTurnover": {
        "value": "",
        "percentage": ""
      },
      "eligibleTurnover": {
        "value": "",
        "percentage": ""
      },
      "alignedTurnover": {
        "value": "",
        "percentage": ""
      },
      "nonEligibleTurnover": {
        "value": "",
        "percentage": ""
      }
    },
    "capexKPI": {
      "totalCapex": {
        "value": "",
        "percentage": ""
      },
      "eligibleCapex": {
        "value": "",
        "percentage": ""
      },
      "alignedCapex": {
        "value": "",
        "percentage": ""
      },
      "eligibleNotAlignedCapex": {
        "value": "",
        "percentage": ""
      },
      "nonEligibleCapex": {
        "value": "",
        "percentage": ""
      }
    },
    "opexKPI": {
      "totalOpex": {
        "value": "",
        "percentage": ""
      },
      "eligibleOpex": {
        "value": "",
        "percentage": ""
      },
      "alignedOpex": {
        "value": "",
        "percentage": ""
      },
      "nonEligibleOpex": {
        "value": "",
        "percentage": ""
      }
    }
  },
  "taxonomy_section": "",
  "report_without_taxonomy": "",
  "full_report": "",
  "taxonomy_data": {
    "activities": []
  }
}

Data Fields

Field Type Description
company_name string Official name of the company
company_info.industry string Industry classification
company_info.country string Country of headquarters
company_info.revenue numeric / string Annual revenue (euros)
company_info.number_of_employees integer Number of employees
company_info.company_type string Type of company (e.g., public, private)
company_info.sector string Economic sector classification
extracted_kpis.currency string Currency used for KPI reporting
extracted_kpis.units string Units used for financial figures (e.g., million)
extracted_kpis.turnoverKPI.* object Reported turnover values and percentages (total, eligible, aligned, non-eligible)
extracted_kpis.capexKPI.* object Reported capital expenditure values and percentages
extracted_kpis.opexKPI.* object Reported operating expenditure values and percentages
taxonomy_section string Extracted text of the EU Taxonomy disclosure section
report_without_taxonomy string Full report text excluding the EU Taxonomy section
full_report string Complete parsed annual or sustainability report
taxonomy_data.activities list Reported EU Taxonomy activities for the company

License

Creative Commons CC0 1.0 Universal (Public Domain Dedication) You are free to use, share, and adapt the dataset without any restrictions or attribution.

Downloads last month
90