Multilingual Speaker Diarization Dataset
This dataset contains synthetic multilingual speaker diarization data with Hindi, English, and Punjabi audio samples.
Dataset Structure
├── audio/ # WAV audio files (16kHz) - 627 files
├── csv/ # Individual CSV annotations - 627 files
├── rttm/ # RTTM format files for diarization - 627 files
├── all_samples_combined.csv # Complete dataset annotations
└── all_samples_combined.rttm # Complete RTTM annotations
Statistics
- Total samples: 627 audio files
- Total duration: ~15 hours
- Languages: Hindi, English, Punjabi (monolingual, bilingual, and trilingual conversations)
- Speaker count: 2-5 speakers per conversation
- Noise levels: Clean, low, medium, high noise conditions
- Sample rate: 16kHz
- Format: WAV audio files with CSV/RTTM annotations
Language Distribution
- Hindi only: 83 samples (13.2%)
- Punjabi only: 99 samples (15.8%)
- English only: 64 samples (10.2%)
- Bilingual: 189 samples (30.1%)
- Trilingual: 192 samples (30.6%)
Usage
This dataset is designed for training and evaluating speaker diarization models, particularly for multilingual scenarios.
Loading the Dataset
# Load individual files
import pandas as pd
import librosa
# Load annotations
df = pd.read_csv("all_samples_combined.csv")
# Load audio file
audio, sr = librosa.load("audio/diarization_sample_0001.wav", sr=16000)
# Load RTTM annotations
with open("rttm/diarization_sample_0001.rttm", "r") as f:
rttm_data = f.read()
File Format Details
CSV Format
- AudioFileName: Name of the audio file
- Speaker: Speaker ID (Speaker_00, Speaker_01, etc.)
- StartTS: Start timestamp in seconds
- EndTS: End timestamp in seconds
- Language: Language code (hi, en, pa)
RTTM Format
Standard RTTM format for speaker diarization evaluation:
SPEAKER filename 1 start_time duration <NA> <NA> speaker_id <NA> <NA>
Citation
@dataset{multilingual_speaker_diarization_2025,
title={Multilingual Speaker Diarization Dataset},
author={Audio Agnostic Team},
year={2025},
url={https://huggingface.co/datasets/noty7gian/finetuned-hindi-punjabi-denoised}
}
License
This dataset is released under the MIT License.
- Downloads last month
- 24