Dataset Viewer

The dataset viewer is not available because its heuristics could not detect any supported data files. You can try uploading some data files, or configuring the data files location manually.

YAML Metadata Warning: The task_categories "text-to-text" is not in the official list: text-classification, token-classification, table-question-answering, question-answering, zero-shot-classification, translation, summarization, feature-extraction, text-generation, fill-mask, sentence-similarity, text-to-speech, text-to-audio, automatic-speech-recognition, audio-to-audio, audio-classification, audio-text-to-text, voice-activity-detection, depth-estimation, image-classification, object-detection, image-segmentation, text-to-image, image-to-text, image-to-image, image-to-video, unconditional-image-generation, video-classification, reinforcement-learning, robotics, tabular-classification, tabular-regression, tabular-to-text, table-to-text, multiple-choice, text-ranking, text-retrieval, time-series-forecasting, text-to-video, image-text-to-text, visual-question-answering, document-question-answering, zero-shot-image-classification, graph-ml, mask-generation, zero-shot-object-detection, text-to-3d, image-to-3d, image-feature-extraction, video-text-to-text, keypoint-detection, visual-document-retrieval, any-to-any, video-to-video, other

NMRGym

Benchmark on NMR Spectrum. !!! Important: !!! If you need access to the dataset, please email zhengf723@connect.hkust-gz.edu.cn

Data Sources (Before Cleaning)

Source Records Unique SMILES Total Spectrums ¹H NMR ¹³C NMR
CH-NP 12,165 12,165 24,326 12,161 12,165
HMDB 1,791 896 3,278 1,566 1,712
NMRBank 148,914 142,964 297,043 148,437 148,606
NMRShiftDB 2024 41,019 39,631 50,416 18,570 31,846
NP-MRD 489,569 243,598 950,242 462,233 488,009
PubChem-NMR 1,647 1,535 2,605 1,556 1,049
SDBS 12,926 12,626 22,711 11,522 11,189
Total 708,031 430,690 1,350,621 656,045 694,576

Balanced Dataset Statistics (After Cleaning & Processing)

After data cleaning, filtering, quality control, and balanced scaffold splitting, the final NMRGym dataset consists of three splits:

Split Records Unique SMILES ¹H NMR ¹³C NMR
Train 402,676 250,822 402,676 402,676
Val 53,672 50,716 53,672 53,672
Test 80,069 74,568 80,069 80,069
Total 536,417 376,106 536,417 536,417

Dataset Visualizations


Quick Checklist

  • [✅] Data cleaning: Heavy atom filtering and illegal smiles exclusion.
  • [✅] Data Summary and Visualization.
  • [✅] Data Split.
  • [] 3D coord. generation. Rdkit.
  • [✅] Toxic Property label generation.
  • [✅] Function Group label generation.

NMRGym Split Dataset Format (nmrgym_spec_filtered_both_{train,test}.pkl)

This dataset contains post-QC, scaffold-split molecular entries with paired NMR spectra, structure fingerprints, functional group annotations, and toxicity labels.

Each .pkl file is a Python list of dictionaries. Each dictionary corresponds to a single unique molecule.

Example record structure

{
    "smiles": "CC(=O)Oc1ccccc1C(=O)O",
    "h_shift": [7.25, 7.32, 2.14, 1.27],
    "c_shift": [128.5, 130.1, 172.9, 20.7],
    "fingerprint": np.ndarray(shape=(2048,), dtype=np.uint8),
    "fg_onehot": np.ndarray(shape=(22,), dtype=np.uint8),
    "toxicity": np.ndarray(shape=(7,), dtype=np.int8),
}

Field definitions

smiles (str) Canonical SMILES string for this molecule.

h_shift (list[float]) Experimental or curated ¹H NMR peak positions in ppm.

c_shift (list[float]) Experimental or curated ¹³C NMR peak positions in ppm.

fingerprint (np.ndarray(2048,), uint8) RDKit Morgan fingerprint (radius = 2, 2048 bits). Encodes local circular substructures.

