run_id
string | service_name
string | timestamp
string | timestamp_unix_nano
string | co2_emissions_gco2e
float64 | power_cost_usd
float64 | gpu_utilization_percent
float64 | gpu_memory_used_mib
float64 | gpu_memory_total_mib
float64 | gpu_temperature_celsius
float64 | gpu_power_watts
float64 | gen_ai_server_requests_running
float64 | gen_ai_server_requests_waiting
float64 | gen_ai_server_requests_max
float64 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:37:20.158838
|
1765346840158837700
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:37:30.159575
|
1765346850159574400
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:37:40.168062
|
1765346860168062300
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:37:50.172919
|
1765346870172918700
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:38:00.179822
|
1765346880179822300
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:38:10.181474
|
1765346890181473700
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:38:20.184221
|
1765346900184221200
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:38:30.190577
|
1765346910190577200
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:38:40.206006
|
1765346920206006200
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:38:50.207548
|
1765346930207548300
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:39:00.217985
|
1765346940217984800
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:39:10.230025
|
1765346950230025100
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
cc02e10b-22d6-49f2-87fc-89191c655ebb
|
smoltrace-eval
|
2025-12-10T11:39:10.855869
|
1765346950855869000
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
| 0
|
SMOLTRACE GPU & Environmental Metrics
This dataset contains time-series GPU metrics and environmental impact data from a SMOLTRACE benchmark run.
Dataset Information
| Field | Value |
|---|---|
| Model | mistral/ministral-14b-latest |
| Run ID | cc02e10b-22d6-49f2-87fc-89191c655ebb |
| Total Samples | 13 |
| Generated | 2025-12-10 11:39:43 UTC |
| GPU Metrics | Available |
Schema
| Column | Type | Description |
|---|---|---|
run_id |
string | Unique run identifier |
timestamp |
string | ISO timestamp of measurement |
timestamp_unix_nano |
string | Unix nanosecond timestamp |
service_name |
string | Service identifier |
gpu_id |
string | GPU device ID |
gpu_name |
string | GPU model name |
gpu_utilization_percent |
float | GPU compute utilization (0-100%) |
gpu_memory_used_mib |
float | GPU memory used (MiB) |
gpu_memory_total_mib |
float | Total GPU memory (MiB) |
gpu_temperature_celsius |
float | GPU temperature (°C) |
gpu_power_watts |
float | GPU power consumption (W) |
co2_emissions_gco2e |
float | Cumulative CO2 emissions (gCO2e) |
power_cost_usd |
float | Cumulative power cost (USD) |
Environmental Impact
SMOLTRACE tracks environmental metrics to help you understand the carbon footprint of your AI workloads:
- CO2 Emissions: Calculated based on GPU power consumption and regional carbon intensity
- Power Cost: Estimated electricity cost based on configurable rates
Usage
from datasets import load_dataset
import pandas as pd
# Load metrics
ds = load_dataset("YOUR_USERNAME/smoltrace-metrics-TIMESTAMP")
# Convert to DataFrame for analysis
df = pd.DataFrame(ds['train'])
# Plot GPU utilization over time
import matplotlib.pyplot as plt
plt.plot(df['timestamp'], df['gpu_utilization_percent'])
plt.xlabel('Time')
plt.ylabel('GPU Utilization (%)')
plt.title('GPU Utilization During Evaluation')
plt.show()
# Get total environmental impact
total_co2 = df['co2_emissions_gco2e'].max()
total_cost = df['power_cost_usd'].max()
print(f"Total CO2: {total_co2:.4f} gCO2e")
print(f"Total Cost: ${total_cost:.6f}")
Related Datasets
This evaluation run also generated:
- Results Dataset: Pass/fail outcomes for each test case
- Traces Dataset: Detailed OpenTelemetry execution traces
- Leaderboard: Aggregated metrics for model comparison
About SMOLTRACE
SMOLTRACE is a comprehensive benchmarking and evaluation framework for Smolagents - HuggingFace's lightweight agent library.
Key Features
- Automated agent evaluation with customizable test cases
- OpenTelemetry-based tracing for detailed execution insights
- GPU metrics collection (utilization, memory, temperature, power)
- CO2 emissions and power cost tracking
- Leaderboard aggregation and comparison
Quick Links
Installation
pip install smoltrace
Citation
If you use SMOLTRACE in your research, please cite:
@software{smoltrace,
title = {SMOLTRACE: Benchmarking Framework for Smolagents},
author = {Thakkar, Kshitij},
url = {https://github.com/Mandark-droid/SMOLTRACE},
year = {2025}
}
Generated by SMOLTRACE
- Downloads last month
- 16