fg_onehot (np.ndarray(22,), uint8) Binary functional-group vector. 1 means the SMARTS pattern is present in the molecule. Index mapping (0→21):

  1. Alcohol
  2. Carboxylic Acid
  3. Ester
  4. Ether
  5. Aldehyde
  6. Ketone
  7. Alkene
  8. Alkyne
  9. Benzene
  10. Primary Amine
  11. Secondary Amine
  12. Tertiary Amine
  13. Amide
  14. Cyano
  15. Fluorine
  16. Chlorine
  17. Bromine
  18. Iodine
  19. Sulfonamide
  20. Sulfone
  21. Sulfide
  22. Phosphoric Acid

toxicity (np.ndarray(7,), int8) Seven binary toxicity endpoints (1 = toxic / positive, 0 = negative): 0. AMES (mutagenicity)

  1. DILI (Drug-Induced Liver Injury)
  2. Carcinogens_Lagunin (carcinogenicity)
  3. hERG (cardiotoxic channel block)
  4. ClinTox (clinical toxicity)
  5. NR-ER (endocrine / estrogen receptor)
  6. SR-ARE (oxidative stress response)

Train / Test meaning

  • nmrgym_spec_filtered_both_train.pkl: scaffold-based training set.
  • nmrgym_spec_filtered_both_test.pkl: scaffold-disjoint test set.

Scaffold split is computed using Bemis–Murcko scaffolds. This means test scaffolds do not appear in train, simulating generalization to new chemotypes instead of just new stereoisomers.


Minimal usage example

import pickle
from rdkit import Chem
from rdkit.Chem import AllChem

# load the dataset
test_path = "/gemini/user/private/NMRGym/utils/split_output/nmrgym_spec_filtered_both_test.pkl"
with open(test_path, "rb") as f:
    dataset = pickle.load(f)

print("num molecules:", len(dataset))
print("keys:", dataset[0].keys())
print("example toxicity vector:", dataset[0]["toxicity"])

# build 3D conformer for the first molecule
smi = dataset[0]["smiles"]
mol = Chem.MolFromSmiles(smi)
mol = Chem.AddHs(mol)  # add hydrogens for 3D
AllChem.EmbedMolecule(mol, AllChem.ETKDG())
AllChem.UFFOptimizeMolecule(mol)

# extract 3D coordinates (in Å)
conf = mol.GetConformer()
coords = []
for atom_idx in range(mol.GetNumAtoms()):
    pos = conf.GetAtomPosition(atom_idx)
    coords.append([pos.x, pos.y, pos.z])

print("3D coords for first molecule (Angstrom):")
for i, (x,y,z) in enumerate(coords):
    sym = mol.GetAtomWithIdx(i).GetSymbol()
    print(f"{i:2d} {sym:2s}  {x:8.3f} {y:8.3f} {z:8.3f}")

Notes on 3D coordinates

  • We generate a single low-energy conformer using RDKit ETKDG embedding + UFF optimization.
  • Coordinates are in Ångström.
  • These coordinates are not guaranteed to match the experimental NMR conformer in solvent; they are intended for featurization (message passing models, geometry-aware models, etc.), not quantum-accurate geometry.

Downstream Benchmark Tasks

This benchmark suite evaluates AI models on multiple spectroscopy-related prediction tasks. Each task reflects a distinct molecular reasoning aspect — from direct spectrum regression to property and toxicity prediction.

1. Spectral Prediction

Method / Paper Title Model Type / Approach Metric(s) Model Size Notes
x x x x x

2. Structure Prediction (Inverse NMR)

Method / Paper Title Model Type / Approach Metric(s) Model Size Notes
x x x x x

3. Molecular Fingerprint Prediction (Spec2FP)

Method / Paper Title Model Type / Approach Metric(s) Model Size Notes
x x x x x

4. Functional Group Classification (Spec2Func)

Method / Paper Title Model Type / Approach Metric(s) Model Size Notes
x x x x x

5. Molecular Toxicity Prediction (Spec2Tox / ADMET)

Method / Paper Title Model Type / Approach Metric(s) Model Size Notes
x x x x x

Downloads last month
44